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C∗-Convexity and the Numerical Range
Bojan Magajna

Abstract. If A is a prime C∗-algebra, a ∈ A and λ is in the numerical range W (a) of a, then for each ε > 0
there exists an element h ∈ A such that ‖h‖ = 1 and ‖h∗(a − λ)h‖ < ε. If λ is an extreme point of
W (a), the same conclusion holds without the assumption that A is prime. Given any element a in a von
Neumann algebra (or in a general C∗-algebra) A, all normal elements in the weak* closure (the norm closure,
respectively) of the C∗-convex hull of a are characterized.

1 Introduction and Basic Definitions

By the well known Dixmier approximation theorem (see [7] or [17]) the norm closure
coU (R)(a) of the convex hull of the unitary orbit of any element a in a von Neumann algebra
R intersects the center Z of R; moreover in many cases this intersection can be described
precisely (see [25], [15]). In this paper we shall study the weak* closure and the norm
closure of an analogous set, the C∗-convex hull of a, denoted by coR(a) and called more
precisely the R-convex hull of a. By definition coR(a) consists of all elements of the form

n∑
j=1

v∗j av j ,

where n ∈ N, v j ∈ R and
∑n

j=1 v∗j v j = 1. Let us call a subset S of a unital C∗-algebra A

A-convex (or C∗-convex if A is clear from the context) if
∑n

j=1 v∗j x jv j ∈ S whenever x j ∈ S

and v j ∈ A for all j and
∑n

j=1 v∗j v j = 1. (Such sets were studied explicitly in [18] and they
appear frequently in the theory of operator spaces and algebras.) Then clearly coR(a) is the
smallest R-convex subset of R containing a, and coR(a) ⊇ coU (R)(a).

If p is a central projection in R and x ∈ Rp let WRp(x) be the (algebraic) numerical range
of x, that is, the set of all ρ(x), where ρ is a state on Rp [4]. For a normal element b ∈ R we
shall show that b is contained in the weak* closure coR(a) of coR(a) if and only if WRp(bp) ⊆
WRp(ap) for each central projection p ∈ R. (Since central elements are normal, this will
also describe the intersection of coR(a) with the center of R.) As a consequence, given a
unital C∗-algebra A and elements a, b ∈ A with b normal, we shall deduce that b is in the
norm closure coA(a) of coA(a) if and only if W (b+P) ⊆W (a+P) for each primitive ideal P
of A, where a + P denotes the coset of a in A/P and W (a + P) denotes the numerical range;
when the algebra is clear from the context we write W (·) instead of WA(·) for the numerical
range. (We remark that the norm and the weak* closure of coU (R)(a) for a normal element
a ∈ R have been studied in [16], and some results in [20] can be interpreted as a description
of the C∗-analogy of the closed absolutely convex hull of a general element a ∈ R.)
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194 Bojan Magajna

Let K be an A-convex subset of a unital C∗-algebra A. By definition (introduced in [18])
a point x ∈ K is C∗-extreme (or, more precisely, A-extreme) for K if the condition

x =
n∑

j=1

a∗j x ja j ,

n∑
j=1

a∗j a j = 1, x j ∈ K, a j invertible in A, n ∈ N

implies that all x j are unitarily equivalent to x in A. As an immediate consequence of our
results we shall deduce that for each weak* compact R-convex set K in a von Neumann
algebra R each extreme point of K ∩Z (where Z is the center of R) is C∗-extreme in K. The
existence of C∗-extreme points for compact C∗-convex subsets of finite dimensional alge-
bras Mn(C) was proved by Farenick [9] and the appropriate variant of the Krein-Milman
theorem for C∗-convex subsets in matrix algebras was proved by Morenz [21]. After the
first version of the present paper has been already submitted we have found (on the basis
of some results presented here) a proof of a variant of the Krein-Milman theorem for C∗-
convex weak* compact subsets of injective factors, but for more general C∗-algebras the
problem seems to be still open. If K is a weak* compact R-convex subset of a factor R, then
each extreme point of K ∩ C will turn out to be C∗-extreme in K, but coR(K ∩ C) consists
only of elements that have normal dilations (relative to R) with the spectrum in K ∩ C
(Proposition 3.7).

The key to the results here is a simple internal characterization of numerical ranges
in C∗-algebras: if A is a prime C∗-algebra (= without ideal divisors of 0), a ∈ A and
λ ∈ W (a), or if A is an arbitrary C∗-algebra but λ is an extreme point of W (a), then
for each ε > 0 there exists a positive h ∈ A such that ‖h‖ = 1 and ‖h(a − λ)h‖ ≤ ε.
(Conversely, the existence of such an element h clearly implies that λ ∈W (a).) This result
partially generalizes the well known characterization of the numerical range of elements in
the Calkin algebra [10], where λ ∈ W (a) if and only if p(a − λ)p = 0 for some non-zero
projection p, but of course in a general prime C∗-algebra we can not expect that the above
h is a projection or that ε = 0.

A classical way of proving that some well known examples of unital C∗-algebras A are
simple (see [6]) is to consider for a ∈ A the intersection coU (A)(a) ∩ C. By [12] a simple
unital C∗-algebra A has the property that coU (A)(a)∩C 
= ∅ for each a ∈ A if and only if A
has at most one tracial state. (The author is grateful to E. Kirchberg for bringing the article
[12] to his attention.) On the other hand, we shall show here that coA(a) ∩ C 
= ∅ for all
simple unital C∗-algebras A.

