C(X) AS A DUAL SPACE

E. G. MANES

It is known [1] that for compact Hausdorff X, C(X) is the dual of a Banach space if and only if X is hyperstonian, that is the closure of an open set in X is again open and the carriers of normal measures in $C(X)^*$ have dense union in X. With the desiratum of proving that C(X) is always the dual of some sort of space we broaden the concept of Banach space as follows. A Banach space may be comfortably regarded as a pair (E, B) where E is a topological linear space and Bis a subset of E; the requisite property is that the Minkowski functional of Bbe a complete norm whose topology coincides with that of E. For an arbitrary such pair, we may imitate the definition of the dual of a Banach space, and define $(E, B)^*$ by providing the vector-space of continuous linear functionals on E with the "norm"

$$||\boldsymbol{\psi}|| = \sup\{|\boldsymbol{\psi}(b)|: b \in B\}.$$

Say that (E, B) is a Λ -space (where Λ denotes the real or complex scalar field) if $(E, B)^*$ is a Banach space. Our main result is obtained with the help of the adjoint functor theorem (stated below) of category theory.

MAIN THEOREM. Let X be an arbitrary topological space. Then there exists a Λ -space (E, B), with E topologically isomorphic to a product of copies of Λ , such that the sup-normed Banach space $C_0(X)$ of bounded continuous Λ -valued functions is linearly isometric to $(E, B)^*$.

In developing the proof we point out how an adjoint functor arises naturally to surmount the original obstruction, and how the concept of " Λ -space" is itself suggested by the adjoint.

We are grateful to S. Swaminathan for making us aware of [1] and to the referee for helpful criticism.

In raising the question "is C(X) a dual space?" two fundamental constructions come into play:

1. If F, F' are Banach spaces, the vector space $\mathscr{L}(F, F')$ of continuous linear maps $F \to F'$ is a Banach space in the norm

$$||\psi|| = \sup\{||\psi(x)||: ||x|| \le 1\}.$$

2. If X is a compact Hausdorff space and F is a Banach space, the vector space C(X, F) of continuous maps $X \to F$ is a Banach space in the norm

$$||f|| = \sup\{||f(x)||: x \in X\}.$$

Received May 26, 1971 and in revised form, August 24, 1971. This research was supported by a Killam Postdoctoral Fellowship at Dalhousie University.

E. G. MANES

The original question "is *X* represented by an *F* such that $C(X, \Lambda) \cong \mathscr{L}(F, \Lambda)$ " and the similarity of the norm formulas, beg comparison with a central definition of category theory:

Definition 1. Let \mathscr{A} , \mathscr{B} be categories, let $U: \mathscr{A} \to \mathscr{B}$ be a functor and let B be an object in \mathscr{B} . A free \mathscr{A} -object over B with respect to U is a pair (A, η) with A an object in \mathscr{A} and $\eta: B \to UA$ a morphism in \mathscr{B} possessing the universal property that

for all similar pairs (A', f), there exists unique \mathscr{A} -morphism $\psi: A \to A'$ with $U\psi \cdot \eta = f$. For intuition, think of \mathscr{A} as a category of " \mathscr{B} -objects with additional structure", U as the "underlying \mathscr{B} -object" functor, B as "an object of free generators", η as "inclusion of the generators", and the universal property as "unique extension by an \mathscr{A} -morphism of an arbitrary \mathscr{B} -morphism on the generators". U has a left adjoint if there exists a free (A, η) over B for every \mathscr{B} -object B.

Suppose, in particular, that Ban denotes the category of Banach spaces and norm-decreasing linear maps, that Top is the category of topological spaces and continuous maps and that U: Ban \rightarrow Top is the unit disc functor. Consider a compact Hausdorff space X over which there exists free (F, η) with respect to U. Then "composing with η " is a linear map

$$-\eta: \mathscr{L}(F, F') \to C(X, F')$$

which (by the universal property) establishes a bijection of the unit balls, and is hence a linear isometry. In particular, $C(X) \cong F^*$.

