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ANTIPODAL COINCIDENCE SETS AND
STRONGER FORMS OF CONNECTEDNESS

J.E. HARMSE

A new notion of a-connectedness (a-path connectedness) in

general topological spaces is introduced and it is proved that

for a real-valued function defined on a space with this property,

the cardinality of the antipodal coincidence set is at least as

large as the cardinal number a . In particular, in linear

topological spaces, the antipodal coincidence set of a real-

valued function has cardinality at least that of the

continuum. This could be regarded as a treatment of some Borsuk-

Ulam type results in the setting of general topology.

It is implicit in the work of Yang [19, 20, 27] that if a continuous

real-valued function is defined on a sphere in a real nonned linear space

of dimension greater than 2 then the cardinality of the antipodal

coincidence set is at least that of the continuum. In fact, this result

and a similar one for functions defined on linear spaces of dimension

greater than 1 also hold for topological vector spaces. These are

special cases of "intermediate value" theorems which are proved by

considering the wealth of sets connecting arbitrary points in these spaces.

This extension of the antipodal coincidence and "intermediate value"

theories is the theme of this paper. To reduce the extent of repetition in
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272 J.E. Harmse

the proofs the notion of "wealth of sets connecting arbitrary points" is

formally defined for arbitrary topological spaces and the consequences are

deduced in the general case. The theory for path connectedness is parallel

to that for ordinary connectedness. Although Borsuk [7], Bourgin [2],

Conner and Floyd [3], Connett [4], Dyson [5], Granas [7], Holm and Spanier

[«], Jaworowski [9, 10, 11, 72], Joshi [73, 74], Kakutani [15], Livesay

[16], Spiez [77], Yamabe and Yujobo [7S] and many others have worked on

similar problems, their methods and results are different from those in

this paper.

1. Definition

Let X be a topological space, A be a set, and a = |i4| be the

cardinality of A . Elements x, y of X are a-conneated (respectively

a-path connected) in X if, and only if, there is a family \C : a € A]

of connected (respectively path connected) subsets of X containing x

and y with C n CV = {x, y} for a, b distinct elements of A . Such

a family a-connects (respectively a-path connects) x and y in X .

X is a-connected {a-path connected) if, and only if, all points

x, y of X are a-connected (a-path connected) in X . Note that

a-connectedness and a-path connectedness are both topological properties.

2. Examples

(i). Every space is O-path connected.

(ii). A space is 1-connected (l-path connected) if, and only if, it

is connected (path connected).

Proof. It is a well-known fact that a space is connected if, and only

if, any points x, y are contained in a connected subset of the space,

that is the space is 1-connected.

If X is path connected and x, y are elements of X then the

singleton family {X} l-path connects x and y .

Conversely, if X is l-path connected and x, y are points in X ,

then by l-path connectedness, x, y € D , where D is a path connected

subset of X . Thus there is a path p from x to y in D . Clearly

p joins x to y in X . •
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(iii). A figure eight is path connected but can be made disconnected

by removing one point. In view of Theorem h below this shows that the

figure eight is not 2-connected.

(iv). A circle is 2-path connected but not 3-connected since it can

be disconnected by removing 2 points.

(v). Every connected two point space is a-path connected for every

cardinal a .

Proof. Let {x, y} be a connected two point space, A be a set and

a = \A\ . Then {x, y} does not have the discrete topology so we may

assume {x} is not an open set. Then p defined by

x , X = 0

P(X) =

y , 0 < X s 1 ,

is a path from x to y . So {x, y} is path connected and hence

f{#> y} : a 6 A} a-path connects x and y . A point is clearly a-path

connected to itself. D

The relationship between a-path connectedness and a-connectedness is

as one would expect.

3. Theorem

Let x, y be a-path connected in a topological space X . Then

x, y are a-connected in X . The converse is false. In fact, for every

cardinal a there is a metric space, X , two of whose points, x. and

x. , are a-connected, but not path connected, in X .

