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Abstract. We prove the genus zero part of the generalized Witten conjecture, relating moduli
spaces of higher spin curves to Gelfand—Dickey hierarchies. That is, we show that intersection
numbers on the moduli space of stable r-spin curves assemble into a generating function which
yields a solution of the semiclassical limit of the KdV, equations. We formulate axioms for a
cohomology class on this moduli space which allow one to construct a cohomological field theory
of rank r — 1 in all genera. In genus zero it produces a Frobenius manifold which is isomorphic to
the Frobenius manifold structure on the base of the versal deformation of the singularity 4,_;.We
prove analogs of the puncture, dilaton, and topological recursion relations by drawing an analogy
with the construction of Gromov—Witten invariants and quantum cohomology.

Mathematics Subjects Classifications (2000): 14H10, 37K10, 53D45.

Key words: higher spin curves, integrable hierarchies, Frobenius manifolds, cohomological field
theories, generalized Witten conjecture.

0. Introduction

The moduli space M,, of stable curves of genus g with n marked points is a
fascinating object. Mumford [31] introduced tautological cohomology classes associ-
ated to the universal curve C, , — ﬂg,”. Witten [36] conjectured and Kontsevich
[23] proved that certain intersection numbers of tautological cohomology classes
on ﬂg,n have a generating function which satisfies the equations of the Korteweg—de
Vries hierarchy (more precisely, that it is a T-function of the KdV hierarchy satisfying
some additional equations). This remarkable result provided an unexpected link
between the algebraic geometry of these moduli spaces and integrable systems.
The spaces ﬂg,n can be generalized in two ways. The first way is by choosing a
smooth projective variety ¥ and considering the moduli space M, ,(V) of stable
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maps into V from genus-g, n-pointed, stable curves. When V is a point, Mg (V)
reduces to M, .

The second way to generalize /\/l « 18 by considering the moduli space /\/l
higher spin curves introduced in [17 18]. Roughly speaking, a higher spin curve
or r-spin curve, is an algebraic curve with an rth root of its (suitably twisted)
canonical bundle. Forgetting the r-spin structure reduces M;/,: to ﬂg,n. It is natu-
ral to ask if Kontsevich’s theorem admits a generalization to either of these two
cases.

The case of M, (V) remains mysterious. It gives the Gromov-Witten invariants
of V and their so-called gravitational descendants, which assemble into a generating
function whose exponential is an analog of a t-function. In the case where V is a
point, one recovers the t-function of the KdV hierarchy by Kontsevich’s theorem.
More generally, there is a conjecture of Eguchi, Hori, and Xiong [8] and of
S. Katz which essentially states that this generating function is a highest weight
vector for a particular representation of the Virasoro algebra. Presumably, there
is some analog of an integrable system which gives rise to this Virasoro algebra
action, should the conjecture hold.

On the other hand, the KdV hierarchy is just the first in a series of integrable
hierarchies KdV,, where r=2,3,..., called the generalized KdV, or
Gelfand-Dickey hierarchies. In the case of r = 2, this is the usual KdV hierarchy.
Each of these hierarchies has a formal solution, corresponding to the unique
t-function which satisfies an additional equation known as the string (or puncture)
equation. In [34, 35], Witten formulated a generalization of his original conjecture,
suggesting that for each r > 2, there should exist moduli spaces and cohomology
classes on them whose intersection numbers assemble into this z-function of the
KdV, hierarchy. The corresponding moduli spaces of higher spin curves have
recently been constructed in [17, 18]. In this paper we present a precise mathematical
formulation of the generalized Witten conjecture and prove it in several special cases
including, in particular, the case of genus zero.

Motivated by analogy with the construction of Gromov—Witten invariants from
the moduli space of stable maps, we introduce axioms which must be satisfied
by a cohomology class ¢!/" (called the virtual class) on the moduli space of r-spin
curves M / in order to obtain a cohomological field theory (CohFT) of rank
(r—1)1in the sense of Kontsevich and Manin [24]. This virtual class on ./\/t
an analog of the Gromov-Witten classes of a variety V (i.e. the pullbacks via
the evaluation maps of elements in H*(V')). We realize this Vlrtual class in genus
zero as the top Chern class of a tautological bundle over MO associated to the
r-spin structure. This yields a Frobenius manifold structure [6, 16, 27] on the state
space of the CohFT which is isomorphic to the Frobenius manifold associated
to the versal deformation of the A,_; singularity [6]. This is an indication of the
existence of a kind of ““mirror symmetry”” between the moduli space of r-spin curves
and singularities. According to Manin [28] “‘isomorphisms of Frobenius manifolds
of different classes remain the most direct expression of various mirror phenomena”.
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Proving the generalized Witten conjecture for all genera would provide further
evidence of this relationship.