2 A Characterization of the Numerical Range of Elements in C∗-Algebras

In this section we shall obtain a characterization of the numerical range (Theorem 2.3
below) needed later, but first we state two general lemmas.

Lemma 2.1 Let A ⊆ B(H) be an irreducible C∗-algebra, a = a∗ ∈ A, ε > 0 and ξ ∈ H

a unit vector such that |〈aξ, ξ〉| < ε. Then there exists a positive element h ∈ A such that
‖h‖ = 1, ‖hah‖ < ε and ‖hξ − ξ‖ < ε.

Proof Choose a positive δ < 2−1(1 + ε)−1(ε − |〈aξ, ξ〉|), let [α0, α] = W (a) (= the
smallest interval containing the spectrum of a) and for each subset σ ⊂ R let e(σ) be the
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spectral projection of a corresponding to σ. (If σ = {λ} is a singleton, we shall write e(λ)
instead of e({λ}).) Since e(λ)ξ is non-zero for at most countably many values of λ ∈ R,
we can choose a partition α0 < α1 < · · · < αn = α of the interval [α0, α] such that
e(α j)ξ = 0 for all j = 1, . . . , n − 1 and |α j − α j−1| < δ for all j = 1, . . . , n. Put
e j = e

(
(α j−1, α j)

)
for j = 2, . . . , n − 1 and e1 = e

(
[α0, α1)

)
, en = e

(
(αn−1, αn]

)
. Let

λ j = ‖e jξ‖ ( j = 1, . . . , n), J = { j : λ j 
= 0} and ξ j = λ−1
j e jξ for j ∈ J. Then ‖ξ j‖ = 1

and
∑

j∈J λ
2
j = ‖ξ‖

2 = 1. Let any j1 ∈ J be fixed. By the Kadison transitivity theorem
for each j ∈ J there exists an s j ∈ A such that s jξ j1 = ξ j and ‖s j‖ = 1, which implies that
s∗j ξ j = ξ j1 (since ‖s∗j ξ j − ξ j1‖

2 = ‖(s∗j s j − 1)ξ j1‖
2 ≤ ‖s jξ j1‖

2 − 2〈s∗j s jξ j1 , ξ j1〉 + 1 = 0).
Since the characteristic function χ of an open subset of the spectrum can be approximated
pointwise by a sequence of positive continuous functions φk ≤ χ, it follows easily by the
spectral theorem that for each j ∈ J there exists an element g j ∈ A such that 0 ≤ g j ≤ e j

and

‖g jξ j − ξ j‖ <
δ

4
√

n
.(2.1)

Put
v j = g j s jg j1 ( j ∈ J) and v =

∑
j∈J

λ j v j .

Then
‖v‖2 ≤

∑
j∈J

λ2
j

∥∥∥
∑
j∈J

v jv
∗
j

∥∥∥ ≤ max
j∈J
‖g js jg

2
j1

s∗j g j‖ ≤ 1.

Further, denoting ē j = e
(
(α j−1, α j]

)
for j = 2, . . . , n and ē1 = e([α0, α1]), we have

‖v∗av‖ ≤
∥∥∥a−

n∑
j=1

α j ē j

∥∥∥ +
∥∥∥v∗
( n∑

j=1

α j ē j

)
v
∥∥∥

< δ +
∥∥∥

n∑
j=1

∑
i,k∈J

α jλiλkv∗i ē jvk

∥∥∥

= δ +
∥∥∥
∑
j∈J

α jλ
2
j g j1 s∗j g2

j s j g j1

∥∥∥ (since 0 ≤ g j ≤ e j)

≤ δ +
∣∣∣
∑
j∈J

α jλ
2
j

∣∣∣ (since 0 ≤ g j1 s∗j g2
j s jg j1 ≤ 1)

= δ +
∣∣∣
〈 n∑

j=1

α j ē jξ, ξ
〉∣∣∣

≤ δ +
∥∥∥a−

n∑
j=1

α j ē j

∥∥∥ + |〈aξ, ξ〉|,

thus

‖v∗av‖ < 2δ + |〈aξ, ξ〉|.(2.2)
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Observe also that

‖vξ j1 − ξ‖ =
∥∥∥
∑
j∈J

λ j(v jξ j1 − ξ j)
∥∥∥

=
∥∥∥
∑
j∈J

λ j[g js j(g j1ξ j1 − ξ j1 ) + (g jξ j − ξ j)]
∥∥∥

≤
(∑

j∈J

‖g js j(g j1ξ j1 − ξ j1 ) + (g jξ j − ξ j)‖
2
)1/2

<
δ

2

by (2.1), and

‖v∗ξ − ξ j1‖ =
∥∥∥
∑
i, j∈J

λiλ j v
∗
i ξ j − ξ j1

∥∥∥

=
∥∥∥
∑
j∈J

λ2
j (g j1 s∗j g jξ j − ξ j1 )

∥∥∥ (recall that
∑
j∈J

λ2
j = 1)

=
∥∥∥
∑
j∈J

λ2
j [g j1 s∗j (g jξ j − ξ j) + (g j1ξ j1 − ξ j1 )]

∥∥∥

<
δ

2
√

n

∑
j∈J

λ2
j (by (2.1))

≤
δ

2
.