Proof. Let {C : a £ A} a-path connect x and y . Each C is

path connected, and hence connected, so the family \c : a € A)

a-connects x and y .

To prove the assertions regarding the converse let a be any cardinal

number and A be a set of cardinality a . If a = 0 the result is

trivial since every space is O-connected; so assume a > 0 and let

(5, d) be a connected metric space which is not path connected (for

example, the topologist's sine curve [6, p. 362]). Let s and s be
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274 J.E. Harmse

two points of 5 which cannot be joined by any path in S .

Define an equivalence relation ~ on S x A by

(s, a) ~ (t, b) *=* 8 = t and either a = b or s = s or s . Let

[s, a] denote the equivalence class of (s, a) and X = S x A/~ , the set

of equivalence classes.

Define p : X x x -+ [0, «) by

i(s, £) if a = b ,

p([s, a], [, ])
minfdfs, 3.J+d[s., t) : i = 0, l} If a * <b .

We claim that p is a metric and that {X, p) has the desired properties.

p is well defined. The only case that needs attention occurs when

one of s, t equals one of s , s . Assume without loss of generality

that s = s [possibly also t = s or s ). Then

d[s, sQ) + d{sQ, t) = 0 + d(s, t) = d(s, t)

and

d{s, By) + d[sx, t) > d(s, t) .

So

min{dfs, s.)+d[s., t) -. i = 0, l} = d(s, t)

and the two formulae in the definition give the same result.

p is a metric. Let [s, a], [t, b], [u, a] be points in X .

Clearly

P([s, a], [s, a]) = d(s, s) = 0

and

p([s, a], [*, b]) = p([t, 6], [s, a]) .

Next observe that since d(s, s .) + d[s., t) > d(s, t) ,

p([s, a], [t, fc]) > d(Si t) .

If [s, a] * [t, fc] then either s t t so

p([s, a], [t, b]) > d(s, t) > 0 ,
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or a = t , a t b , s t s or s so d[s, s.) + d[s., t) = 2d[s, s •)

and hence p([s, a], [t, b]) = 2 min\d[s, s^) : i = 0, l} > 0 .

To prove the triangle inequality we consider the three possible cases,

(i) If a = a then

p([s, a], [w, e]) = d(s, u)

S d(s, t) + d{t, u)

S p([8, a], [*, 6]) + p([t, b], [u, el) .

(ii) If a t a and e t b then

p([s, a], [u, e]) £ d(s, s.) + d(s., w)

t) + d{t, s.) + d(s., u)

5 p([s, a], [t, b]) + d(t, s.) + d[s., u) for i = 0, 1 .

But p([t, b], [u, a]) = minfdft, s.)+d(s., M) : i = 0, l} so this

shows

p([s, a], [u, e]) s p([e, a], [t, fc]) + p([t, 2>], [u, o}) .

(iii) If c £ a and a t b then the calculation is similar to that

in (ii).

Next we find two points in X which are a-connected but not path

connected. Let x. = [s , a] , x^ = [s , a] . (Recall that

[s., a] = [s., b] for i = 0, 1 and a, b € A and that A t 0 .) Let

C = {[s, a] : s d S} for each a in A . By the definition of p , C

is isometric to S by f ([s, a]) = s . Hence C is connected and thus

X- and x. are ct-connected by \C : a € A\ .

Assume there is a path p from x to x in X . Define

f : X •* S by f[s, a] = s ; clearly f is well defined. Also f is

continuous since, as we have already observed, p([s, a ] , [t, b]) > d(s, t)

for 8, t in S , a, b in A . Thus fop is a path from /x. = s

to /x. = s in S . This contradicts the choice of s and s ; hence

there is no path in X joining x. to x . O
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The general result on the stronger forms of connectedness is the

following.

4 . Theorem

Let X be a topological space, a a cardinal number.