As in the case of Gromov-Witten invariants, one can construct a potential
function from the integrals of the class c¢!/” on different components of M;,’, to form
the small phase space of the theory. The large phase space is constructed by
introducing the tautologlcal classes  associated to canonical sections of the
universal curve Cl/ " M g/n, and can be regarded as a parameter space for a family
of CohFTs. A very large phase space (see [9, 21, 29]), parametrizing an even larger
space of CohFTs, is obtained by considering classes 4, associated to the Hodge
bundles, and classes u, associated to the universal spin structure.

We show that the corresponding potential function satisfies analogs of the
puncture and dilaton equations and also a new differential equation obtained from
a universal relation involving the class p,. These relations hold in all genera.
Topological recursion relations are also obtained from presentations of these classes
in terms of boundary classes in low genera.

Finally, using the new relation involving y;, we show that the genus zero part of
the large phase space potential ®y(t) is completely determined by the geometry,
and this potential agrees with the generalized Witten conjecture in genus zero.

Some of our constructions were foreshadowed by Witten, who formulated his
conjecture even before the relevant moduli spaces and cohomology classes had been
constructed, just as he had done in the case of the topological sigma model and
quantum cohomology. We prove that his conjecture has a precise algebro-
geometric foundation, just as in the case of Gromov—Witten theory. Witten also
outlined a formal argument to justify his conjecture in genus zero. Our work shows
that the formulas that he ultimately obtained for the large phase space potential
function in genus zero are indeed correct, provided that the geometric objects
involved are suitably interpreted. This is nontrivial even in genus zero because
the underlying moduli spaces are not schemes, but stacks. We proceed further
to prove relations between various tautological classes associated to the r-spin
structures and to derive differential equations for the potential function associated
to them.

Notice also that one can introduce moduli spaces Mi,f;( V) of stable r-spin maps
into a variety V, where one combines the data of both the stable maps and the r-spin
structures. The analogous construction on these spaces yields a Frobenius manifold
which combines Gromov—Witten invariants (and quantum cohomology) with the
KdV, hierarchies. Work in this direction is in progress [20].

In the first section of this paper, we review the moduli space M of genus g, stable
r-spin curves, which was introduced in [17, 18]. We also discuss the stratification of
the boundary of /\/l . The boundary strata fall into two distinct categories—the
so-called Neveu- Schwarz and Ramond types.

In the second section we introduce canonical morphisms, tautological bundles,
tautological cohomology classes, and cohomology classes associated to the bound-

ary strata of ./\/lgn, and we derive a new relation involving the y; class.
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In the third section, we define a cohomological field theory (CohFT) in the sense of
Kontsevich and Manin, its small phase space potential function, and the
associativity (WDVYV) equation. We then review the construction of Gromov-
Witten invariants for the moduli space of stable maps and define the large and very
large phase spaces in the Gromov—Witten theory. Motivated by this example,
we explain how one may construct a CohFT and the various potential functions
from analogous intersection numbers on M;f,j, assuming that the virtual class
/" exists.

In the fourth section we state axioms which ¢!/” must satisfy in order to obtain a
CohFT. We show that these axioms give a complete CohFT with a flat identity,
and we construct the class ¢'/" in genus zero, as well as in the case r = 2.

In the fifth section, we obtain analogs of the string and dilaton equations for this
r-spin CohFT, and we find a new equation based on the relation involving the
u; class. We also prove the analog of topological recursion relations in genus zero.

In the sixth section, we use the new relation for the class p; to completely deter-
mine the genus-zero part of the large phase space potential.

Finally, in the seventh section, we give a precise formulation of the generalized
Witten conjecture and prove that the genus-zero, large phase space potential of
the r-spin CohFT yields a solution to the semiclassical limit of the KdV, hierarchy,
thereby proving the Witten conjecture in genus zero. We conclude with our own
W -algebra conjecture, a KdV,-analog of a refinement of the Virasoro conjecture [8].

1. The Moduli Space of r-Spin Curves

In this section, we review the definition and some of the basic properties of the

. -1 . .
moduli space Mg,/,: of genus g, n-pointed, stable r-spin curves.