Thus, we have 1 − δ
2 < ‖v‖ ≤ 1 and ‖vv∗ξ − ξ‖ < δ. Finally, put h = ‖v‖−2vv∗. Then

‖hξ − ξ‖ < 2δ < ε and (using (2.2) and the choice of δ)

‖hah‖ =
1

‖v‖4
‖vv∗avv∗‖ ≤

1

‖v‖2
‖v∗av‖ <

2δ + |〈aξ, ξ〉|

(1− δ
2 )2

< ε.

Lemma 2.2 Let A be a unital C∗-algebra, a1, . . . , am elements of A and ρ a state on A in the
weak* closure of the pure states. Then for each ε > 0 there exists an element h ∈ A such that
‖h‖ = 1 and ‖h∗

(
ai − ρ(ai)

)
h‖ < ε for i = 1, . . . ,m.

Proof Clearly we may assume that all ai are self-adjoint (otherwise consider the set of all
real and imaginary parts of ai ’s) and (by translation) that ρ(ai) = 0 for all i. Then by the
hypothesis there exists a pure state ω on A such that |ω(ai)| < δ for all i, where δ = 8−mε.
Let π : A → B(H) be the representation constructed from ω by the GNS construction and
let ξ ∈ H be the corresponding unit cyclic vector. Put bi = π(ai) and note that

|〈biξ, ξ〉| < δ (i = 1, . . . ,m).
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Observe that it suffices to construct an element w ∈ π(A) ∼= A/ kerπ such that ‖w‖ = 1
and ‖w∗biw‖ < ε. Namely, then w can be lifted to an element s ∈ A with ‖s‖ = 1
and, if {ek}k is an approximate unit in kerπ (with 0 ≤ ek ≤ 1), then from the well
known identity ‖π(x)‖ = infk ‖(1 − ek)x(1 − ek)‖ (x ∈ A) we have that ‖w∗biw‖ =
infk ‖(1−ek)s∗ais(1−ek)‖, which implies that for an appropriate k the element h := s(1−ek)
satisfies ‖h∗aih‖ < ε for all i = 1, . . . ,m and clearly ‖h‖ = 1 (since ‖h‖ ≤ ‖s‖ = 1 and
‖h‖ ≥ ‖π(h)‖ = ‖w‖ = 1).

The required element w ∈ π(A) can be constructed by an induction on m, using
Lemma 2.1. We may assume that ε < 1 and ‖ai‖ ≤ 1 for all i = 1, . . . ,m. Suppose
inductively that for some k ∈ {1, . . . ,m − 1} we already have found an element u ∈ π(A)
such that

‖u‖ = 1, ‖uξ − ξ‖ < 8k−1δ and ‖u∗biu‖ < 8k−1δ (i = 1, . . . , k).(2.3)

Since

|〈u∗bk+1uξ, ξ〉| ≤ |〈bk+1ξ, ξ〉| + |〈bk+1(uξ − ξ), ξ〉| + |〈bk+1uξ, uξ − ξ〉|

< δ + 2‖uξ − ξ‖

< 3 · 8k−1δ

by (2.3), by Lemma 2.1 there exists an element v ∈ π(A) such that

‖v‖ = 1, ‖vξ − ξ‖ < 3 · 8k−1δ and ‖v∗(u∗bk+1u)v‖ < 3 · 8k−1δ.

Then ‖uv‖ ≤ 1, ‖v∗u∗biuv‖ < 3 · 8k−1δ for i = 1, . . . , k + 1 and

‖uvξ − ξ‖ ≤ ‖uξ − ξ‖ + ‖u(vξ − ξ)‖ < 4 · 8k−1δ.

The last estimate implies in particular that ‖uv‖ > 1− 4 · 8k−1δ. Put w = ‖uv‖−1uv. Then
‖w‖ = 1, ‖wξ − ξ‖ ≤ ‖wξ − uvξ‖ + ‖uvξ − ξ‖ < 8kδ and

‖w∗biw‖ =
1

‖uv‖2
‖v∗u∗biuv‖ <

3 · 8k−1δ

(1− 4 · 8k−1δ)2
< 8kδ

for i = 1, . . . , k + 1, since k < m and δ < 8−m.

Theorem 2.3 Let A be a C∗-algebra, a ∈ A and λ ∈ W (a). If A is prime or if λ is an
extreme point of W (a), then for each ε > 0 there exists a positive element h ∈ A such that
‖h‖ = 1 and ‖h(a− λ)h‖ < ε. Moreover, if A is a von Neumann algebra, we can choose h to
be a projection.

Proof If λ is an extreme point of W (a) then there exists a pure state ρ on A (or in the
unitization of A if A does not have a unit) such that ρ(a) = λ, hence the theorem follows
in this case at once from Lemma 2.2.

If A is a prime C∗-algebra, then there exists a separable prime C∗-subalgebra B of A such
that a ∈ A (this was first proved in [8, Proposition 3.1] and a very elementary proof can also
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be found in [19, Lemma 3.2]), but separable prime C∗-algebras have faithful irreducible
representations [24, p. 102], so we may assume that B is an irreducible C∗-algebra on a
Hilbert space H. Since λ ∈ W (a), there exists for each n = 1, 2, . . . a unit vector ξn ∈ H

such that |〈(a − λ)ξn, ξn〉| <
1
n [4], hence λ = ρ(a), where ρ is a weak* limit point of

the vector states induced by the vectors ξn. Since B is irreducible, the vector states on B are
pure, hence by Lemma 2.2 there exists h ∈ B ⊆ A such that ‖h‖ = 1 and ‖h∗(a−λ)h‖ < ε.
Replacing h by hh∗, we may assume that h is positive. Finally, if A is a von Neumann algebra,
we may replace h by the spectral projection of h corresponding to the interval (1− δ, 1] for
some sufficiently small δ > 0.