Unhappily, the existence of free (F, η) over X does not characterize the hyperstonian spaces. Indeed, if (F, η) exists, the continuous map

$$X \xrightarrow{\eta} F \longrightarrow F^{**} \xrightarrow{(- \cdot \eta)^{-1^*}} C(X)^*$$

is routinely checked to be the evaluation map sending $x \in X$ to its evaluation functional $f \mapsto f(x)$. Since this mapping is also injective (X is completely regular), X is metrizable. But not all hyperstonian spaces are metrizable; for example the β -compactification of an infinite discrete space is hyperstonian, but not metrizable.

Our immediate goal is to supplant the unit disc functor U: Ban \rightarrow Top with another top-valued functor with respect to which free objects always exist. We pause, then, to consider some basic definitions and theorems which deal with this problem.

486

Definition 2. Recall that \mathscr{A} is complete [3, p. 44, 2.9, p. 47, 17.3, p. 27] if every set-indexed family $(A_{\alpha}: \alpha \in I)$ has a product $P_{\beta}: \prod A_{\alpha} \to A_{\beta}$ (not excluding the case $I = \emptyset$ wherein $\prod A_{\alpha}$ is a terminal object [3, p. 24, p. 14]) and if every pair $f, g: A_1 \xrightarrow{\longrightarrow} A_2$ of \mathscr{A} -morphisms has an equalizer $i: A \to A_1$ [3, p. 8].

Ban is complete. $\prod F_{\alpha}$ is the Banach space of all tuples (x_{α}) with $\sup\{||x_{\alpha}||: \alpha \in I\} < \infty$ with this supremum as the norm; $P_{\beta}(x_{\alpha}) = x_{\beta}$. The equalizer of f, g is the isometric inclusion of the closed subspace $\operatorname{Ker}(f - g)$ on which f and g agree.

Top is complete. If X_{α} is the usual Tychonoff product, and the equalizer of f, g is the subset on which f and g agree with the subspace topology.

The category TIs of topological linear spaces and continuous linear maps is complete. $\prod X_{\alpha}$ is the usual cartesian product vectorspace with the Tychonoff topology, and the equalizer of f, g is the linear subspace on which $f_i g$ agree provided with the subspace topology.

Let \mathscr{A} be complete. A complete subcategory of \mathscr{A} is a full subcategory \mathscr{B} of \mathscr{A} which is closed under products $(B_{\alpha} \text{ in } \mathscr{B} \text{ implies } \prod B_{\alpha}, \text{ as computed in } \mathscr{A}, \text{ is in } \mathscr{B})$ and closed under equalizers $(f, g: B_1 \rightrightarrows B_2)$ in \mathscr{B} and $i: A \to B_1$ an equalizer in \mathscr{A} of f, g implies A is in \mathscr{B}). A complete subcategory is complete qua category.

THEOREM (Freyd adjoint functor theorem). Let \mathscr{A} be a complete category and let $U: \mathscr{A} \to \mathscr{B}$ be a functor. Then U has a left adjoint if and only if the following conditions hold:

- Ad 1. Whenever $\{A, P_{\alpha}: A \to A_{\alpha}\} = \prod A_{\alpha} \text{ in } \mathscr{A},$ $\{UA, U(P_{\alpha}): U(A) \to U(A_{\alpha})\} = \prod U(A_{\alpha}) \text{ in } \mathscr{B}.$
- Ad 2. Whenever i: $A \to A_1$ is the equalizer of $f, g: A_1 \xrightarrow{\longrightarrow} A_2$ in $\mathscr{A}, U(i)$ is the equalizer of U(f), U(g) in \mathscr{B} .
- Ad 3. For each B in \mathcal{B} there exists a set \mathcal{S} of objects in \mathcal{A} such that whenever

A is an \mathscr{A} -object and $f: B \to U(A)$ is a \mathscr{B} -morphism, there exist $S \in \mathscr{S}, g: B \to U(S)$ in $\mathscr{B}, and \psi: S \to A$ in \mathscr{A} with $U(\psi) \cdot g = f$.

For a proof see [3, 3.1, p. 124]. In Ad 3, we emphasize that \mathscr{S} is a *set* as opposed to a proper class; more precisely, it must be legitimate to form $\prod \{S: S \in \mathscr{S}\}$ in \mathscr{A} . The class $\mathscr{S} = \{A: \text{ there exists } f: B \to U(A)\}$ has all desired properties except for "smallness".

