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fluid layer
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During the high velocity impact of an object on a solid covered with a thin fluid layer, a
lubricated contact exists within the short time in which the liquid is squeezed out from the
contact. This is important for e.g. the grip of shoes on wet surfaces. We experimentally
study the squeeze flow of such layers and find that the amount of viscous dissipation
determines how much fluid remains in the contact after the kinetic energy of the impacting
object is absorbed. For impacts with sufficient amount of kinetic energy, it is possible to
completely drain a Newtonian or shear thinning fluid from the contact on a short time scale.
Viscoelastic liquids, however, cannot be drained by increasing impact velocity, because
of the fluids’ elastic tendency to retract back into the contact after rapid squeezing. This
explains why the presence of polymeric fluids can lead to extreme slipperiness of surfaces.
Furthermore, we show that all our experimental results agree with the predictions given
by hydrodynamic theory applied to the fluid flow in the gap.

Key words: lubrication theory, viscoelasticity

1. Introduction

‘Slipperiness’ is a human assignment to rate the lubricating properties of a given fluid or
surface. A sensible idea is that this human perception is related to the physical quantity
‘friction’, as a slippery fluid generally is associated with not having any grip on the two
surfaces the fluid is located between. However, it is not at all trivial to come up with a
more precise physical formulation of ‘slipperiness’. In fact, it is not even obvious whether
events such as, for example, the oil between smooth running gears, the slippery leaves on
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train tracks (Ishizaka, Lewis & Lewis 2017) and humans slipping when stepping on wet
surfaces (Lukey, Romano & Salem 2007) have the same physical reason for being slippery.

The slipperiness of leaves on train tracks likely involves some non-Newtonian
rheological properties of polysaccharide polymers from the decaying leaves. Polymer
solutions have even been investigated for ‘instant banana peel’ riot control (Lukey et al.
2007), because a very slippery polymer solution makes all people and vehicles slip. The
proposed fluids are low concentration, high molecular weight flexible polymers. Their
unique property is that at low concentrations they form solution with a viscosity almost
identical to water, yet they are capable of making peoples’ feet lose grip on the wet
streets. The goal of this manuscript is to find an explanation for this remarkable case
of slipperiness, which is of paramount importance for applications in, for example, the
food industry (Kokini 1987; Campanella & Peleg 2002; Deblais et al. 2021) or mechanical
engineering (Venner & Lubrecht 2000; Hamrock, Schmid & Jacobson 2004).

An important distinction should be made between two different manners in which a
contact can be lubricated. On the one hand, a lubricating layer can establish itself between
two surfaces due the lift that is generated hydrodynamically as a consequence of parallel
motion (Hamrock et al. 2004; Bruus 2008; Veltkamp et al. 2021; Veltkamp, Velikov &
Bonn 2022). In this case, a hydrodynamically steady state is present and the friction is a
result of the shearing of the fluid layer. In previous work (Veltkamp et al. 2021, 2022) we
have analysed this type of flow in detail. It is concluded that, for the relatively gentle flows
probed in these studies, the viscosity of the liquids makes the dominant contribution to the
generated lift. Furthermore, friction and lift are generated roughly similarly for Newtonian,
shear thinning and viscoelastic liquids, hence neither of these two complex properties
make a fluid more slippery than a comparable Newtonian fluid in a steady state lubricating
flow.

On the other hand, a lubricating layer can exist between two surfaces whilst being
squeezed out and thus not being in steady state. This is in fact closer to the case of a
foot stepping onto a puddle of liquid. In this flow type, the two surfaces do not necessarily
move horizontally with respect to each other, but a vertical downward motion causes fluid
flow. When a foot touches a puddle of fluid at high velocity, the fluid will quickly squeeze
out of the gap. We will show here that, in spite of the fact that the layer thickness evolves
rapidly, a viscoelastic liquid can stabilize the liquid film for longer than a non-viscoelastic
liquid, and hence the contact remains lubricated: both surfaces do not physically touch,
resulting in the possible slipping of the foot.

We therefore study relatively high velocity impacts of objects on fluids with various
different properties. This is in fact a widely studied topic in itself, and can be divided into
impact into a large body of fluid (Moghisi & Squire 1981; Akers & Belmonte 2006; de
Goede, de Bruin & Bonn 2019) and impact on a thin layer of fluid (Uddin, Marston &
Thoroddsen 2002; Ardekani et al. 2009; Moss et al. 2011). In this manuscript, we focus
on the latter, as determining the precise amount of fluid squeezed out of a thin fluid layer
is still relatively unexplored terrain. Similarly, there seems to be little research available
specifying whether a fluid layer can be completely drained instantly solely by an impact
with high kinetic energy, and if so, how fast this impact has to be to achieve this.

2. Experimental set-up

An experimental set-up is built to measure the rate of squeezing for several liquids. The
set-up is conceived in a way that is close to a flat-on-flat impact, but with the top surface
slightly curved to make the experiment easier and tractable. The bottom surface holds
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Impact on a fluid layer

a puddle of fluid. We drop the piston of mass m = 0.975 kg with a spherical bottom
with radius of curvature R = 1.67 m and a size rm = 0.075 m (see figure 1a–c). It can
be dropped from various heights, ranging from 5 to 100 mm and is fixed in a holder in
such a way that it can freely move up and down, but that it is incapable of rotating along
its central axis. The sliding friction between the piston axis and its holder is found to be
dependent on the sliding velocity of the piston, but it always remains below 5 % of the
gravitational force and is therefore neglected. Therefore the impact velocity on the fluid
ranges from 0.3 to 1.4 m s−1 The set-up in its entirety is fixed tightly onto a breadboard
placed on a vibration-damping floor, to reduce any possible vibrations the falling piston
could create.

After approximating the spherical surface of the piston by a paraboloid, the gap between
piston and reservoir is given by

h(r) = h0 + r2

2R
. (2.1)

We will refer to h0 as the ’central layer thickness’, as depicted in figure 1(c). In the
literature a more common choice for squeeze flow set-ups consists of a flat upper surface
(effectively meaning R → ∞), which is mathematically simpler to calculate and makes
the squeezing process longer, making it easier to measure (Engmann, Servais & Burbidge
2005). Analyses of squeeze flow beyond the plate–plate geometry exist, but are typically
much more cumbersome (Cox & Brenner 1967; Adams et al. 1994; Sherwood 2011). The
sphere–flat geometry we use has the advantage of being less sensitive to precise alignment,
because even if the position of h0 is slightly off centre and the piston is slightly tilted,
the gap profile given in (2.1) remains equally valid for a sphere-on-flat contact. This
observation is important, since the high speed and high force nature of our set-up makes
very precise alignment difficult.

Four induction sensors are positioned 1 mm underneath the plastic bottom surface (see
figure 1b). These sensors measure the proximity of the aluminium piston with an accuracy
of 1 μm and a readout rate of 380 points per second. The sensors are calibrated by
attaching the piston to a tensile tester and moving it towards them (without any fluid
present) at a slow, controlled speed of 10 μm s−1 until the piston collides with the bottom
surface. From this, a relation between induction value measured by a sensor and the central
layer thickness h0 is obtained, where the moment of collision corresponds with a thickness
h0 = 0. The average of the four individual sensors values is taken to be the definitive
value of h0, as presented in the rest of the manuscript. For all central layer thicknesses
h0 < 2.0 mm the readout values of the four sensors agree to within 10 % of each other,
giving confidence that the error on the h0-measurement is small.

The amount of fluid in the reservoir is kept constant for each measurement. By assuming
that the volume of liquid poured onto the bottom surface spreads evenly into a flat layer,
the thickness of the fluid layer X0 is calculated to be 2.0 ± 0.3 mm. The very viscous fluids
take a lot of time to flatten, in which case the puddle is flattened out by a strong airflow.
Due to this issue the estimated uncertainty on the value of X0 is rather large.