(a) If x, y are a-connected (a-path connected) in X then x, y

cannot be disconnected (path disconnected) except by removing at least a

points, that is if D is a subset of X not containing x, y such that

x, y are not connected (not path connected) in X\D then a 5 \D\ .

(b) If X is a-connected (a-path connected) then X cannot be made

disconnected (path disconnected) except by removing at least a points,

that is if D is a subset of X with X\D not connected (not path

connected) then as \D\ .

Proof. (a) Let x, y, D be as stated in the hypothesis and let

\C : a € A] ot-connect (a-path connect) x and y where, of course,

\A\ = a . If a is an element of A with C n D = 0 then, since C

is a connected (path connected) subset of X\D containing x and y ,

these points are connected (path connected) in X\D which contradicts the

hypothesis. Thus (by the Axiom of Choice) there is a function f : A -*• D

with f[a) € C n D for each a € A . Since D does not contain x or

y and Cn C, = {x, y] for a t b , it follows that / is injective.

Therefore a = \A\ < \D\ .

(b) If D is a subset of X , X\D not connected (not path

connected), then there are points x, y of X\D not connected (not path

connected) in X\D . But x, y are a-connected (a-path connected) in X

so a 5 \D\ by (a). •

The "intermediate value" result follows easily, as does the result on

antipodal coincidence.

5. Corollary

Let X be an a-connected space, f : X •+ R be continuous, x, y be
elements of X , t be a real number and suppose that fix) < t < f(y) .
Then there are at least a points z in X with / ( s ) = t . (If a = 1
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this reduces to the familiar fact that the image of a connected space under

a continuous real-valued function is an interval. )

Proof. Let D = /""""(t) = {z i. X • f{z) = t} . Then fiX\D) is

disconnected since it contains f{x) and fiy) but not t . But the

continuous image of a connected set is again connected; so X\D must be

disconnected. By the foregoing theorem, this implies a 5 |D| . •

6. Corollary

Let T be a continuous involution of an a-connected space X (with

or without fixed points), f : X -*• R a continuous function. Then either

fix) = f{Tx) for each x in X , or fix) = fiTx) for at least a

values of x in X . (if X contains a discrete pair, that is distinct

points x and y where the subspace {x, y} is discrete then a 5 \x\

so the first alternative implies the second. )

Proof. Assume there is a point a: of X with f[xn) ^ /(^x
n) •

Define g : X -+ R by g(x) = fix) - f(Tx) . Then

g{TxQ) = f{TxQ) - f{T{TxQ))

= f[Txn) - f{xQ) since T is an involution

Thus g[xQ) < 0 < g[Tx ) or g[Tx ) < 0 < g{xS\ so by Corollary 5, there

are at least a points x in X with g(x) = 0 , that is with

fix) = fiTx) . •

For large cardinal numbers we have a partial converse of Theorem h.

7. Theorem

Let X be a topological space, and let a be a cardinal number

greater than a , the cardinality of the continuum.

(a) If x, y cannot be path disconnected in X except by the

removal of at least a points then x, y are a-path connected in X .

(b) If X cannot be path disconnected except by the removal of at

least a points then X is a-path connected.
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Proof. (a) Let A be a set of cardinality a . If {x, y} is path

connected then put C = {x, y] for each a in A .

Now suppose that the space {x, y} is not path connected. We apply a

maximality argument to show the existence of at least a paths (in X )

from x to y which do not cross.

Let P be the set of all paths in X from x to y , and let

P = {Q C P : if p and c? are distinct elements of Q then

p([0, 1]) n <?([0, 1]) = {x, y}} .

P is non-empty and partially ordered by set inclusion. Let C be any

linearly ordered subset of P .