It is possible to show that the unit disc functor $Ban \rightarrow top$ satisfies Ad 2 and Ad 3. However, Ad 1 fails for infinite products.

THEOREM 1. Let X be a topological space. Then there exists a compact Hausdorff space βX such that $C_0(X)$ and $C(\beta X)$ are linearly isometric Banach spaces.

E. G. MANES

Proof. The argument is well-known when X is completely regular separated and βX is the β -compactification. Such βX is characterized by being free over X with respect to the inclusion functor from the category CT2 of compact Hausdorff spaces into completely regular separated spaces. The

universal property establishes a linear isomorphism $C_0(X) \to C(\beta X)$ because bounded subsets of Λ have compact closure. That the sup-norms are the same requires only that $\eta(X)$ be dense in βX and this is deducible purely from the universal property (the quickest proof following from the fact that βX is completely regular; also, c.f. the proof of Theorem 4(1) below). We have only to show that any topological space has a β -compactification, that is, that the inclusion functor $U: \operatorname{CT2} \to \operatorname{Top}$ has a left adjoint. Ad 1 and Ad 2 are clear since CT2 is a complete subcategory. To prove Ad 3, let $X \in \operatorname{Top}$, set α to be the cardinal of the set of ultrafilters on the set X, and define \mathscr{S} to be the set of all $S \in \operatorname{CT2}$ whose underlying set is a cardinal $\leq \alpha$. Given $C \in \operatorname{CT2}$ and $f: X \to UC$ let A be the closure of f(X) in C with inclusion

map $i: A \to C \in CT2$. Then f factors through Ui by a unique continuous map g. For each element $x \in A$ there exists an ultrafilter \mathscr{U} on f(X) converging to x. As A is Hausdorff, the cardinal of A is dominated by α and there exists a homeomorphism $\psi: S \to A$ with $S \in \mathscr{S}$. That Ad 3 is satisfied is now clear, and the proof is complete.

Fix an arbitrary class, \mathscr{F} , of Banach spaces. Define \mathscr{C}_{k} to be the full subcategory of Tls consisting of all $E \in \text{TlS}$ which are topologically isomorphic to a closed subspace of a product (in TlS) of elements of \mathscr{F} (considered as topological linear spaces).

Thus, if \mathscr{F} is all Banach spaces, \mathscr{C} is the category of complete, separated locally convex spaces; if $\mathscr{F} = \{\Lambda\}$, \mathscr{C} is the class of all E which are topologically isomorphic to a product (in TIS) of copies of Λ [4, p. 191, exercise 6].

Let $U: \mathscr{E} \to \text{Top}$ be the underlying topological space functor.

THEOREM 2. U has a left adjoint.

Proof. The terminal object, 0, of TIs belongs to \mathscr{E} . If $i_{\alpha}: E_{\alpha} \to \prod_{\beta} F_{\alpha,\beta}$ is a closed embedding then

$$\prod i_{\alpha} : \prod E_{\alpha} \to \prod_{\alpha,\beta} F_{\alpha,\beta}$$

is again a closed embedding. Therefore \mathscr{E} is closed under products. If $E \in \mathscr{E}$ and E' is a closed subspace of E then $E' \in \mathscr{E}$. In particular, \mathscr{E} is closed under equalizers (since all spaces in \mathscr{E} are Hausdorff). Ad 1 and Ad 2 are now clear. The proof of Ad 3 is entirely analogous to that in Theorem 1; define α to be the cardinal of the set of ultrafilters on the free linear span of the set X and consider the closure of the linear span of f(X). The proof is complete.