Various fluids are tested. Two types of Newtonian fluids are used: polydimethylsiloxane
(PDMS) oil and glycerol–water mixtures. The PDMS oil is commercially available in
different viscosities and the viscosity of glycerol–water mixtures can be tuned by varying
the ratio of the two liquids, as described by Segur & Oberstar (1951). Two polymeric
solutions are chosen for their shear thinning properties, without exhibiting prominent
other non-Newtonian properties: a solution of 10.0 g l−1 polyethylene oxide (chain
length 2 × 106 (PEO 2M)) in water and a solution of 5.0 g l−1 xanthan gum in water.
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Figure 1. (a) Side view of the experimental set-up, consisting of a surface with curved bottom that can move
freely up and down. During experiments it falls down due to gravitational force Fg onto a bottom surface with
a thin layer of fluid of thickness X0. Green rectangles represent two out of four of the layer thickness measuring
induction sensors, positioned 1 mm underneath the surface. (b) Top view of the bottom surface. The green dots
indicate the position of the induction sensors underneath the surface. The dotted circle indicates the size of the
piston with respect to the bottom surface. The given distances are in mm. (c) Coordinates system used when
the piston is squeezing the liquid layer. The gap size h(r) is given by (2.1). We define h0, the layer thickness
at r = 0, as the ‘central layer thickness’. (d,e) Flow curves of the non-Newtonian liquids tested. The dark blue
lines indicate a power-law fit according to (2.2) between shear rate γ̇ = 30 and γ̇ = 600 s−1, of which the
corresponding parameters K and n are displayed in the tables. (f,g) The first-normal-stress coefficient, Ψ1, for
each of the six liquids as found by the rheometer measurement.
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Impact on a fluid layer

Furthermore, four concentrations of polyethylene oxide (chain length 4 × 106 (PEO 4M))
in water are selected for their viscoelastic properties, ranging from 2.5 to 10.0 g l−1. Prior
to the squeezing experiments, the flow profile of all fluids is obtained following standard
rheological procedures (Mezger 2006). For all shear-thinning fluids a power-law model
was used to describe their viscosity η as a function of shear rate γ̇

η(γ̇ ) = Kγ̇ n−1. (2.2)

The flow curves together with their corresponding values of the viscosity coefficient K
and the power-law index n are shown in figure 1(d,e). The fluids used are from the same
batch as we used before (Veltkamp et al. 2022). The rheological measurement of the flow
curves simultaneously measures the first-normal-stress difference; the first-normal-stress
coefficient obtained from these measurements quantifies the elasticity of the polymeric
liquids (Bird, Armstrong & Hassager 1987; Mezger 2006); the values are plotted
in figure 1(f,g). In principle, there exist more rheological parameters related to the
viscoelastic properties of a liquid, such as the extensional viscosity or the elastic modulus,
yet for our purposes the first-normal-stress coefficient gives sufficient comparison between
the liquids.

3. The forces acting on the impacting surface

In order to predict the development of the layer thickness as a function of time, the upwards
force exerted by the fluid onto the piston as a result of the squeezing needs to be calculated.
From the lubrication approximation of the Navier–Stokes equations it is possible to obtain
an approximate formula for the both the force as a result of viscous dissipation, Fv , and of
inertial dissipation, Fi.

A formula for the viscous force of a power-law fluid underneath a parabolic surface
has been derived by both Rodin (1996) and Lian et al. (2001), after which Meeten (2005)
confirmed it experimentally. For these studies the boundary of the piston is assumed to be
infinitely far away, which turns out to be a bad approximation for our piston experiment.
Therefore, (3.1) for the viscous force with a finite boundary is derived in Appendix A,
closely following the steps of Lian et al. (2001),

Fv = K(−ḣ)
nR3/2+(1/2)n

h(3/2)n−1/2
0

X(sm). (3.1)

Here, ḣ is the velocity of the upper surface (which has a negative sign if the piston moves
downwards) and X(sm) a dimensionless function given by (A12) in Appendix A which
depends on the boundary proximity parameter

sm = rm√
2Rh0

. (3.2)

This parameter appears naturally as a result of the size of the upper surface being finite.
For small layer thickness this plays only a small role, and the assumption sm � 1 can be
used to substitute X(sm) by the numerical value X(sm → ∞). However, at a layer thickness
h0 equal to the initial film thickness X0, the value of sm is 0.92, so then the full function
X(sm) must be included. It is important to note that X(sm → ∞) does not exist for n ≤ 1/3
(Rodin 1996; Lian et al. 2001), because in this case the pressure near the edge of the piston
contributes more to the net upwards force than the pressure in the central region. Because
sm is finite in our case, we can also use (3.1) for n ≤ 1/3, yet it must be kept in mind that
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the precise location of the edges is important in this case, and that a small misalignment in
the set-up will have larger consequences for liquids with strong shear-thinning properties.

The inertial force is calculated by following the same perturbation method as established
by Jackson (1963) and later updated by Kuzma (1967). Although the result is strictly
speaking only valid for low Reynolds number, it has been found in practice that it works
also well for higher Reynolds number (Tichy 1981; Moss et al. 2011). After the work of
Kuzma, the inertial force has been studied in various other ways, such as configurations
with non-parallel plates (Tichy & Modest 1978) and analyses based on a self-similarity
approach (Rashidi, Shahmohamadi & Dinarvand 2008). The method by Kuzma (1967)
has the advantage that it is relatively easy to implement on a sphere–plate configuration
and that one does not have to deal with validity limits, such as is the case for self-similarity
approaches (Moss et al. 2011). A detailed derivation of (3.3) can be found in Appendix B
and yields

Fi = −1
2πρrm

2Rḧ + πρR2ḣ2. (3.3)

Here, ḧ is the acceleration of the upper surface and ρ the density of the fluid. Because we
will only use the inertial force in a theoretical analysis, the assumption sm � 1 has already
been implemented in (3.3).

Newton’s second law yields the equation of movement for the impacting object

mḧ = Fv + Fi − mg. (3.4)

The right-hand side denotes all forces acting on the object, with mg gravitational pull. Four
distinct squeeze flow regimes can now be distinguished:

(i) Slow viscous (0 = Fv − mg). This case is characterized by the low velocity and
acceleration, so that viscous dissipation dominates over inertial dissipation and the
gravitational term in (3.4) is much larger than the acceleration. It is reached only
after the initial impact of the piston and it is most commonly the final and longest
stage of the squeeze out process. This regime is the most broadly analysed by others
for many different types of fluids (Engmann et al. 2005). In this regime the kinetic
energy of the piston is no longer relevant, whilst the gravitational energy is dissipated
by the molecule interactions.

(ii) Fast inertial squeeze (mḧ = Fi). Here, the inertial force is much larger than the
viscous force and the acceleration is much larger than the gravitational one. Hence,
in this regime, the gravitational energy can be neglected and the kinetic energy of the
piston is transferred into kinetic energy of the fluid particles. The label ‘fast’ is both
referring to the object velocity being high and to the rate at which this regime is gone
through, since the underlying assumption ḧ � g implies that the object acceleration
is high. The typical time scale for this type of flow is given by t̄ ≡ X0/v0 , with v0
the impact velocity and X0 the initial fluid layer. For our experimental parameters it
lies within the range t̄ ∈ [1, 5] ms, which is much more rapid than the typical time
scale for slow viscous squeezing, which is of the order of seconds for the fluids we
used.

(iii) Fast viscous squeeze (mḧ = Fv). In this situation the viscous force dominates the
inertial force and acceleration is much higher than gravity. Similar to case (ii), this
regime occurs at the time of impact at a time scale t̄ ≡ X0/v0. The kinetic energy of
the piston is dissipated by the viscous interaction within the fluid whilst the kinetic
energy of the fluid particles is irrelevant in this regime.
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Impact on a fluid layer

(iv) Slow inertial squeeze 0 = Fi − mg. This regime in itself sounds paradoxical, as
inertial forces thrive at high velocity, yet it could theoretically exist in specific
circumstances, namely when a low-viscosity and high-density fluid is being
squeezed from underneath a large surface. For our experimental set-up the regime is
never reached, so we will not analyse it here.

The characteristics of the first three regimes are analysed both theoretically as
experimentally in the upcoming sections. The main focus shall be on determining what
roles the inertial and viscous forces play during the ‘fast’ squeezing stage, what the layer
thickness is that the piston settles on after this stage and whether it is possible to completely
drain the entire fluid layer within this fast stage.

4. Slow squeeze for Newtonian and shear-thinning fluids

The central layer thickness during Newtonian slow viscous squeeze flow goes
asymptotically to zero according to the following exponential decay (Maude 1961; Cox
& Brenner 1967):

h0(t) = hstart e−t/τ . (4.1)

Here, hstart is the starting layer thickness yet to be determined by an earlier squeezing
regime, and τ a characteristic time scale in which the slow viscous squeezing occurs,
given by

τ = 6πηR2

mg
. (4.2)

Experimentally, we retrieve this expected development of the central layer thickness,
as the linearity on the lin–log plot (see figure 2a) indeed represents the exponential
decay predicted by (4.1). Also, the corresponding values for the time constant τ for
several liquids with various viscosities (see figure 2c) agree with (4.2). For power-law
liquids the development of the central layer thickness can be derived numerically (see
Appendix A), and here too the theory matches well with experimental data (see figure 2d).
This agreement in the well-known slow viscous regime gives us confidence to continue
our analysis for the lesser known regimes.