Certainly U(C) c P . if p, q are distinct elements of U(C) then

p € i? , q € Q for some R, Q in C . But C is linearly ordered so one

of these, i? say, is a subset of the other so p, q £ Q and thus

p([0, l]) n <7([0, 1]) = {x, y} . But p, 3 were any two distinct elements

of U(C) so this shows that U(C) is an element of P , that is every

chain in P is bounded above; so by Zorn's Lemma, P has a maximal

element P . Let D = U p((0, l))\{x, y) . Now, if c? is a path from

x to 2/ in Af\D then for each p in P_ ,

p([0, 1]) n <7([0, 1]) = {x, y} since <?([0, l]) n Z? = 0 ; so PQ u {<?}

is an element of P . This would contradict the maximality of P. since

{x, y} not path connected implies q $ PQ . Thus x, y are path

disconnected in X\D ; so by hypothesis, \d\ > a . But for each p in

PQ , |p((0, 1))| 5 e . So a s |J| 5 c|PQ| 5 max(e, |PQ|) . Since a < a

this means a < |P | and hence P has a subset A of cardinality a .

The family {p([0, l]) : p € .4} cc-path connects x and z/ .

CJiyl Take any x, y in X . Then x and y cannot be path

disconnected in X except by path disconnecting X which, by hypothesis,

requires the removal of a points. Thus, by (a), x and y are a-path

connected. D

We now apply the above to topological vector spaces and to the spheres

in topological vector spaces. In each case we prove that the relevant
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space is e-path connected (and hence e-connected) and then appeal to

Corollaries 5 and 6.

8 . Lemma

Any real topological vector space of dimension greater than 1 is

c-path connected.

Proof. Let X be a real topological vector space of dimension

greater than 1 and let x, y be elements of X . If x = y then x

and y are e-path connected by C, = {x} for each t in R so assume

x # y and choose z linearly independent of y - x . For each real

number t define a path p. from x to y by

p.(u) = x + \\{y-x) + y(l-y)£s for each y in the unit interval [0, l] .

Let s and t be real numbers and let X, y be elements of the unit

interval with p (X) = p,(y) ̂  x or v . By linear independence of iy-x)
S T>

and 2 the equation p (X) = p.{\i) (that is

x + X(j/-x) + X(l-X)s3 = x + y(y-x) + y(l-y)i2 ) implies that X = y and

X(l-X)s = X(l-X)t . But since p (X) ̂  x or J/ , X # 0 or 1 so

s

X(l-X) i s n o n - z e r o ; hence s = t . This shows t h a t

PJ[O, 1 ] ) n p , ( [ 0 , 1 ] ) = {x, y} fo r t * s . So { p . ( [ 0 , l ] ) : t € R}
e-path connects x and y . O

9. Theorem

Let X be any real topological vector space of dimension greater than

1 , and let f : X •*• R be continuous. Then f(X) is an interval and if

t is any interior point of f{X) then f maps at least c points on

t , that is c S l/" 1^)! .

Proof. This is immediate from Corollary 5 and Lemma 8. D

10. Theorem

Let X be any real topological vector space of dimension greater than

1 j and let f : X •*• R be continuous. Then there are at least c points

x in X with f(x) = f(-x) .
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Proof. This is immediate from Corollary 6 and Lemma 8 since

|*| > c . •

The unit sphere in a normed linear space is formed by choosing one

point from each ray proceeding from the origin (namely, the point with unit

norm). Since there is no apparent natural way to do this in a general

topological vector space, we define the sphere as the collection of rays

proceeding from the origin.

11. Definition

Let X be a real topological vector space. Define

[ ] : X\{0) -> P(X) , the power set of X , by [x] = {tx : t > 0} . Then

the sphere of X is the range, E , of [ ] with the quotient topology,

that is a subset U of E is open if, and only if, {x € X\{0] : [x] € U)

is open in X\{0} .

We see immediately that the above definition agrees with the usual

notion of a sphere.

12. Lemma

Let X be a real normed linear space, x € X , and r > 0 . Then the

sphere S = {y € X : ||x-y|| = r} with centre x and radius r is

homeomorphic to the sphere, Z , of X . In fact u : S •* E defined by

u{y) = [y-x] is a homeomorphism.