Remark 2.4 In general, if A is, say, an abelian C∗-algebra, a ∈ A and λ ∈W (a) is not an
extreme point of W (a), then inf{‖h∗(a−λ)h‖ : h ∈ A, ‖h‖ = 1} > 0. To see this, consider
for example the diagonal 2× 2 matrix a with 1 and−1 along the diagonal and λ = 0.

3 Weak* Compact C∗-Convex Hulls

Our first goal in this section is to characterize all normal elements in coR(a), where a is an
arbitrary element of a von Neumann algebra R. Throughout the rest of the paper we will
denote by Z the center of R and by ∆ the spectrum of Z. By the Gelfand transform we
shall identify Z with the C∗-algebra C(∆) of all complex valued continuous functions on
∆. For each t ∈ ∆ we denote by Zt the kernel of t , by Rt the closed ideal in R generated by
Zt (called the Glimm ideal at t) and by R(t) the quotient algebra R/Rt . Further, the coset
of an element a ∈ R in R(t) will be denoted by a(t). By [11] ‖a‖ = supt∈∆ ‖a(t)‖ and the
function t �→ ‖a(t)‖ is continuous on∆ for each a ∈ R.

Lemma 3.1 Let a ∈ R, t ∈ ∆ and λ ∈ W
(
a(t)
)

. Then for each ε > 0 there exists a
projection p ∈ Z such that p(t) = 1 and d

(
λp, coRp(ap)

)
< ε, where d denotes the distance.

Proof Since R(t) is a prime C∗-algebra by [11] (in fact it is even primitive by [14]), by The-
orem 2.3 there exists a positive element h ∈ R(t) such that ‖h‖ = 1 and ‖h(a− λ)h‖ < ε.
Using the same approximate unit argument as in the beginning of the proof of Lemma 2.2
we can lift h to an element s ∈ R such that ‖s‖ = 1 and ‖s∗(a−λ)s‖ < ε. Then by the polar
decomposition of s and applying the spectral theorem to |s| it follows easily that there exists
a projection e ∈ R such that e(t) 
= 0 and ‖

(
e(a − λ)e

)
(t)‖ < ε. By the continuity of the

norm and since∆ is extremely disconnected there exists a clopen neighborhood (that is, a
neighborhood which is closed and open) σ of t such that e(s) 
= 0 and ‖

(
e(a−λ)e

)
(s)‖ < ε

for each s ∈ σ. Let p ∈ Z be the projection corresponding to σ (that is, the Gelfand trans-
form of p is the characteristic function of σ). Replacing e by ep, we may assume that the
central carrier of e in R is p (since e(s) 
= 0 for all s ∈ σ) and ‖e(a− λ)e‖ < ε.

Since the central carrier p of e can be written as an orthogonal sum of projections equiv-
alent to subprojections of e, there exists a family {uk} of partial isometries in R such that
uku∗k ≤ e and

∑
k u∗k uk = p. Then

∥∥∥
∑

k

u∗k apuk − λp
∥∥∥ =
∥∥∥
∑

k

u∗k e(a− λ)euk

∥∥∥

= sup
k
‖u∗k e(a− λ)euk‖
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≤ ‖e(a− λ)e‖

< ε

since the range projections of u∗k are mutually orthogonal, hence

d
(
λp, coRp(ap)

)
< ε.

Later in this section we shall need matrix ranges, so the following lemma is formulated
for matrix ranges, although for the proof of Theorem 3.3 below the usual numerical range
is sufficient. Recall ([3], [5]) that for each n = 1, 2, . . . the n-th matrix range Wn(a) of an
element a ∈ A, where A is a unital C∗-algebra, is defined as the set of all matrices in Mn(C)
of the form ϕ(a), where ϕ : A → Mn(C) is a unital completely positive map (we refer to
[23] for the definition and basic properties of completely positive maps). In particular,
W1(a) coincides with the usual numerical range W (a).

Lemma 3.2 Let A be a unital C∗-algebra, C the center of A, ∆ the spectrum of C and
t ∈ ∆. For each closed set σ ⊆ ∆ let Cσ = {c ∈ C : c|σ = 0} (where we have identified C
with the continuous functions on ∆), let Aσ be the closed ideal in A generated by Cσ and put
A(t) = A/A{t} and a(t) = a + A{t}. Then for each a ∈ A and n = 1, 2, . . . we have

Wn

(
a(t)
)
=
⋂
σ∈Bt

Wn(a + Aσ),(3.1)

where the intersection is over some basis Bt of closed neighborhoods σ of t.