As expected, the piston impact velocity plays no role during the slow viscous regime,
which is best illustrated by the data depicted in figure 2(a). In this set of experiments, the
piston was dropped with various impact velocities onto the same fluid. The only difference
between these trials is the difference in the layer thickness hstart at which the slow viscous
regime begins. After this moment the rest of the squeeze out happens at identical rate for
all trials. The exact value of hstart and whether it is possible to drain the fluid layer without
the slow viscous regime (hence hstart = 0), is determined by the fast squeezing process
happening in the first milliseconds after impact.

5. Fast inertial squeeze

To investigate the effect of inertia on the deceleration of the upper surface, the inertial
force given in (3.3) is substituted in the fast inertial approximation of (3.4). This yields a
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Figure 2. (a) Development of the central layer thickness during the squeeze out of PDMS with η =
53.5 mPa·s. Impact velocity was varied from 0.63 (red line) to 1.40 m s−1 (dark green line) and only has
an effect on the squeezing during the moment of impact. The linearity of all the curves (on a lin–log plot) is
in agreement with the prediction of exponential decay given in (4.1). (b) The region of the dotted rectangle
in (a) zoomed in. The coloured dots are data points measured by the induction sensors, connected by a dotted
line for visual guidance. The black dots indicate the layer thickness hstart at t = 22 ms after impact when the
slow viscous regime starts. As explained in the text, the values of hstart depend on impact velocity and are
later used in the analysis for the fast viscous regime. (c) Values of the characteristic decay time for various
viscosities of PDMS oil (red dots) and glycerol–water solutions (blue dots), found by fitting (4.1) to the time
vs layer thickness curves, such as those displayed in (a). The black line displays theoretical prediction by (4.2).
(d) Comparison between the experimental data of the squeeze out of the non-Newtonian liquid PEO 2M (blue
line) and theoretical prediction (dashed red line). The dot indicates the moment chosen for the slow viscous
regime to start.

characteristic differential equation for fast inertial squeeze

ḧ = ε
ḣ2

X0
. (5.1)

The parameter ε is given by

ε ≡ β

1 + β

1
s2

m,0
, (5.2)

with β defined by

β ≡ πρr2
mR

2m
. (5.3)
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Impact on a fluid layer

Here, β is a measure of the ratio of the inertia of the piston vs the inertia of the particles.
The limit β → ∞ (and hence ε → s−2

m,0) refers to the situation with particle inertia being
much higher than the piston inertia, whereas the opposite limit β → 0 (and therefore ε →
0) refers to the inverse case.

The parameter sm,0 denotes the value of sm at the moment of first contact between the
centre of the piston and the fluid surface. For our experiments we find sm,0 = rm/

√
2RX0 =

0.92. It is assumed that, when h0 = X0, the surface of the piston is directly fully covered
in fluid. Since the surface is slightly curved, the lowest point of the upper surface will
be submerged first, whilst the edges follow slightly later. It is not trivial to describe the
effect of this gradual submersion on the forces mathematically, yet the assumption made
will overestimate the force at the moment the piston is not yet fully covered in liquid. In
practice, however, the relevant forces are still small during the stage with a relatively large
layer present, so the slight overestimation of the deceleration of the piston can be assumed
insignificant.

Apart from the assumption that the surface is instantaneously covered in liquid, the
derivation of the inertial force contains several more approximations and assumptions.
These consist of the layer thickness being much smaller compared with the piston
radius (to make the lubrication approximation valid), the perturbation approximation of
Kuzma (1967) stating that flow profile is still similar to the viscous flow profile and the
approximation that the edge of the surface is infinitely far away. Without these a more
general version of (5.1) could be obtained, yet for simplicity we stick to the current form.

Equation (5.1) is solved exactly provided the initial conditions h0(t = 0) being equal to
the fluid puddle thickness X0 and h(t = 0) being equal to the impact velocity −v0. The
solution reads

h0(t) = X0

⎛
⎜⎜⎝1 −

log
(

1 + ε
v0t
X0

)
ε

⎞
⎟⎟⎠ . (5.4)

According to (5.2), the value of ε is limited between ε ∈ [0, 1.18], and in figure 3(a)
(5.4) is plotted for three values of ε within this range. The limit ε → 0 correlates with
the upper surface not experiencing any force and hence reaching the surface within a time
t̄ = X0/V0. The other extreme ε → 1.18 corresponds to a maximized inertial force. A
larger ε slows down the rate at which the full layer is squeezed out, yet in all cases it
reaches zero in finite time. It can therefore be concluded that the inertial force by itself
cannot stop the impacting object from reaching the surface. The inertial force thus gives no
explanation for the found values of hstart in figure 2(b) after which slow viscous squeezing
begins.

It must be noted that a different shape of configuration might change this conclusion.
Possibly a flat–flat configuration allows for the inertial force to settle the upper surface
on a non-zero hstart. Theoretically, this geometry can generate a large inertial force as
fluid particles flow out of the narrow edges of the gap at high velocity. The formula for
inertial force given in Kuzma (1967) can be used to obtain a similar differential equation
as our (5.1). Possibly it will predict asymptotic behaviour for the h0(t) profile, settling on
a non-zero hstart.

Because the equation for the inertial force is derived using a perturbation method, the
given analysis is valid when inertial stresses are less than or roughly equal to viscous
stresses, even though it has been found that the method works for large Reynolds number
as well (Tichy 1981; Moss et al. 2011). It remains unclear what happens when inertial
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Figure 3. Development of the central layer thickness modelled for fast inertial squeezing (a) and fast viscous
squeezing (b). For (a) (5.4) is plotted for three different values of ε (as defined in (5.2)), and in all cases the
layer thickness reaches zero in finite time, meaning all liquid is squeezed out of the contact when only the
inertial force is taken into account. The curves for the fast viscous regime (b) are modelled with n = 1 and
three different values for the parameter f , as defined in (6.2). In contrast to fast inertial squeezing, the fast
viscous squeezing can reach a stable non-zero value for the remaining layer depending on the parameter f , as
indicated by the horizontal dotted lines and the dots on the y-axis.

stresses are much larger than viscous stresses, but in the upcoming section we will show
that experimental data suggest that only the viscous force is relevant for determining how
much fluid is squeezed out by the impact of the piston. The inertial force is irrelevant,
which agrees with the analysis by the perturbation method. Therefore, we will not analyse
the separate case in which the inertial force is much higher than the viscous force.

6. Fast viscous impact

The characteristic differential equation for fast viscous squeeze is derived in Appendix C
and reads

ḧh(3/2)n−1/2
0 = (−ḣ)

n KR3/2+(1/2)nX(sm)

m
. (6.1)

From here the parameter f follows, which is defined as

f ≡ KR3/2+(1/2)nX(sm → ∞)X3/2−(3/2)n
0

mv02−n . (6.2)

Together with the power-law index n, the parameter f contains all the physics that
determines the flow during fast viscous squeezing. Equation (6.1) cannot be solved
exactly, even not for the Newtonian case for which only an implicit solution containing
an exponential integral is obtained (Polyanin & Zaitsev 2003), and therefore a numerical
approach is provided in Appendix C. Just as in the fast inertial regime, it is assumed that
at h0 = X0 the surface of the piston is fully covered in liquid. It is found that during fast
viscous squeeze either a fraction or all of the fluid layer is drained underneath the piston
within a time scale of order t̄, depending on values of f and the power-law index n, see
figure 3(b). After this, the slow viscous regime driven by gravity takes over. The viscous
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Figure 4. (a) Comparison of the theoretical dependence of the remaining layer thickness as a function of f
and n, as calculated in Appendix C. For n < 1 a zero layer is predicted for finite values of f , as shown by the
coloured dots on the x-axis, whereas for n = 1 the curve approaches zero asymptotically. The steepness of the
slopes indicates that the more shear thinning a fluid is, the easier it can be squeezed out of a contact by means of
increasing the impact velocity. (b,c) The amount of layer remaining in the gap after the fast viscous impact for
various viscosities of PDMS oil (b) and glycerol–water solutions (c). The colour of the dots indicates viscosity,
and impact velocity was varied to test different values of f (see (6.2)). As further explained in the text, the
vertical error bars result from both the uncertainty in the method of finding hstart (as displayed in figure 2b)
and the uncertainty in initial layer thickness X0. Only one error bar is displayed per series of measurements, for
clarity purposes. Dots with the same colour have similar errors. The black lines depict the theoretical prediction
in a model with only the viscous force included, as shown in Appendix C. The dashed lines depict the same
model with inertia also included. By multiplying the ‘fraction of layer remaining’ by the initial layer thickness
X0 the values of hstart as depicted in figure 2(b) can be retrieved again. (d) The layer remaining after fast viscous
impact for the non-Newtonian liquids PEO 2M (cyan dots) and Xanthan Gum (purple dots). As both liquids
have n /= 1, they both have a separate characteristic theoretical line. The horizontal error bars are a result of the
uncertainty in X0 and v0 whilst calculating f .

force can thus absorb all the kinetic energy of the impacting piston, without the piston
reaching the bottom surface, in sharp contrast to the inertial force.