For each topological space X let $(E(X), \eta)$ denote the free \mathscr{E} -object over X with respect to U. The universal property establishes a linear isomorphism

 $\eta: \mathscr{L}(E(X), F) \to C(X, F)$, for each $F \in \mathscr{F}$. When X is compact, the supnorm on C(X, F) transports to make $\mathscr{L}(E(X), F)$ into a Banach space $\mathscr{L}[E(X), F]$ in the norm

$$||\psi|| = \sup\{||\psi(b)||: b \in B\}$$

where $B = \eta(X)$. This motivates the definition of an \mathscr{F} -space as a pair (E, B)where $E \in \text{Tls}, B \subset E$ are such that $\mathscr{L}(E, F)$ is a Banach space $\mathscr{L}[(E, B), F]$ in the norm

$$||\psi|| = \sup\{||\psi(b)||: b \in B\}$$

for all $F \in \mathscr{F}$. A Λ -space is a { Λ }-space. In view of Theorem 1 and the remarks preceding Theorem 2 we have proved the main theorem (stated at the beginning of the paper). We have also proved

THEOREM 3. Let \mathscr{F} be a class of Banach spaces and let X be a compact (not necessarily separated) topological space. Then there exists an \mathscr{F} -space (E, B) with E topologically isomorphic to a closed subspace of a topological linear space product of elements of \mathscr{F} , and with B compact such that the Banach spaces C(X, F) and $\mathscr{L}[(E, B), F]$ are canonically linearly isometric for all $F \in \mathscr{F}$.

THEOREM 4. (1) E(X) is the closed linear span of $\eta(X)$. (2) X is completely regular separated if and only if $\eta: X \to E(X)$ is a homeomorphism into, providing some $F \in \mathscr{F}$ is non-zero. *Proof.* (1) While a Hahn-Banach argument works, there is a more basic reason. Let E_1 be the closed linear

span of $\eta(X)$. As \mathscr{E} is closed hereditary, $E_1 \in \mathscr{E}$. Let $i: E_1 \to E(X)$ be the inclusion map. Then η factors through i by continuous η_0 . By the universal property there exists ψ with $\psi \eta = \eta_0$. Since $i\psi \in \mathscr{E}$ and leaves η invariant, it follows that $i\psi = id$ and i is onto as desired.

(2) One way is clear. Conversely, let X be completely regular separated. There exists non-zero F in \mathscr{F} . Since the unit interval can be homeomorphicly embedded in F there exists a homeomorphism f of X into F^{I} for I a sufficiently large set. By the universal property, for each $i \in I$

there exists

$$E(X) \xrightarrow{\psi_i} F$$

in \mathscr{C} with $\psi_i \eta = p_i f$. There exists unique continuous (and linear) ψ with $p_i \psi = \psi_i$ for all i. $\psi \eta = f$ since the maps agree followed by each product projection. But whenever a composition of two continuous maps is a homeomorphism into, so is the first. The proof is complete.

The following theorem is roughly similar to some results of Edelstein [2].

THEOREM 5. Let X be a completely regular separated space. Then there exists a set I and a homeomorphism η of X into the real topological linear space \mathbf{R}^{I} with the following properties:

(1) Every continuous endomorphism $f: X \to X$ extends uniquely to a continuous linear endomorphism $\tilde{f}: \mathbf{R}^{I} \to \mathbf{R}^{I}$ such that $\tilde{f}\eta = \eta f$.

(2) Given two continuous endomorphisms $f, g: X \xrightarrow{\longrightarrow} X$, $(gf)^{\sim} = \tilde{g}\tilde{f}$. Thus every semigroup of mappings lifts to an isomorphic semigroup.

(3) If $f: X \to X$ is a homeomorphism onto, \tilde{f} is a topological isomorphism onto.

Proof. (2) and (3) are formal consequences of (1). To prove (1), set $\Lambda = \mathbf{R}$, let \mathscr{E} correspond to $\mathscr{F} = {\mathbf{R}}$ and apply Theorem 2. $(E(X), \eta) = (\mathbf{R}^{I}, \eta)$ is the desired construction. The proof is complete.

References

- 1. W. G. Bade et al., *The space of all continuous functions on a compact Hausdorff space*, Notes for Mathematics 2906, Section 8 (University of California at Berkeley, 1957).
- 2. M. Edelstein, On the representation of mappings of compact metrizable spaces as restrictions of linear transformations, Can. J. Math. 22 (1970), 372-375.
- 3. B. Mitchell, Theory of categories (Academic Press, New York, 1965).
- 4. H. H. Schaeffer, Topological vector spaces (Macmillan, New York, 1966).

Dalhousie University, Halifax, Nova Scotia