Proof Since A(t) is a quotient algebra of A/Aσ for each σ ∈ Bt , the left hand side of
(3.1) is contained in the right hand side. To prove the reverse inclusion, suppose that λ ∈
Wn(a + Aσ) for all σ ∈ Bt . Then

‖α⊗ 1 + β ⊗ λ‖ ≤ ‖α⊗ 1 + β ⊗ (a + Aσ)‖(3.2)

for all α, β ∈ Mm(C) and all m ∈ N (since there exists a unital completely positive, hence
completely contractive, map from A/Aσ to Mn(C) sending a + Aσ to λ). Since Mm(C) ⊗
A/Aσ

∼=Mm(A/Aσ) sits isometrically in
⊕

s∈σ Mm(A(s)), we have

‖α⊗ 1 + β ⊗ (a + Aσ)‖ = sup
s∈σ
‖α⊗ 1 + β ⊗ a(s)‖.(3.3)

Note that the function s �→ ‖α ⊗ 1 + β ⊗ a(s)‖ is upper semicontinuous on ∆ by [11].
Thus, given ε > 0, for each fixed α, β ∈ Mm(C) there exists a neighborhood σ ∈ Bt such
that the right hand side of (3.3) is less than ‖α⊗ 1 + β ⊗ a(t)‖+ ε and it follows then from
(3.2) and (3.3) that

‖α⊗ 1 + β ⊗ λ‖ ≤ ‖α⊗ 1 + β ⊗ a(t)‖ + ε.
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Since this holds for all ε > 0 and α, β ∈Mm(C) (m ∈ N), the unital map

A(t) ⊇ span{1, a(t)} →Mn(C), α + βa(t) �→ α + βλ (α, β ∈ C)

is completely contractive, hence by the Arveson extension theorem (see [23, 3.4, 6.5]) it
can be extended to a unital completely positive map from A(t) to Mn(C) sending a(t) to λ,
hence λ ∈Wn

(
a(t)
)

.

Theorem 3.3 Let a and b be elements of a von Neumann algebra R. If b is normal, then
b ∈ coR(a) if and only if W

(
b(t)
)
⊆W

(
a(t)
)

for each t in the spectrum∆ of the center Z of
R. Moreover, this is equivalent to the condition that WRp(bp) ⊆WRp(ap) for each projection
p ∈ Z.

Proof If b ∈ coR(a), then there exists a net {bk}k ⊆ coR(a) converging to b in the strong
operator topology. For each clopen subset σ of ∆ let pσ be the corresponding projection
in Z. Since bk pσ ∈ coRpσ (apσ), it follows easily from the definitions of the numerical
range and the C∗-convex hulls that WRpσ (bk pσ) ⊆ WRpσ (apσ). Since the net {bk pσ}k

converges to bpσ , it follows (by the weak* density of normal states in the set of all states)
that WRpσ (bpσ) ⊆WRpσ (apσ). Now for each fixed t ∈ ∆ Lemma 3.2 implies that

W
(
b(t)
)
=
⋂
σ

WRpσ (bpσ) ⊆
⋂
σ

WRpσ (apσ) =W
(
a(t)
)
,

where the intersection is over all clopen neighborhoods σ of t . (Observe that we have
not needed the normality of b for this implication and that a similar argument shows that
Wn

(
b(t)
)
⊆Wn

(
a(t)
)

for all n = 1, 2, . . . .)
Suppose now conversely that b is normal and W

(
b(t)
)
⊆W

(
a(t)
)

for all t ∈ ∆. Let ε >
0. By the spectral theorem there exist scalars β j in the spectrum σ(b) of b and projections
e j ∈ R (commuting with b) with the sum 1 such that

∥∥∥b−
n∑

j=1

β j e j

∥∥∥ < ε

3
.(3.4)

Then ‖b(t) −
∑n

j=1 β j e j(t)‖ < ε
3 , hence ‖b(t)e j (t) − β j e j(t)‖ < ε

3 and therefore the
distance of β j to the spectrum of b(t)e j(t) in e j(t)R(t)e j (t) is less than ε

3 if e j(t) 
= 0. Thus

d
(
β j ,W

(
b(t)
))

< ε
3 (where d denotes the distance) if e j(t) 
= 0. Suppose now, for a

moment, that e j(t) 
= 0 for all t ∈ ∆ and j = 1, . . . , n. Then d
(
β j ,W

(
a(t)
))

< ε
3 for all

j and t , so we can choose γ j,t ∈W
(
a(t)
)

so that |β j − γ j,t | <
ε
3 . By Lemma 3.1 for each t

there exists a projection pt ∈ Z such that pt (t) = 1 and d
(
γ j,t pt , coRpt (apt )

)
< ε

3 , hence

d
(
β j pt , coRpt (apt )

)
<

2ε

3
( j = 1, . . . , n).(3.5)

Since the projections e j are mutually orthogonal with the sum 1, (3.5) easily implies that

d
( n∑

j=1

β j e j pt , coRpt (apt )
)
<

2ε

3
,
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hence, using (3.4),

d
(
bpt , coRpt (apt )

)
< ε.

Thus for each t ∈ ∆ we can choose an xt ∈ coRpt (apt ) such that

‖(b− xt )pt‖ < ε.

Note that pt corresponds to a clopen subset σt of ∆ and t ∈ σt (since pt (t) = 1). By
compactness we can cover ∆ by finitely many such clopen subsets σt . It follows that there
exist projections p1, . . . , pm in Z with the sum 1 and elements xi ∈ coRpi (api) such that

‖(b− xi)pi‖ < ε (i = 1, . . . ,m).

Let x =
∑m

i=1 xi . Then x ∈ coR(a) and ‖b − x‖ < ε. Thus, d(b, coR(a)) < ε for each
ε > 0, which implies that b ∈ coR(a). This proves the theorem in the case e j(t) 
= 0 for all
j = 1, . . . , n and t ∈ ∆.