The relation between the remaining fluid layer and the parameters f and n is shown
in figure 4(a). For Newtonian liquids (the n = 1 curve) the fraction of the initial layer
remaining goes asymptotically to zero for small f , meaning that, mathematically speaking,
the fluid layer can handle being impacted by a piston with infinitely high velocity and still
have an infinitesimal amount of layer remaining.

For shear-thinning liquids, this characteristic of the differential equation is different,
and there is a finite fc below which all fluid is drained in the fast viscous regime, as can be
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observed by the kink in all the n < 1 curves. In general, the shear-thinning properties of a
fluid decrease the resistance that the layer thickness provides against high impact velocity,
as becomes evident from the steepness of the curves in figure 4(a). This makes sense
physically, as higher impact means higher shear within the fluid, which yields a lower
viscosity by the definition of the shear-thinning fluid, which eases the squeezing process.

However, even in the Newtonian case the remaining layer thickness approaches zero
for small f , and from a practical point of view, it will eventually reach the size of the
surface roughness of both surfaces, after which the surfaces touch. So it can be concluded
that the fast viscous regime allows for the fluid underneath the piston to be drained on a
fast time scale (of order t̄) in all cases with n ≤ 1. With the foot analogy discussed in the
introduction in mind, this would imply that a sufficiently energetic, high-speed positioning
of the foot would in principle be enough to drain the layer within the fast viscous regime
and find grip in the surface-on-surface contact created. (We assume the foot is rigid in this
analogy, as deformable surfaces might change this conclusion.)

For experimental confirmation of these findings in the fast viscous regime, various fluids
were impacted with several different velocities. The fraction of the initial layer remaining
was determined by choosing hstart at 22 ms after the piston hits the fluid layer, as depicted
in figure 2(b), which is a reasonable time scale at least three factors larger than t̄ after
which the impact of the piston is slowed down to a near standstill and when the slow
viscous regime starts. The corresponding value of f was calculated by (6.2) with the given
fluid and set-up parameters. The result of this analysis is shown in figure 4(b–d). The
’fast’ regime transitions into the ’slow’ regime smoothly, so choosing a single instance for
hstart as ’the beginning of slow squeezing’ is somewhat arbitrary. From an analysis point
of view, hstart should ideally be selected directly after the first rapid deceleration of the
piston, before the slow viscous regime has lowered the layer thickness. For consistency,
we stick with probing hstart at 22 ms, and the vertical error bars show the result for when
the probing time is altered to either 12 ms or 32 ms to provide some indication of how
much the result depends on this slightly arbitrary choice. The horizontal error bars arrive
from the uncertainty in the values of X0 and v0. The experimental findings show good
agreement with fast viscous theory. Therefore, it is concluded that viscous dissipation
fully determines the amount of liquid being squeezed out during impact.

7. Combined fast viscous and inertial impact

Except for the regimes discussed above, there is apparently another possible
approximation. One can include both the inertial and viscous forces in the equation of
movement of the impacting object, yielding

(m + 1
2πρr2

mR)ḧ = πρR2ḣ2 + Fv. (7.1)

Using the terminology of Shiffman & Spencer (1945), the term 1
2πρr2

mR ≡ m′ is defined
as the ‘virtual mass’ and represents the inertia of the fluid particles. Despite the real mass
of the particles within the gap being much lower than the mass of the piston, the virtual
mass can actually be much larger than that of the impacting object, because the particle
velocity scales with ḣ(r/h(r)), where r/h(r) � 1 in a narrow gap. Note that this directly
follows from the conservation of mass underneath the piston and does not depend on the
assumptions made for the fluid velocity profile. For our experimental parameters, we find
m′ = 15m, suggesting that the inertia of accelerating and decelerating the fluid particles
in the gap actually determines the slow down rate of the piston, instead of the piston mass
itself.
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Equation (7.1) can be modelled too. Since the fast viscous regime already concluded
that inertia itself will not stop the piston, the easiest way of doing this is by taking the
results of the fast viscous squeezing and rescaling those by replacing m with m + m′. The
result of this procedure is plotted as the dashed line in figure 4(b,c). With the virtual
mass included, there is no longer agreement between theory and experiments. Perhaps
even more curious is that the addition of the inertia in fact results in more liquid being
squeezed out, meaning that the inertial force is mainly negative, hence sucking the piston
downwards. This discrepancy between model and experimental hints at an error in the
interpretation and usage of the inertial force.

Intuitively, one might think that the addition of the extra inertial force would slow
down the piston even more, similar to aerodynamic drag. However, the inertial force can
become negative, as one of the terms in (3.3) scales with −ḧ. This is a result found by
others (Shiffman & Spencer 1945; Kuzma 1967; Grimm 1976; Usha & Vimala 2002), yet
only Shiffman seems to slightly comment on it. In practice, it seems that often inertia is
assumed to be a simple yet irrelevant addition to the balance of forces, for example by
Uddin et al. (2002) and Phan-Thien, Sugeng & Tanner (1987). The large, relative flatness
of the upper surface is what causes the inertia of the particles to become important in our
set-up. The geometry used by Uddin et al. (2002), for example, used a smaller and more
curved sphere, for which we find that m′ ≈ 0.0046 m. (This is found from Uddin’s paper
by taking ρsphere = 7800 kg m−3 and R = 20 mm yielding a sphere mass m = 26 g. Given
that ρfluid = 976 kg m−3 and assuming Ztip = 1 mm and d = 2 mm gives rm = 62 mm
which thereafter yields m′ = 0.0012 kg.) Therefore, in their case neglecting inertia is
perfectly sound. However, the sign and proportionality with acceleration make this term
non-trivial to interpret.

At the first moment of impact the fluid particles rapidly accelerate from a standstill
to a maximum velocity. At this stage the inertial force is positive, meaning the piston
decelerates by transferring its kinetic energy into kinetic energy of the particles. Then, the
particles rapidly slow down again to the near standstill of the slow squeezing regime. At
this stage the piston is effectively sucked downwards by a negative inertial force, as the
kinetic energy of the particles cannot instantly vanish. This kinetic energy can be either be
dissipated by viscous forces or escape the gap by fluid escaping at the edges. Intuitively,
one might think most of the kinetic energy escapes by fluid moving out of the edges of
contact, but in fact, the spherically shaped bottom of the piston allows for a large amount
of fluid to remain within the gap, especially near the edges where the gap size is largest.
All these fluid particles that remain within the gap will eventually have to return the kinetic
energy they initially gained from the falling object, hence yielding a negative force.

From our experimental results in figure 4, we postulate that despite m′ � m and a
large amount of kinetic energy being stored in the fluid, the inertial force plays no role
in determining the amount of fluid being squeezed out during the initial stage of impact.
The inertia stored in the fluid particles changes rapidly during impact, yet experimental
data suggest that this has no net effect on the stopping of the piston. In this view
it makes sense that the model including inertia predicts more squeezing than actually
experimentally occurs (see the dashed lines in figures 4b,c). The suction of the inertial
force is overestimated, as the hydrodynamic description includes the deceleration of the
particles starting at t = 0, but it does not take into account the initial acceleration.

Furthermore, it is noted that although the term proportional to ḧ depends on the distance
of the edge of the upper surface, because the particle velocity is highest there. The
assumption that pressure returns to ambient pressure at this edge, which is typically used
in calculating the inertial force (Jackson 1963; Kuzma 1967; Usha & Vimala 2002), seems
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therefore dubious during the moment of impact. Although it is not trivial to define a better
alternative for this boundary condition, the condition p(r = rm) > 0 would be able to undo
the over-extensive negative force predicted by the model. We also note that suction can
only be present if a negative pressure arises underneath the piston, which would result in
cavitation. Air would be sucked from the boundaries into the contact and it is complicated
to imagine what the precise mathematical implications of such an effect would be.