11. AN OVERVIEW OF A"

As the definition of Mf/,f is rather involved, we motivate it by starting with an intuit-
ive approach to r-spin curves and their moduli space.

A smooth r-spin curve is essentially just a curve with an rth root of the canonical
bundle wy (suitably twisted). In other words, it is a pair (X, £) where X is a smooth
curve and £ is a line bundle on X such that £%" is isomorphic to the canonical bundle
wy. Given a collection of integers m = (my, ..., m,), an n-pointed smooth r-spin
curve of type m is a smooth n-pointed curve (X, py, ..., p,) with a line bundle £
on X, such that £®" is isomorphic to wy(— Y., m;p;). For degree reasons such
a bundle exists only if 2g — 2 — > " m; is divisible by r. When this condition is met,
there are r?¢ choices of £ on X.

If we want to compactify the space of smooth r-spin curves by allowing the curve X
to degenerate to a stable curve, the above definition of an r-spin structure is
insufficient. In particular, there is often no line bundle £ such that £%" is isomorphic
to wy(—>_ m;p;), even when the degree condition is satisfied. One possible
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solution—replacing line bundles by arbitrary rank-one, torsion-free sheaves—
permits too many potential candidates. The correct structure required in this case
amounts essentially to an explicit choice of isomorphism (or homomorphism when
L is not locally free) b: L® —swx(— > m;p;), with some additional technical
restrictions described in Definitions 1.2 and 1.3.

There are two very different types of behavior of this torsion-free sheaf £ near a
node ¢ € X. When it is still locally free, the sheaf £ is said to be Ramond at the
node ¢. If the sheaf £ is not locally free at ¢, it is called Neveu-Schwarz.

In the Ramond case, the homomorphism b is still an isomorphism (near the node
q), but in the Neveu—Schwarz case it cannot be an isomorphism. The local structure
of the sheaf £ near a Neveu—-Schwarz node can be described as follows.

Near the node ¢, the curve X has two coordinates x and y, such that xy = 0; and
the sheaf wy (or wx(—>) mp;)) is locally generated by dx/x = —dy/y. Near ¢
the sheaf £ is generated by two elements ¢, and £_ supported on the x and y branches
respectively (that is, x¢_ = y¢,. = 0). The two generators may be chosen so that the
homomorphism b: L* —wx(— Y mp;) takes €2 to x™+!(dx/x) = x"+dx, and
so that b takes £%" to y"-*(dy/y) = y"-dy, where (m, + 1)+ (m_ + 1) =r is the
order of vanishing of b at the node g¢.

One more difficulty arises when r is not prime — in this case the moduli of stable
curves with r-spin structure, as described above, is not smooth. The remedy is
to include all d-spin structures for every d dividing r, satisfying some natural com-
patibility conditions. This is described in Definition 1.3.

We now give the definition of r-spin curves.

1.2. HIGHER SPIN CURVES

DEFINITION 1.1. A prestable curve is a reduced, complete, algebraic curve with at
worst nodes as singularities.

DEFINITION 1.2. Let (X, pi, ..., pn) be a prestable, n-pointed, algebraic curve,
be a rank-one, torsion-free sheaf on X, and m = (my,...,m,) be a collection of
integers. A dth root of IC of type mis a pair (€, b), where € is a rank-one, torsion-free
sheaf, and b is an Oy-module homomorphism b: & LK ® Ox(—>_m;p;) with the
following properties:

o d-degf =deghk—> my

e ) is an isomorphism on the locus of X where £ is locally free

e for every point p € X where £ is not free, the length of the cokernel of b at p is
d—1.

The condition on the cokernel amounts essentially to the condition that the order
of vanishing of b at a node should be d. For any dth root (&, ) of type m, and
for any m’ congruent to m (mod d), we can construct a unique dth root (&', b')
of type m’ simply by taking &' = £ ® O(1/d Y _(m; — m})p;). Consequently, the moduli
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of curves with dth roots of a bundle K of type m is canonically isomorphic to the
moduli of curves with dth roots of type m’. Therefore, unless otherwise stated,
we will always assume the type m of a dth root has the property that
0 < m; < d for all i. Unfortunately, the moduli space of curves with dth roots of
a fixed sheaf C is not smooth when d is not prime, and so we must consider not
just roots of a bundle, but rather coherent nets of roots [17]. This additional structure
suffices to make the moduli space of curves with a coherent net of roots smooth.