In general (when e j(t) = 0 for some j and t) the proof can be reduced to the case just
considered by a suitable partition of ∆. Namely, we can partition ∆ into a finite union of
disjoint clopen subsets ∆k (k = 1, . . . , l) each containing an open dense subset Ωk such
that for each k there exists a subset Fk of F = {1, . . . , n} with the property that for t ∈ Ωk

we have e j(t) 
= 0 if j ∈ Fk and e j(t) = 0 if j ∈ F \ Fk. (To find such a partition, let
Ω1 = {t ∈ ∆ : e j(t) 
= 0 for all j ∈ F}. Since Ω1 is open and∆ is extremely disconnected,
∆1 := Ω1 is clopen. If ∆1 
= ∆, let Ω2 = {t ∈ ∆ \∆1 : e1(t) 
= 0, . . . , en−1(t) 
= 0} and
put∆2 = Ω2. Continuing in this way, we find the required partition in less than 2n steps.)
Let pk ∈ Z be the projection corresponding to ∆k. Then ‖(b −

∑
j∈Fk

β j e j)pk‖ <
ε
3 by

(3.4), and by the same argument as in the previous paragraph we have that

d
(
β j ,W

(
a(t)
))
≤
ε

3
(3.6)

for all j ∈ Fk and t ∈ Ωk. Since Ωk is dense in ∆k, (3.6) must hold for all t ∈ ∆k (and
j ∈ Fk). (Indeed, choosing a net {tν} ⊆ Ωk converging to t ∈ ∆k, (3.6) implies that
W
(
β j − a(tν)

)
intersects the closed disc with the radius ε/3 around 0, hence for each ν

there exists a state ρν on R annihilating the Glimm ideal Rtν such that |ρν(β j − a)| ≤ ε/3.
Now we can use an argument from [11, p. 233]. Namely, with ρ a weak* limit point of the
net {ρν}, we have that |ρ(β j−a)| ≤ ε/3. Moreover, since ρν |Z = tν (for ρν annihilates Rtν )
and tν converge to t , it follows that ρ|Z = t , hence ρ(Rt ) = 0. Thus ρ can be regarded as a

state on R(t) such that |ρ
(
β j − a(t)

)
| ≤ ε/3, which implies that d

(
β j ,W

(
a(t)
))
≤ ε/3.)

We can now use the reasoning from the previous paragraph (with ∆ replaced by ∆k) to
show that bpk ∈ coRpk (apk) for each k = 1, . . . , l. Since

∑
pk = 1, this implies that

b ∈ coR(a).

Corollary 3.4 For each a ∈ R the intersection coR(a) ∩ Z consists of all c ∈ Z such that
c(t) ∈W

(
a(t)
)

for all t ∈ ∆, and this is the same as the set of all c ∈ Z such that there exists
a conditional expectation φ from R onto Z satisfying φ(a) = c.
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Proof If c ∈ Z then c(t) ∈ C, hence W
(
c(t)
)
= {c(t)} for each t ∈ ∆ and the first

conclusion of the corollary follows immediately from Theorem 3.3.
If φ : R → Z is a conditional expectation such that φ(a) = c, then, since φ is Z-linear,

by a standard argument φ induces a state φt on R(t) by φt

(
x(t)
)
= φ(x)(t) (x ∈ R) such

that φt

(
a(t)
)
= c(t), hence c(t) ∈ W

(
a(t)
)

. Conversely, if c(t) ∈ W
(
a(t)
)

for all t ∈ ∆,
then the map φ0 : Z + Za→ Z, φ0(z1 + z2a) = z1 + z2c is easily seen to be a unital Z-linear
complete contraction, hence by [23, p. 118]φ0 can be extended to a conditional expectation
φ : R→ Z.

Since conditional expectations from R to Z separate points of R (which can be seen di-
rectly or by using [13, Theorem 3]), by Corollary 3.4 the set coR(a)∩Z is nonempty (which
follows also from the Dixmier approximation theorem), and coR(a) ∩ Z is a singleton only
if a ∈ Z.

If R is injective, then we can characterize all (not just normal) elements in coR(a).

Proposition 3.5 Let a, b ∈ R. A necessary condition for b to be in coR(a) is that Wn

(
b(t)
)
⊆

Wn

(
a(t)
)

for all t ∈ ∆ and all n = 1, 2 . . . ; moreover, if R is injective, then this condition is
also sufficient.

Proof The necessity has already been observed in the beginning of the proof of Theo-
rem 3.3. So, assume that R is injective and Wn

(
b(t)
)
⊆ Wn

(
a(t)
)

for all t ∈ ∆ and all
n = 1, 2, . . . . Then by [3, Th. 2.4.2] for each t ∈ ∆ the map φt : C + Ca(t) → C + Cb(t),
φt

(
α+βa(t)

)
= α+βb(t) is a unital complete contraction, hence so is ψt := φtπt,a, where

πt,a is the restriction of the quotient homomorphism πt : R→ R(t) to Z + Za. This implies
that the correspondence

ψ : Z + Za→ Z + Zb, ψ(z1 + z2a) = z1 + z2b

is a well defined Z-linear unital complete contraction, hence by the injectivity of R, ψ ex-
tends to a unital Z-linear completely contractive (hence completely positive) map θ : R →
R. Since R is injective, by [1, Corollary 3.7] θ is the point weak* limit of a net of maps
θk : R → R of the form θk(x) =

∑nk

j=1 v∗k, j xvk, j , where vk, j ∈ R and nk ∈ N; moreover, by
[2, Lemma 2.2] we may assume that θk(1) ≤ 1 for each k. Put

vk,0 =
(

1−
nk∑

j=1

v∗k, j vk, j

)1/2
.