8. Viscoelastic impact

For both Newtonian and shear-thinning liquids, the data show good agreement with the
prediction by fast viscous squeeze theory. This verifies our earlier statement that the
viscous force is in fact responsible for slowing down the fast-moving surface to a near
standstill, whereas the inertial force plays an insignificant role. However, as the data also
show that rapid squeeze out (hstart = 0) is possible, there is still no explanation for why
liquids with similar viscous properties, when tested in a rheometer, can exhibit widely
different slipperiness. To explain this, we turn to another liquid property, namely the
viscoelasticity.

The relevance of the viscoelastic properties of a liquid during an impact was already
discovered by Brindley & Davies (1976) and Binding, Davies & Walters (1976) in 1976,
who as a side note found that such a liquid would create a ‘bump’ in the layer thickness vs
time curve. Although it is suggested that this bump is responsible for the slipperiness of
the liquid, it does not seem to be analysed in depth by others, although others have tried
to mathematically capture the phenomena occurring briefly after impact on a viscoelastic
liquid (Leider 1974; Leider & Bird 1974; Phan-Thien & Tanner 1984; Phan-Thien et al.
1987; Kaushik, Mondal & Chakraborty 2016).

Aqueous solutions of long chain polyethylene oxide have strong viscoelastic properties
(Bailey & Koleske 1976; Bird et al. 1987) and when put in the piston set-up, we reproduce
the bump in the development of the layer thickness from Binding’s work, see figure 5(b).
Increasing the polymer concentration enhances the size of this typical viscoelastic bump.
The piston moving back up for a short period of time is explained by elasticity generated
by the stretching of the individual polymer molecules in the fluid. During the first stage
of impact, the fluid squeezes out with high speed and hence high shear, causing the
molecules to temporarily store some of the applied energy into elastic energy by means
of stretching. Briefly after this first moment of impact, the stretched molecules relax back
into their original configuration, creating the process of fluid flowing back into the contact,
hence pushing the piston back up during this stage. Only after this phase of stretching and
relaxing of the polymers has the system processed the impact and the slow viscous regime
will start.

This explanation is further strengthened by the high-speed imaging of the squeezing of
a viscoelastic liquid (see figure 5a). For this measurement an additional similar set-up was
used to allow for camera capture, as explained in the caption of figure 5. Observed is the
initial squeeze out and the elastic recoil occurring within a few milliseconds after impact.
The sheet of fluid coming out from underneath the surfaces does not break apart as a
Newtonian liquid would do (Sijs & Bonn 2020) but contracts itself partly back towards the
gap underneath the piston. The characteristics of the elastic recoil are examined further
for several concentrations of PEO 4M and over a range of impact velocities. We define
the elastic end time te and elastic end layer he as respectively the time after impact and
the central layer thickness for which the layer thickness is at its maximum, as illustrated in
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Figure 5. (a) High-speed camera images of the impact of a disk on the highly viscoelastic fluid PEO 4M
10 g l−1. Visible is the elastic response of the liquid. After 4 ms the liquid has a tendency to retract itself
back into the contact, as a result of the rapid stretching of the polymer molecules during the first moments of
impact. In order to be able to create these images, a slightly different set-up was used. This set-up consisted of
a disk with flat bottom, size rm = 2 cm and mass 550 g. It was dropped with velocity 0.4 m s−1 onto a fluid
layer of thickness 2 mm. (b) The development of central layer thickness during the impact on four different
concentrations of PEO 4M. Impact velocity is 1.3 m s−1 for all four measurements. As a result of the elasticity,
fluid sucks itself back into the gap after impact, pushing the piston back up, resulting in the typical bump in
these curves. The inset shows a zoomed-in version of the region in the dotted rectangular box. The dots are
data points measured by the induction sensors, which are connected by a dashed line for visual guidance. As
shown in the inset, the elastic end time and the elastic end layer are defined as respectively the time and layer
thickness at the peak of the bump. (c,d) The elastic end time te (c) and the elastic end layer he (d) as a function
of impact velocity of the piston and polymer concentration. Both te and he do not depend on impact velocity,
which means that a viscoelastic liquid cannot be squeezed out on a short time scale, explaining the slippery
properties of these liquids.

the inset of figure 5(b). At this instance the initial elastic impact can be considered finished
and the slow viscous regime begins with layer thickness hstart = he.

The elastic end layer depends heavily on the concentration (see figure 5d), which is
explained by the large difference in viscosity in the liquids. The impact velocity, however,
has little effect on the value of he, meaning that one cannot squeeze out a viscoelastic
liquid rapidly by increasing this parameter. The elastic end time depends not on impact
velocity and only marginally on concentration (see figure 5c). This result is sensible, as
the time scale in which the stretching and relaxing takes place is an intrinsic property
of the molecule, independent of the precise amount of those molecules in the solution
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or the amount of stretching. The elastic end time for the highest (10.0 g l−1) and lowest
(2.5 g l−1) concentrations is slightly lower than for the two intermediate concentrations,
yet it is unclear whether there is a physical or experimental reason behind this.

From the rheological parameters it is possible to extract a time scale by dividing the
first-normal-stress coefficient by viscosity (Bird et al. 1987). The precise result of this
calculation not only depends on concentration, but is also very sensitive to the way the
rheology measurement is performed (de Cagni et al. 2019). From our numerical simulation
and from the values obtained by dividing impact velocity by initial layer thickness we find
a typical shear rate range between 100 and 1000 s−1 for the impacts on the viscoelastic
liquids. Within this range time scales of between 10 and 50 ms are found for the PEO 4M
concentrations (see figure 6a). This time scale has the same order of magnitude as the
elastic end time, so likely these quantities are closely linked to each other. This idea is
supported by the results for the two mostly inelastic fluids PEO 2M and Xanthan Gum,
which have a time scale roughly an order of magnitude lower at the higher end of the shear
rate range. This explains why these fluids do not show any viscoelastic behaviour during
impact, whilst they do exhibit (small) normal stresses in the rheology measurements.
In fact, the concentration of PEO 2M 10.0 g l−1 actually yields a higher normal stress
than the PEO 4M 2.5 g l−1, see figure 1(f,g), but because the former has smaller
molecules its relaxation time is much shorter no characteristic bump is found in the impact
experiment.

As a result of te and he both being constant with respect to impact velocity within the
range of parameters tested here, it can be concluded that, for every piston impact, the
slow viscous regime starts at the same layer thickness at the same time after impact. It is
therefore impossible to completely drain a viscoelastic liquid on a short time scale t̄. This
explains the slipperiness of the PEO 4M solutions discussed in the introduction, since
the gap between foot and surface is lubricated for a relatively long time during the slow
viscous regime, giving e.g. the foot or shoe no grip on the surface, resulting in the victim
falling. In contrast to stepping on a non-viscoelastic liquid, the kinetic energy the victim
provides during his step plays no role, as it will counterintuitively not change the amount
of fluid left underneath his foot, as showed by the experiments.

The impact on a viscoelastic fluid can be modelled by a Jeffreys model, which is an often
used constitutive equation that adds elasticity to a Newtonian liquid (Bird et al. 1987)

τττ + λ1
∂τττ

∂t
= −η0

(
γ̇γγ + λ2

∂γ̇γγ

∂t

)
. (8.1)

Here, the shear stress τττ does not solely depend on the present shear rate γ̇γγ , but also on
its past development, as may be apparent by the time dependency in (8.1). The model
included three parameters: the Newtonian viscosity η0, the relaxation time of the polymer
λ1 and the retardation time of the polymer λ2. Many of those types of fluid models exist,
and any choice has advantages and disadvantages. We have chosen the Jeffreys model for
its relative simplicity, yet still being capable of reproducing the experimentally observed
effects. An obvious disadvantage of this model is its Newtonian behaviour in the absence
of any elastic effects, whereas the liquids tested all exhibit clear shear-thinning properties.