DEFINITION 1.3. Let K be a rank-one, torsion-free sheaf on a prestable n-pointed
curve (X, p1,...,pn). A coherent net of rth roots of I of type m = (my, ..., m,)
is a pair ({£4}, {ca.a}) of a set of sheaves and a set of homomorphisms as follows.
The set of sheaves consists of a rank-one, torsion-free sheaf £; on X for every divisor
d of r; and the set of homomorphisms consists of an Oy-module homomorphism
Caa S?d/ d_ Eq for every pair of divisors d’, d of r, such that d’ divides d. These
sheaves and homomorphisms must satisfy the following conditions:

[ ] 51 =/ and c1,1 = 1.

e For each divisor d of r and each divisor d' of d, the homomorphism ¢, , makes
(€4, ca,a) into a d/d'th root of £y of type m’, where m’' = (m], ..., m,)) is the
reduction of m modulo d/d’ (i.e. 0 <m; < d/d" and m; = m; (mod d)/d’).

e The homomorphisms {c; s} are compatible. That is, the diagram

)®dl/dll

(8®d/dl)®d'/d” (Cd’d’ g®d//d”
d ’

dl ’dll

S d"

commutes for every d”|d’|d|r.

If  is prime, then a coherent net of rth roots is simply an rth root of K. Even when d
is not prime, if the root &, is locally free, then for every divisor d’ of d, the sheaf £, is
uniquely determined, up to an automorphism of £;. In particular, if m’ satisfies the
conditions m' = m (mod d’) and 0 < m; < d’, then the sheaf £; is isomorphic to
Efd/d, ® O(l/d/ > (m; — m;)p,-).

DEFINITION 1.4. An n-pointed, r-spin curve of type m = (my,...,m,) is an
n-pointed, prestable curve (X, pi,...,p,) with a coherent net of rth roots of wy
of type m, where wy is the (canonical) dualizing sheaf of X. An r-spin curve is called
smooth if X is smooth, and it is called stable if X is stable.
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EXAMPLE 1.5. Smooth 2-spin curves of type 0: = (0, 0, . . ., 0) correspond to classi-
cal spin curves (a curve with a theta characteristic) (X, &;), with an explicit
isomorphism £$* — .

DEFINITION 1.6. An isomorphism of r-spin curves

(X p1s ooy pus (Eah caa))) — (X, Pl Pl (€Y (S o))

of the same type m is an isomorphism of pointed curves

(X, p1, .. pn) — (X, Pl p))

and a set of sheaf isomorphisms {f,:1*E) — &4}, with f, being the canonical
isomorphism t*wy (— ), mp’;) = wx(—>_m;p;), and such that the homomorph-
isms f3; are compatible with all the maps ¢, s and t*cj ;.

Every r-spin structure on a smooth curve X is determined, up to isomorphism, by a
choice of a line bundle &,, such that 553” >~ wy(—Y_ m;p;). In particular, if X has no
automorphisms, then the set of isomorphism classes of r-spin structures (if
non-empty) of type m on X is a principal homogeneous space for the group of
r-torsion points of the Jacobian of X. Thus there are 7> such isomorphism classes.

EXAMPLE 1.7. If g =1 and m = 0, then wy is isomorphic to Oy, and a smooth
r-spin curve is just an elliptic curve X with a line bundle &, corresponding to an
r-torsion point of X, together with an explicit isomorphism £¥" — Oy. In par-
ticular, the stack of stable, one-pointed r-spin curves of genus one and type 0 forms
a gerbe over the disjoint union of modular curves [ [, Xi(d).

DEFINITION 1.8. The stack of connected, stable, n- pomted r-spin curves of genus
g and type1 m = (my,...,ny) is denoted by /\/l . The disjoint union
Lm0 < my<r Mg,/,:’ is denoted by /\/l

Remark 1.9. As mentioned above, no information is lost by restricting m to the
range 0 < m; < r— 1, since when m = m’ (mod r) every r-spin curve of type m nat-
urally gives an r-spin curve of type m’ simply by

Ea—E4® (9(2%[)1‘).

Thus ﬂi, is canonically isomorphic to M L

g.n

1.3. BASIC PROPERTIES OF THE MODULI SPACE

In[17] it was shown that /\/l 1s a smooth Deligne-Mumford stack finite over M. g
with a projective, coarse moduh space. For g > 1 the spaces /\/l ™ are irreducible if
gcd(r, my, ..., my) is odd, and they are the disjoint union of two irreducible com-
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ponents if ged(r, my, ..., m,) is even. When r = 2 (and in fact, for all even r) this is
due to the well-known fact that even and odd theta characteristics on a curve cannot
be deformed into one another [30]. These two components will be denoted /\/l rom.even
and Mg ,’1 modd respectively.