Since for each vector ξ in the underlying Hilbert space we have that

‖vk,0ξ‖
2 = ‖ξ‖2 −

〈 nk∑
j=1

v∗k, j vk, jξ, ξ
〉

k
−→ ‖ξ‖2 − 〈θ(1)ξ, ξ〉 = 0,

the net {vk,0}k converges strongly to 0 and the net of elements

bk :=
nk∑

j=0

v∗k, j avk, j = v∗k,0avk,0 + θk(a)
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converges to θ(a) = b in the weak* topology. Since
∑nk

j=0 v∗k, j vk, j = 1 for each k, this
implies that b ∈ coR(a).

If A is an abelian unital C∗-algebra and K an A-convex subset of A then the A-extreme
points in K are just the usual extreme points. To see this, let x be an extreme point of K and
suppose that x = ay +(1−a)z where y, z ∈ K, z 
= x and a ∈ A has the spectrum contained
in the open interval (0, 1). Identify A with the algebra of all continuous functions on the
spectrum∆ of A and let U be an open set in∆ such that y(t), z(t) 
= x(t) for all t ∈ U and
such that a(t) ≤ 1/2 for all t ∈ U or 1 − a(t) ≤ 1/2 for all t ∈ U . We may assume that
a(t) ≤ 1/2 for all t ∈ U (the other possibility is treated in the same way). Let c ∈ A be a
non-zero function supported in U with values in [0, 1]. Put x1 = (1−c)x+2cay+c(1−2a)z
and x2 = (1−c)x+cz and observe that x1, x2 ∈ K (since K is A-convex) and 1

2 (x1 +x2) = x.
Since x is extreme in K it follows that x2 = x, hence cx = cz. But this is impossible since
x(t) 
= z(t) for t in the support of c.

For matrix algebras Mn(C) the following corollary was proved by Farenick [9].

Corollary 3.6 Let R be a von Neumann algebra, Z the center of R and K a weak* compact
R-convex subset R. Then each extreme point of KZ := K ∩ Z is R-extreme in K.

Proof For a ∈ R put WZ(a) = coR(a) ∩ Z. Note that

⋃
a∈K

WZ(a) = KZ .

Let c be any extreme point of KZ (which exists by the classical Krein-Milman theorem).
Then c is Z-extreme in KZ by the remark preceding the lemma. Suppose that

c =
n∑

j=1

a∗j x ja j (x j ∈ K),(3.7)

where the elements a j ∈ R are invertible and
∑n

j=1 a∗j a j = 1. Let φ : R → Z be any Z-
state (= a conditional expectation from R onto Z). Then the elements c j := φ(a∗j a j) ∈

Z are invertible with the sum 1. Define Z-states φ j by φ j(x) = c−1
j φ(a∗j xa j) (x ∈ R,

j = 1, . . . , n). Then from (3.7) we have

c =
n∑

j=1

c jφ j(x j).

Since φ j(x j) ∈ coR(x j )∩Z ⊆ KZ by Corollary 3.4 and c is Z-extreme in KZ , this implies that
φ j(x j) = c for all j. By the definition of φ j this means that φ

(
a∗j (x j − c)a j

)
= c jφ j(x j) −

cφ(a∗j a j) = c jc − cc j = 0. Since the Z-states separate points of R and the elements a j are
invertible, we conclude that x j = c for all j = 1, . . . , n.

In general the extreme points of KZ are not sufficient to generate K as a weak* compact
R-convex set. To see what is the weak* closure of the R-convex hull of the extreme points
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of KZ , thus coR(KZ), suppose for simplicity that R is a factor, hence Z = C. Observe that if
a ∈ coR(KC), say a =

∑n
j=1 λ jw∗j w j , where λ j ∈ KC, w j ∈ R and

∑n
j=1 w∗j w j = 1, then for

all α, β ∈Mn(C) and all n ∈ N we have

‖α⊗ 1 + β ⊗ a‖ =
∥∥∥

n∑
j=1

(1⊗ w j)
∗(α⊗ 1 + β ⊗ λ j)(1⊗ w j)

∥∥∥ ≤ max
1≤ j≤n

‖α + λ jβ‖.

Thus, denoting by z the identity function on KC ⊆ C,

‖α⊗ 1 + β ⊗ a‖ ≤ ‖α⊗ 1 + β ⊗ z‖.(3.8)

This inequality persists also for all a ∈ coR(KC). Put A = C(KC). If R is injective, then (3.8)
implies that there exists a unital completely positive map φ : A → R such that φ(z) = a.
Then by [22, 5.2, 3.2, 3.7] there exist a self-dual Hilbert (right) R-module E, a represen-
tation π : A → L(E) (the algebra of all adjointable operators on E) and an element x ∈ E
such that φ(w) = 〈x, π(w)x〉 (w ∈ A). By [22, Theorem 3.12] E can be expressed as the
ultraweak direct sum

⊕
i∈IeiR, where {ei : i ∈ I} is a family of projections in R. Then

L(E) can be regarded as a W∗-subalgebra of MI(R) = R⊗B
(
�2(I)
)

consisting of all ma-
trices [ai j] ∈ MI(R) such that ai j = eiai je j (i, j ∈ I) and x =

∑
i∈I xi can be regarded

as a column with the entries xi ∈ R satisfying
∑

i∈I x∗i xi = 〈x, x〉 = φ(1) = 1. Put
b = π(z) ∈ L(E) ⊆MI(R). Then b is normal, W (b) ⊆W (z) = KC, and the identity

a = φ(z) = x∗π(z)x = x∗bx

shows that a is a compression of b. Conversely, if a has a normal dilation b in MI(R) for
some index set I such that W (b) ⊆ KC, then by an application of the spectral theorem we
have that b ∈ coMI(R)(KC), which easily implies that a ∈ coR(KC). This proves the following
proposition.