In Appendix D it is worked out that a workable formula for the viscoelastic force
the fluid applies on the piston is given by the well-known Newtonian viscous force
(Maude 1961) compensated by a memory function that contains information about the
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Figure 6. (a) The time scale that can be derived from rheological data by dividing the first-normal-stress
coefficient by the viscosity for all six shear-thinning fluids. (b) Development of the central layer thickness as
a function of time for three concentrations of PEO 4M impacted by the piston with velocity 1.33 m s−1 (data
points). The lines display the fits using the Jeffreys model. As the Jeffreys model does not describe shear
thinning, it makes no sense to use it for the slow viscous regime, so the curves terminate after a time 2te. (c)
The development of the central layer thickness for PEO 7.5 g l−1 with four different impact velocities. (d–f )
Respectively the values of η0, λ1 and the ratio λ2/λ1 that are found by the fitting process as a function of
impact velocity. The dashed line in (d) displays the slightly upwards trends in the viscosity results. For the
three highest concentrations of PEO (4M), the ratio in (f ) grows towards 1 when lowering the impact velocity,
indicating that viscoelastic effects are less prominent at low piston speed. The fitting results for the retardation
time λ2 can be found in figure 8 in Appendix D.

fluid movement in the past

Fve = −6πη0R2ḣ(t)
h0(t)

sm
4

(1 + sm2)
2 M(t, t′), (8.2)

with the memory function M(t, t′) defined in the following way:

M(t, t′) =
(

1 − λ2

λ1

)
h0(t)2

λ1ḣ(t)

∫ t′=t

t′=−∞
ḣ(t′)

h0(t′)2 e−(t−t′)/λ1 dt′ + λ2

λ1
. (8.3)

The derivation of these formulas relies on an assumption that has not been fully proven
mathematically, but we will show here that (8.2) works well as a model to capture the
underlying physics for an impact on a viscoelastic fluid. For as long as layer thickness
changes significantly within a time scale λ1, elastic effects have influence, and otherwise
the memory function becomes equal to 1 and the result for ordinary Newtonian squeeze
flow remains in (8.2).

The development of the central layer thickness as a result of the viscoelastic force is
simulated for modelling the first milliseconds after impact by applying a forward Euler
algorithm on the equation of motion given by (3.4). The experimental values h0(t = 0) =
X0 and ḣ(t = 0) = −v0 are used as the initial condition for the simulation and the three
parameters η0, λ1 and λ2 are considered fitting parameters that are optimized to match
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model and data. The ḣ2 term of the inertia according to (3.3) was included, but the ‘virtual
mass’ term was excluded, since we argue it is unphysical.

The usage of the viscoelastic force given by (8.2) yields a bump in the layer thickness
profile that is similarly shaped to the experimental results. The fitting of the parameters
η0, λ1 and λ2 on the experimental data was performed by minimizing the difference
between experimental data and simulation for these three characteristics: the lowest point
in the bump, the highest point in the bump and the time difference between these points.
We do not constrain ourselves in allowing only one set of parameters (η0, λ1, λ2) per fluid,
but rather we fit the parameters for each individual impact measurement and interpret
the obtained parameters. The viscoelastic effects of the fluid are expected to play no role
anymore during the slow viscous regime (Binding et al. 1976; Engmann et al. 2005), so
for t > 2te the simulation ends. The precise moment at which to stop the simulation is
somewhat arbitrary, yet it has to be done somewhere, as the Jeffreys model is incapable
of capturing the shear-thinning behaviour of the slow viscous decay. The simulation can
reproduce the impact on the different concentrations of PEO (4M) for different impact
velocities (see figure 6b,c).

Just like the viscosity found by the rheometer, the fitted viscosity grows on increasing
the polymer concentration, see figure 6(d); the scaling is similar. The impact velocity
has little influence on the fitted viscosity, which is remarkable as it could be expected
that the shear-thinning properties would cause the fluid to be thinner at higher impact.
The results suggest that during the short time scale in which elastic stresses dominate
the shear thinning becomes irrelevant. The results for the lower polymer concentrations,
2.5 g l−1 and 5.0 g l−1, even seem to suggest that the liquid gets thicker for higher impact
velocity. However, that the viscoelastic properties during impact are comparable to a
shear-thickening effect is something that has been found before (de Goede et al. 2019).

The fitted values for the relaxation time λ1 fall within a range between 20 and 60 ms,
similar to the elastic end time, see figure 6(e). This time scale is thus also in the same range
as the elastic end time te and the viscoelastic time scale inferred from the rheological data.
Therefore, the rheology data might intrinsically contain an estimate for which relaxation
time to use in the Jeffreys model. However, the dependence of these parameters on velocity
is different for all three: the fitted relaxation time increases with velocity, the elastic end
time is constant and the time scale extracted from the rheological data decreases with
velocity.

The ratio between retardation time and relaxation time is expected to be between 0 and 1,
with 0 resulting in the simpler Maxwell model and with 1 resulting in the complete absence
of viscoelastic stresses (Bird et al. 1987). Simulations with the Maxwell model have been
tried and they cause the model to behave too elastic, as the predicted oscillation of the
piston continues for too long, so that more than one bump is predicted. The inclusion of
the retardation time dampens these oscillations. At an impact velocity above 0.8 m s−1 the
ratio is found to be 0.25 ± 0.10, see figure 6(f ). At low impact velocity it is expected that
viscoelasticity plays a lesser role, due to the lesser amount of stress imposed on the liquid.
This is observed in the trend for the ratio λ2/λ1. It grows closer towards 1 when lowering
impact velocity, which we interpret as the viscoelastic effects becoming less prominent
for these types of impact. (In this limit the Jeffreys model would turn into the simple case
of a Newtonian fluid.) It remains unclear to the authors why the concentration 2.5 g l−1

displays the opposite trend, although it is noted that a relatively low layer thickness, in
some cases close to zero, for this fluid leads to quite extreme simulation conditions, and
the convergence of the fit is poorer than for the other concentrations.
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Impact on a fluid layer

With these results, it might be possible to suggest a way to roughly predict the squeeze
flow of a viscoelastic liquid from only its rheological data. Firstly, an average shear
rate during the squeezing has to be estimated. Then, a characteristic time scale λ1 for
the viscoelastic regime can be extracted from the ratio between the first-normal-stress
coefficient and viscosity at that given shear rate. This time scale serves as the relaxation
time in the Jeffreys model. To complete the model, the viscosity η0 can be taken from
the flow curve at the average shear rate and the retardation time λ2 can be assumed to be
roughly a factor 4 smaller than λ1. Then, (8.2) is capable of predicting the viscoelastic
regime of the impact during the time scale 2λ1, after which slow viscous shear-thinning
squeeze described by (3.1) follows until all the fluid is squeezed out of the gap. Although
this method is very crude and more experimental evidence is required to verify its
correctness, it seems plausible that the relatively simple rheometer measurement contains
all information necessary to precisely predict the more complicated fluid behaviour under
high velocity impact.

9. Conclusion

In conclusion, it is found that the slipperiness of certain fluids can be explained by their
response on high velocity impact. During the first stage of the squeezing process a part
of the initial fluid layer drains rapidly and the amount of fluid remaining within the gap
is determined by the viscous dissipation of the kinetic energy of the piston. If the impact
velocity is high enough, practically all of the fluid can be squeezed out within this short
time scale and the lubricating layer will not exist long enough to give the fluid a slippery
sensation. However, for impact on viscoelastic polymeric solutions, a part of the kinetic
energy is temporarily stored as elastic energy within the stretched molecules in the fluid.
The elastic recoil of these molecules causes fluid to be sucked back into the contact,
making these types of liquids particularly resistant to rapid drainage and explaining their
slippery nature.
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Appendix A. Derivation of the viscous squeezing force

Squeezing a fluid yields an upwards force. To derive this force, the flow profile of the
fluid within the contact needs to be calculated. The derivation of the force coming from
the viscosity term of the Navier–Stokes equations is a quite standard procedure (Maude
1961; Cox & Brenner 1967; Engmann et al. 2005). For the particular case of a power-law
liquid being squeezed by a sphere, the solution has been found by Rodin (1996) and later
by Lian et al. (2001). In this appendix we will closely stick to the analysis of Lian, but
we deviate when we do not place the boundary infinitely far away. The inertial part of
the Navier–Stokes equations is trickier to include, and therefore this will be worked out in
Appendix B instead.