Proof. Clearly u i s continuous since t r ans la t ion and [ ] are

continuous. Define u : E - > - 5 by v[y] = x + ry/\\y\\ . This i s well

defined since i f [y] = [z] then z = ay , a > 0 and ||3|| = a\\y\\ so

x + ry/ | |y | | = x + rs/Hsll . Since v o [ ] i s continuous on X\{0} i t

follows t h a t v i s continuous by the standard property of the quotient

topology. For [y] € E ,

~ u[*
" UJj/lli
= [y] since

For y € S ,
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v o u{y) = v[y-x]

_ _ + *•(?/-«)
— *" II II

\\y-x\\

= x + (y-x) since ||y-x|| = r

= J/ •

So u and u are mutually inverse continuous functions and hence u is a

homeomorphism. •

13. Lemma

The sphere of a real topological vector space of dimension greater

than 2 is c-path connected.

Proof. Let X be a real topological vector space of dimension

greater than 2 and Z be the sphere of X . Take any x, y £ X\{0} .

(i) If [x] = [y] then [x], [y] are e-path connected in E by

{{[x]} : * € R} .

(ii) If [x] = [-y] choose w, z so that W, x, z are linearly

independent. For t real define p. : [0, l] •*• Z by

P+(y) = [(cos TT)j)x+(sin iry)(u+ts)] - a great circle from [x] to [y] .
t

If s, t are real, y, X € [0, l] and p (X) = p.(\i) t [x] or [#] then
s v

for some r > 0 ,

(cos TTX)X + (sin irX)(u+S2) = r ( (cos TTu)x+(sin Try) (u+ts))

so (by l inea r independence of U, x, z ) s in TTX = r sin try and

s(s in irX) = rt s in Try . But r + 0 and sin Try # 0 (since pAv) # [a;]

or [j/] ) so these give s = t . Thus {p ([0, l ] ) : t € R} e-path

connects [x] and [y] .

( i i i ) I f x , y are l inear ly independent choose z so tha t x, y, z

are l i nea r ly independent. For rea l t define p. : [0, l ] -»• E by
Pt(u) = [(l-y)x+yi/+ty(l-y)3] . If P g U ) = P t (

u ) * M °r Ci/l then

(l-X)x + \y + sX(l-X)s = r((l-y)x+yj/+ty(l-y)3) for some r > 0 . So

1 - X = r ( l - y ) , X = r\x and sX(l-X) = r t y ( l - y ) . Adding the f i r s t two

equations gives r = 1 so y = X and sX(l-X) = tX(l-X) . But
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X(l-X) # 0 s i n c e p (X) t [x] o r [y] so s = t . Thus
s

{pA[O, 1]) : t € R} c-path connects [x] and [y] . D

14. Theorem

Let E be the sphere of a real topologiaal vector space of dimension

greater than 2 and let f : E •+ R be continuous. Then /(E) is an

interval and if t is any interior point of /(£) then c 5 |/~ (t)| .

Proof. This is immediate from Corollary 5 and Lemma 13. n

15. Theorem

Let E be the sphere of a real topological vector space of dimension

greater than 2 and let f : Z -»• R &e continuous. Then there are at

least c points [x] in E with f[x] = f[-x] .

Proof. This is immediate from Corollary 6 and Lemma 13 since

|E| > a . D

16. Remarks

(i) If the topological vector space in Theorems 9, 10, 1^ or 15 has

cardinality a the result becomes an equality, that is the conclusions in

Theorems 9 and lU strengthen to c = \f~ (t)\ and in Theorems 10 and 15 we

have exactly c points with the relevant property; for example, if

/ : s" -»• R (« > 2) is continuous then f(x) = f(-x) for exactly c

points.

(ii) Since a topological vector space over C is also a topological

vector space over R results for complex spaces are immediate. For

example, any nontrivial complex topological vector space is e-path

connected. D
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