When the genus g is zero the moduli space MO " ™ is either empty (if r does not
divide 2+ Y m;), or is canonically isomorphic to My,. Note, however, that this
1somorphlsm is not an isomorphism of stacks, since the automorphisms of elements
of M vary differently from the way that automorphisms of the underlymg curves
vary. We will discuss this further in Section 1.6. In any case, Mo/nm is always
irreducible.

When the genus g is one, the space ﬂ}/,:m is the disjoint union of d irreducible
components, where d is the number of divisors of gcd(r, my, ..., m,). We will denote
the irreducible (and connected) component indexed by a divisor e of
ged(r,my, ..., m,) by /\/l1 ;m © When m is zero, as mentioned in Example 1.7,
the locus of smooth r-spin curves in this component consists of n-pointed, elliptic
curves with a torsion point of exact order e.

Throughout this paper we will denote the forgetful morphism by p: /\/l —> Mg,
and the universal curve by = Cl/ " — M . As in the case of the moduh space of
stable curves, the universal curve possesses canonical sections o;: Ml/ Cl/'
for i = 1,...,n. Unlike the case of stable curves, however, the universal curve
Cl/’“‘—>ﬂl/ "™ is not obtained by considering (n + 1)- pornted r-spin curves.

& %/I m /r,(my,my,....my
The curve C,/;"™ is birationally equivalent to /\/lg el , but they are not
isomorphic.

There is one other canonical morphism associated to these spaces; namely, when d
divides r, the morphism

i ——1/d,m’ —1/r ——1/d

[r/d): My0™ — M™ and [r/d]: M) — M,

gn’

which forgets all of the roots and homomorphisms in the net of rth roots except those
associated to divisors of d. Here m’ is congruent to m (mod d) and 0 < m; < d for all
i€ {l,...,n}. In the case that the underlying curve is smooth, this is equivalent to
replacing the line bundle &, by its r/d-th tensor power (and then taking the tensor
product with O(1/d Y (m; — m})p;)).

—1 id ..

The two components M /rmmn and M, / "M% that arise in the case that
ged(r, my, ..., my,) is even 1are Just the prermages of the spaces of eoven and odd
theta- characterlstrcs in M, " under the map [r/2]: M g/ . " /\/lgqn

1.4. BOUNDARY BEHAVIOR

1.4.1. Neveu—Schwarz and Ramond Nodes

At any node ¢ of a prestable curve X, there are two types of local behavior of an rth
root (&, b,) of wxy(—>Y mp;). Tt is either locally free at ¢, in which case the
homomorphism b, is an isomorphism near ¢, or it is torsion-free, but not locally
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free at ¢. In the locally free case we will say that the root £, is Ramond at ¢, and in the
non-locally free case it will be called Neveu-Schwarz.

If the rth root sheaf &, of an r-spin structure on X is Ramond at every node of X,
then the whole net of roots is completely determined (up to isomorphism) by
the root (&,, ¢,.1) as follows:

1
_ oQ®r/d o\,
Ea=E&"1® O(a E (m; mi)Pl)v

and ¢g1 = ¢, ® I, where [ is the identity homomorphism

@ (2 Z(Wli - m;)Pi) — 0 <$ Z(mi - m;)Pz).

Remark 1.10. In the Neveu-Schwarz case, the r-spin structure maps are more
complicated than those in the Ramond case, but the combinatorial structure of
Neveu-Schwarz nodes is simpler than the Ramond nodes. In particular, the
cohomology classes defined by boundary strata with Neveu—-Schwarz nodes factor
in a nice comblnatorlal way. Moreover, the hope of constructing a cohomological
field theory from ./\/t 1s based on the expectation that one can construct a canonical
cohomology class Wthh vanishes on the strata where the r-spin structure has an rth
root sheaf which is Ramond at some node. (This would follow from Axiom 4 in
Section 4.1.)