To derive the viscous force (and later also the inertial force) the flow profile is retrieved
within the gap between surface and piston depicted in figure 1(c). The following definition
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of dimensionless coordinates and parameters will prove useful later:

z̃ ≡ z
h
, (A1)

s ≡ r√
2Rh0

. (A2)

The gap size simplifies in these coordinates to

h = h0 + r2

2R
= h0(1 + s2), (A3)

and the boundary of pistons surface located at r = rm is in dimensionless coordinates
located at

sm ≡ rm√
2Rh0

. (A4)

As is typical for squeeze flow calculations (Engmann et al. 2005), we continue by
assuming that the gap size h(r) is very small compared with the characteristic horizontal
distance rm. Therefore, the dominant terms in the r̂-projection of the Navier–Stokes
equations determine the flow profile. In the defined dimensionless coordinates and by
using the power-law viscosity model (Bird et al. 1987), this equation reads

∂p
∂r

= K
h(r)1+n

∂

∂ z̃

(
∂ur

∂ z̃

)n

. (A5)

As normal in the lubrication approximation, it can be assumed that pressure does not
depend on z̃ as a first-order approximation (Maude 1961; Engmann et al. 2005). Therefore,
the velocity profile ur(r, z̃) is solved by integrating twice. Using a no-slip boundary
condition on both the upper and lower surfaces solves the integration constants, yielding

ur(r, z̃) =
(

−∂p
∂r

h(r)
K

)1/n h(r)

1 + 1
n

((
1
2

)1/(n+1)

−
∣∣∣∣12 − z̃

∣∣∣∣
1/n+1

)
. (A6)

Next, the pressure profile is solved by imposing the incompressibility constraint. This
implies that the volume of fluid being squeezed out of the gap must be equal to the volume
of fluid being expelled by the lowering of the upper surface

2πr
∫ h(r)

0
ur dz = −πr2ḣ. (A7)

The integral is performed, and solving the resulting equation for the pressure term yields

∂p
∂r

= −2
(

2 + 1
n

)n

K(−ḣ)n rn

h(r)2n+1 . (A8)

To continue from here, a transition into dimensionless coordinates as defined in
(A1) and (A2) is used. At the boundary s = sm, the pressure must return to ambient
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Figure 7. The development of layer thickness during the slow viscous squeeze of the viscoelastic liquid PEO
4M with concentrations 10.0 g l−1, 7.5 g l−1 (a) and 5.0 g l−1, 2.5 g l−1 (b). The curves are modelled by (A14)
with the dots in the figures corresponding to the starting conditions that are used. The agreement between
model and experiment confirms the idea that viscoelastic forces play no role in the slow viscous regime.

pressure, which is defined as zero here, so that the positional integral of (A8) then gives a
solution for the pressure

p = 2
(

2 + 1
n

)n

K(−ḣ)n (2Rh0)
1/2+(1/2)n

h2n+1
0

∫ s

sm

sn

(1 + s2)2n+1 ds. (A9)

Finally, the viscous force on the piston is given by the integral of the pressure over the
entire surface of the piston. The integral is calculated using the dimensionless coordinates

Fv = 2π

∫ rm

0
p(r)r dr = 4πRh0

∫ sm

0
p(s)s ds. (A10)

The viscous force is thus given by

Fv = K(−ḣ)nR3/2+(1/2)n

h(3/2)n−1/2
0

X(sm), (A11)

with the function X(sm) being defined as

X(sm) = 8
(

2 + 1
n

)n

2(1+n)/2π

∫ sm

0

∫ s′

sm

(
sn

(1 + s2)2n+1

)
s′ ds′. (A12)

The inner integral in (A12) can only be solved in closed form for specific values of n.
For n = 1 all integral can be performed and the viscous force returns to the well-known
formula for the squeeze of a Newtonian liquid underneath a spherical piston (Maude 1961;
Cox & Brenner 1967)

Fn=1
v = −6πηR2ḣ

h0
. (A13)

For the calculations displayed in the main manuscript, the function X(sm) was calculated
numerically and tabulated for several values of n, which allowed for quick usage. As
described in the main text, an exact expression for the development of the layer thickness
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during slow viscous squeezing can be found in the literature for the Newtonian case
(Maude 1961). For more general values of n, the equation of movement

mḧ = Fv, (A14)

with Fv given by (A11) was solved numerically. This was done by starting with the initial
conditions h0(t = 0) = hstart and ḣ(t = 0) = −vstart and using the forward Euler method
on (A14). For the slow viscous regime this method gives a prediction in agreement with
our experimental findings for both PEO 2M (see figure 2c) and all samples of the more
viscoelastic PEO 4M (see figure 7). Note that the values K and n are retrieved from the
flow curves of the rheometer measurement, so that no fitting parameters are used in the
creation of these curves.

Appendix B. Derivation of the inertial squeezing force

The fluid velocity profile within the gap is harder to find if one includes the inertial
terms of the Navier–Stokes equations. Here, we will follow the procedure established
by Jackson (1963) and improved by Kuzma (1967), which gives a good estimation for
the inertial term. The method was developed for a flat–flat geometry, but a similar
derivation for a flat–sphere geometry can be provided following the same steps. The
procedure consists of taking a universal velocity profile ūr and ūz independent of z,
which is substituted into the inertial part of the Navier–Stokes equations. Then, from the
viscous term in the Navier–Stokes equations an updated version of the velocity profile is
found, which is used to obtain the formulas for pressure and force on the upper surface.
Ideally, the updated velocity profile should be substituted back into the inertial part of
the Navier–Stokes equations iteratively, leading to a converging scheme for the velocity
profile. However, because Kuzma found that only this single iteration already provides
a reasonable approximation of the inertial force, we limit ourselves to only substituting
the initial universal velocity profile and directly calculating the resulting pressure profile
thereafter. The inertial part of the r̂-projection of Navier–Stokes reads

ρ

(
∂ ūr

∂t
+ ūr

∂ ūr

∂r
+ ūz

∂ ūr

∂z

)
= −∂p

∂r
. (B1)

According to the procedure, ūr and ūz have been substituted into the left-hand side of
(B1). The term ∂ ūr/∂z is not included by Jackson (1963), because ūr does not depend on z
in his analysis. However, Kuzma (1967) performed a more thorough analysis including
the dependence on z and found that the term ūz(∂ ūr/∂z) contributes equally much to
the pressure as the term ūr(∂ ūr/∂r). Because we are here dealing with a spherical upper
surface, the dependence of uz on z is non-trivial to obtain, so precisely repeating Kuzma’s
steps is non-trivial too. However, we will assume that a small curvature of the upper surface
does not change the observation about the term ūz(∂ ūr/∂z), so that we can circumvent the
problems with the third term in the left-hand side of (B1) by putting it equal to the term
ūr(∂ ūr/∂r)

ρ

(
∂ ūr

∂t
+ 2ūr

∂ ūr

∂r

)
= −∂p

∂r
. (B2)

From here, we can continue using the same steps Jackson uses. The average velocity in
r̂-direction is given by

ūr = − ḣr
2h

. (B3)
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Note that this expression is obtained directly from the incompressibility constraint (see
(A7)), and it is therefore equally valid for both Newtonian and non-Newtonian liquids. If
the iterative procedure were to be continued for more than one step, the value of n would
become important, as n = 1 would yield the ordinary parabolic fluid profile on the second
iteration, whereas n < 1 would not. Because only a single step of the iterative procedure
is used here, the result will not depend on the value of n. For our analysis, a higher amount
of precision including the dependence on n is not necessary.

Whilst taking into account that ḣ depends on time, and h depends on both time and
position, (B3) is substituted into (B2), yielding

− ∂p
∂r

= ρ

(
− ḧr

2h
+ ḣ2r

h2 − ḣ2r2

2h3
∂h
∂r

)
. (B4)

The analysis differs here from Jackson (1963) and Kuzma (1967), because the curved
surface is taken into account now. The parabolic gap profile yields ∂h/∂r = r/R, after
which the positional coordinate r is swapped by its dimensionless counterpart s using
(A1) and (A2), yielding

∂p
∂s

= ρRḧ
s

1 + s2 − 2ρR
ḣ2

h0

s
(1 + s2)3 . (B5)

Identically to the calculation of the viscous force, at the boundary s = sm the pressure is
assumed to return to ambient pressure, which is defined as zero here. For the two terms in
(B5) the integral can be performed, which results in

p = 1
2
ρRḧ log

(
s2 + 1
s2

m + 1

)
+ 1

2
ρR

ḣ2

h0

(
1

(1 + s2)2 − 1
(1 + s2

m)2

)
. (B6)

Next, the inertial force is found by integrating the pressure over the surface of the piston,
identically to (A10):

Fi = −πρR2ḧh0(s2
m − log (1 + s2

m)) + πρḣ2R2 s4
m

(1 + s2
m)2 . (B7)

Just as for Jackson (1963) and Kuzma (1967), the inertial force consists of a part that
depends on acceleration ḧ and a part that resembles a Bernoulli-like force that depends on
the velocity squared ḣ2. Finally, (B7) can be simplified further if the boundary is assumed
to be infinitely far away. For sm → ∞ the s2

m term dominates the acceleration term, and
the boundary factor in the ḣ2 term becomes 1. By substituting sm using (A4), it is found
that