Proposition 3.7 Let K be a weak* compact R-convex subset of an injective factor R and
KC = K ∩ C. Then coR(KC) consists of all elements a ∈ R that have normal dilations b ∈
MI(R) for some index set I (more precisely, a =

∑
i, j∈I x∗i bi jx j , where xi ∈ R and

∑
i∈I x∗i xi =

1) such that W (b) ⊆ KC.

4 Norm Closed C∗-Convex Hulls

Using the technique of the universal representation [17, Section 10.1], we can deduce from
Theorem 3.3 a characterization of normal elements in the norm closure coA(a) of the C∗-
convex hull of any element a in a C∗-algebra.

Theorem 4.1 Let A be a unital C∗algebra and a, b ∈ A with b normal. Then b ∈ coA(a) if
and only if W (b + P) ⊆W (a + P) for each primitive ideal P of A.

Proof If b ∈ coA(a), then b + P ∈ coA/P(a + P) for each primitive ideal P, which implies
that W (b + P) ⊆W (a + P).
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To prove the converse, let R be the universal enveloping von Neumann algebra of A (we
shall regard A as a subalgebra of R) and Z the center of R. Let p ∈ Z be a projection. For
each α in the spectrum of bp in Rp there is a pure state ρ on Rp such that ρ(bp) = α. If π is
the irreducible representation of Rp constructed from ρ, then α ∈W

(
π(bp)

)
and π(p) =

1. We may regard π as a representation of R by π(x) := π(xp) (x ∈ R) and by assumption
we have that W

(
π(b)
)
⊆ W

(
π(a)
)
. (Namely, as a closed ideal in A, the kernel J of π|A is

an intersection of a family of primitive ideals of A, say J =
⋂

k Pk, and then the isometric
embedding A/ J →

⊕
k A/Pk implies that W (x + J) is the closure of the convex hull of⋃

k W (x + Pk) for each x ∈ A.) It follows that α ∈ W
(
π(a)
)
= W

(
π(ap)

)
⊆ WRp(ap)

for all α in the spectrum of bp in Rp. Since for a normal element the numerical range is
equal to the convex hull of its spectrum, we conclude that WRp(bp) ⊆ WRp(ap) for each
projection p ∈ Z. By Theorem 3.3 this implies that b ∈ coR(a), but we have to prove that
b ∈ coA(a).

Since coA(a) is convex, coA(a) = coA(a) ∩ A (where one bar denotes the weak* closure
in R, see [17, p. 713]), hence it suffices now to prove that coR(a) ⊆ coA(a). Given any
x =
∑n

j=1 v∗j av j ∈ coR(a), by an application of the Kaplansky density theorem to




v1 0 . . . 0
...

... . . .
...

vn 0 . . . 0


 ∈Mn(R) ⊇Mn(A)

we see (after an obvious reduction) that there exists a net {ak}k of elements ak =
(ak1, . . . , akn) ∈ An converging strongly to v := (v1, . . . , vn) and satisfying

∑n
j=1 a∗k jak j ≤

1. For each k put

ak0 =
(

1−
n∑

j=1

a∗k jak j

)1/2
and xk =

n∑
j=0

a∗k jaak j .

Then xk ∈ coA(a) and the same argument as in the proof of Proposition 3.5 shows that the
net {xk} converges to x in the weak operator topology, hence x ∈ coA(a).

The following corollary follows immediately from Theorem 4.1.

Corollary 4.2 If A is a simple unital C∗-algebra, then coA(a) ⊇W (a) · 1 for each a ∈ A.

Remark 4.3 For a general unital C∗-algebra A and an element a ∈ A the set coA(a) does
not necessarily intersects the center of A even though if A is primitive. To see this, consider,
for example, the C∗-subalgebra of B(H) (H a separable Hilbert space) generated by the
ideal K(H) of all compact operators and two infinite rank projections p1 and p2 with p1 +
p2 = 1. Now the center of A is C, but coA(p1 − p2) does not contain any scalar since
coA/K(H)(p1 − p2) = {p1 − p2} (because A/K(H) is abelian).

Using the known facts concerning the ideal structure of von Neumann algebras, we can

https://doi.org/10.4153/CMB-2000-027-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2000-027-3


206 Bojan Magajna

deduce some consequences from Theorem 4.1 and Theorem 3.3. For simplicity we shall
consider here only the case of σ-finite factors, where the lattice of (closed two sided) ideals
is very simple (see [17, Section 6.8]), so the following corollary is straightforward.

Corollary 4.4 Let R be a σ-finite factor, a, b ∈ R and b normal.

(i) If R is finite or purely infinite, then b ∈ coR(a) if and only if W (b) ⊆ W (a), hence the
two sets coR(a) and coR(a) have the same intersection with the set of all normal elements
in R.

(ii) If R is semifinite (but infinite), then b ∈ coR(a) if and only if W (b) ⊆ W (a) and
Wess(b) ⊆ Wess(a), where Wess(x) denotes the the numerical range of the coset of x ∈ R
in the quotient of R by the unique closed two-sided ideal of R (namely, the closed ideal
generated by all finite projections in R).
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