Fi ≈ −1
2πρr2

mRḧ + πρRḣ2. (B8)

This formula gives an approximation for the force due to fluid inertia underneath the
piston. Using more than one iteration of the procedure described by Jackson only updates
the factors in front of the terms in (B8) to a better approximation. However, for Jackson
the next iteration only improves these factors by 20 % and there appears to be no reason
to believe that for a flat–sphere geometry the improvement by an extra iteration would
be significantly different. For the usage in this manuscript, (B8) is therefore sufficiently
accurate.
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Appendix C. Solving the fast viscous characteristic differential equation

The characteristic differential equation for fast viscous squeezing is given by

mḧ = Fv. (C1)

Using the viscous force given in (A11), this equation can be rewritten into

ḧh(3/2)n−1/2
0 = (−ḣ)n KR3/2+(1/2)nX(sm)

m
. (C2)

Given the initial layer thickness X0 and impact velocity v0, the following dimensionless
parameters are introduced:

˜̈h ≡ ḧ
X0

v2
0
, (C3)

˜̇h ≡ ḣ
v0

, (C4)

h̃0 ≡ h0

X0
, (C5)

t̃ ≡ t
v0

X0
, (C6)

f ≡ KR3/2+(1/2)nX(sm → ∞)X3/2−(1/2)n
0

mv2−n
0

. (C7)

Which turns (C2) into

˜̈hh̃(3/2)n−1/2
0 = (−˜̇h)n X(sm)

X(sm → ∞)
f . (C8)

This equation has to be solved for h̃0(t̃) given the initial conditions

h̃0(t̃ = 0) = 1, (C9)

˜̇h(t̃ = 0) = −1. (C10)

Even for the specific case n = 1 and sm → ∞, a closed form solution of (C8) does not
exist (Polyanin & Zaitsev 2003). Therefore, it must be solved by numerical means. With
the use of a forward Euler algorithm the development of h̃0(t̃) has been retrieved. A few
examples of this process are shown in figure 3(b) in the main text. It is observed that
(C8) reaches a stable value of h̃0(t̃) for t̃ � 1, for which the precise value depends on f .
Hence, the fraction of the initial layer left is a function of the parameter f . By running
the algorithm over different values of n and f this relation is found, the result of which
is shown in figure 4(a) in the main text. In the creation of figure 4(a) the assumption
sm = 0.92 was used at t̃ = 0, according to our experimental conditions. Thereafter, for
t̃ > 0, sm was calculated each iteration by using the property that it scales with h̃−1/2

0 .
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Figure 8. The fitted retardation time λ2 for impact measurements as a function of impact velocity with four
different concentrations of PEO (4M). The fitting results for the viscosity η0 and relaxation time λ1 can be
found in respectively figures 6(d) and 6(e) in the main text.

Appendix D. Derivation of the viscoelastic force by implementation of the Jeffreys
model

The Jeffreys model leads to a consecutive relation given by Bird et al. (1987),

τττ = −
(

1 − λ2

λ1

)∫ t′=t

t′=−∞
η0

λ1
e−(t−t′)/λ1γ̇γγ (t′) dt′ − η0

λ2

λ1
γ̇γγ (t). (D1)

Even though the current shear stress now depends on the shear rate γ̇γγ (t′) of the past, the
derivation of the force on the piston follows the same steps as the one for Newtonian
squeezing. The flow profile reads

ur(r, z̃) = −3ḣ
r

h(r)
z̃(1 − z̃). (D2)

It must be noted that the dimensional part of this result is directly obtained from the
incompressibility constraint (A7) and not necessarily from the Navier–Stokes equations,
and hence (D2) works equally well for the implementation of the Jeffreys model. The
parabolic dependency on z̃ is a consequence of the Navier–Stokes equations, but because
the no-slip boundary conditions remain applicable, it is reasonable to assume the Jeffreys
model implementation does not affect the dependency of ur on z̃.

The dominant element of γ̇γγ to be used in the lubrication approximation is γ̇rz. Using
(D2) it is found that

γ̇rz = ∂ur

∂z
= −3ḣ

r
h(r)2 (1 − 2z̃). (D3)

Using this expression, it follows from (D1) that the shear stress on the top surface at z̃ = 1
is given by

τrz = 3
(

1 − λ2

λ1

)
η0

λ1
r
∫ t′=t

t′=−∞
ḣ(t′)

h(r, t′)2 e−(t−t′)/λ1 dt′ + 3
λ2

λ1
η0ḣ

r
h(r)2 . (D4)
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Substituting the dimensionless s-coordinate in the place of r yields

τrz = 3
(

1 − λ2

λ1

)
η0

λ1

√
2Rh0s

∫ t′=t

t′=−∞
ḣ(t′)

h0(t′)2(1 + s2)2 e−(t−t′)/λ1 dt′

+ 3
√

2η0
λ2

λ1

ḣ
h0

√
R
h0

s
(1 + s2)2 . (D5)

The proximity of the boundary sm depends on the central layer thickness h0(t) and hence
the coordinate system using s as special coordinate depends on time. Therefore, the factor
1/(1 + s2)2 can technically not be taken outside the integral for as long as sm has changed
significantly during the past time λ1. For computational purposes it is now falsely assumed
that s can in fact be taken outside the integral, and upon finding the final result of this
derivation, we will discuss the consequences of this decision. The stress can now be written
as

τrz = 3
√

2η0
ḣ
h0

√
R
h0

s
(1 + s2)2 M(t, t′), (D6)

with M(t, t′) a memory function and the factor in front of it identical to the shear stress for
Newtonian squeeze flow

M(t, t′) =
(

1 − λ2

λ1

)
h0(t)2

λ1ḣ(t)

∫ t′=t

t′=−∞
ḣ(t′)

h0(t′)2 e−(t−t′)/λ1 dt′ + λ2

λ1
. (D7)

From here on, the derivation is identical to that of Newtonian squeeze, with the memory
function carried along in each step. Since the memory function contains no coordinate
parameters, any integrals over position are unaffected by it. We continue by deriving the
pressure distribution with the lubrication approximation ∂p/∂r = ∂τrz/∂z, after which the
pressure is integrated over the surface of the upper surface to find the total force, yielding
the Newtonian viscous force multiplied by the memory function

F = −6πη0R2ḣ(t)
h0(t)

s4
m

(1 + s2
m)2 M(t, t′). (D8)

As mentioned before, this result is obtained by neglecting the dependence of the
memory function on position. The term s4

m/(1 + s2
m)2 is obtained by two separate integrals

over s that were only possibly under the assumption that the factor 1/(1 + s2)2 in (D5) can
be taken in front of the integral sign. A mathematically better approach would consist
of including position in the memory function as well, and integrating over both time and
position to obtain the viscoelastic force at a given instance. However, this procedure would
be computationally more advanced up to the point that it would provide little extra practical
benefit over the thorough analyses of for example Phan-Thien et al. (1987) and Kaushik
et al. (2016). There is, however, a mathematical trick that allows us to verify that (D8) is a
reasonable estimate of the real force predicted by the Jeffreys model. Instead of taking all
s outside the memory integral, as explained between (D5) and (D6), we can also take all s
inside the integral, which would result in the proximity of the boundary term s4

m/(1 + s2
m)2
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being excluded in (D8) and instead included in the memory function as

M̃(t, t′) =
(

1 − λ2

λ1

)
h0(t)2

λ1ḣ(t)

∫ t′=t

t′=−∞
ḣ(t′)

h0(t′)2
sm(t′)4(

1 + sm(t′)2
)2 e−(t−t′)/λ1 dt′ + λ2

λ1

s4
m

(1 + s2
m)2 ,

(D9)

F̃ = −6πη0R2ḣ(t)
h0(t)

M̃(t, t′). (D10)

This would mathematically be an equally false approach as the one used before, but
because (D8) and (D10) denote the two extreme cases (namely, taking either all s inside or
all s outside the integral) of calculating the force, the real force predicted by the Jeffreys
model will be in between. We tested both formulas for fitting our experimental data, and
we found that both models can replicate the typical viscoelastic bump and that the fitting
parameters η0, λ1 and λ2 have the same order of magnitude in both cases. Therefore, we
conclude that the choice of taking 1/(1 + s2)2 outside of the integral in (D5) has little
influence the simulations and that the oversimplified force given in (D8) is actually a good
and practical approximation for the range of parameters tested in this manuscript. We
used (D8) rather than (D10) to obtain the simulation results discussed in the main text, as
intuitively it makes sense that the force should be proportional to the piston surface area
πr2

m at any given instance.
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