1.4.2. Local Structure at Neveu—Schwarz Nodes
Recall from Section 1.1 (see also [17, 18, 34]) that near a Neveu-Schwarz node ¢, an
rth root (§,, b)) of wx(—Y_ m;p;) is uniquely determined by an rth root (8,, b,) of the
bundle wy(—Y mp; —mtq™ —m ¢~) on the normalization v: X—X of X at
the node ¢g. Here ¢t and ¢~ are the inverse images of ¢ under v, and m* and
m~ are non-negative integers* which sum to » — 2. If x and y are local parameters
of X near the node g satisfying the equation xy = 0, then the sheaf £ is generated
locally by the sections (x’”+dx)1/ " and (y"-dy)'/"; and &, is generated by
(x’"*dx)l/ " on the x branch of X, and it is generated by (- dy)"" on the y branch
of X. The points g and ¢~ are given by {x = 0} and {y = 0}, respectively, on X.
The sheaf S is simply v*E, modulo torsion; and v*E is &,, with b, induced from
by by adjointness. We will call the integers m™* and m™ the order of the r-spin structure
at the node, along the x or y branch, respectively. The order m* and m™ of the r-spin
structure along the x or y branch of a node is not to be confused with the order of
vanishing of the structure maps. Indeed, if the r-th root bundle &, is Neveu—Schwarz
at a node, the order of vanishing of the map c¢;, at that node is exactly
mt*+1D+m +1)=r.

In the case that m™ + 1 and m~ + 1 are relatively prime, one can show (see [17])
that £ and b uniquely determine the entire net. However, if ged(m™t + 1,

*Note that the integers u and v of the papers [17] and [18] are m* + 1 and m™ + 1, respectively.
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m~ + 1) = d, then although &, still completely determines the Neveu—Schwarz roots,
d divides r, and the dth root (€4, c4.1) of the net is locally free (Ramond), as are all
roots (€4, cqa1) for every d' dividing d. In particular, although generators
(x"+dx)"" and (y"-dy)"/" in &, determine (x"+dx)"/? and ()"~ dy)", we must identify
(dx/x)l/d with (—dy/y)l/d. However, this identification is only determined by (£;, ¢,.1)
up to a non-canonical choice of a dth root of unity. If the normalization X at ¢ has
two connected components, then the dth root (€4, ¢41) is determined up to
(non-canonical) isomorphism by (&, b,), but if X is connected, then (&g, cq1) 18
not determined by (&,, b,), since an additional choice of a dth root of unity is required
to construct £ from £27¢ (see Section 1.7).

1.4.3. More Detailed Study of the Ramond Case
Let (€, b) be an rth root of wy(— Y m;p;) which is Ramond at a node ¢ of X. The
restriction of £ to ¢ gives an exact sequence 0 — my ® £ — & —> &|; — 0, where
my is the maximal ideal of the point ¢. The sheaf £:= €& ® mq is a rank-one,
torsion-free sheaf of degree (2 —2— > m;)/r—1 on X, and pulling & back to
the normalization v: X — X of X at g gives, modulo torsion, a rank-one, torsion-free
sheaf &": = v*& /torsion, such that v.£” is equal to &

If x and y are local coordinates on X near ¢* and ¢~ respectively, then £ is locally
generated by x(dx/x)"/" (respectively y(dy/y)'/"). Therefore, the homomorphism

b E® — vy (— Z mipi) = wi,(— Zm,pi +qgt + qf),
induced by b: %" —wy(— Y mp;), factors through
(Uj((_ > mipi—(r =g —(r— l)q‘) —>w5((— > mipi+qt + q‘)-

Thus the rth root (£;, ¢;.1) can be Ramond at the node if and only if m* = r — 1 and
m~ = r — 1 satisfy the degree conditions

degX(,) Wy — Zmi — }’}’lJr —-m =0 (mod }")
on every connected component X of X. In the case that (&, ¢r,1) 1s Ramond, we will
define the order of the r-spin structure at the node to be m* = m~ = r — 1 along both

branches of the underlying curve.
Similarly,

po Vb —
(EF — v wX<_Zmipi) = wg(— > mpi+qt+q )

corresponds to the choice m™ = m~ = —1. In this special case there is a residue map
that canonically identifies &,|,+ and &,|,- with C.
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PROPOSITION L.11.If (&, b)isantthroot of wx(— > m;p;) withm; = —1 for some/,
then there is an isomorphism

Ry:&l, —> C (1)

which is canonical up to a choice of an rth root of unity.

An immediate consequence is the following corollary:
. . . -1/
COROLLARY 1.12. If 6; is the ith section of the universal curve m: C;{,:’m — Mg{,: "
with m = (my, ..., m,) and m; = —1 for some i, then the pullback o7 (E,) of the uni-
versal rth root &, is an r-torsion line bundle, i.e., its rth tensor power is isomorphic
to Oml/r,m.

Progjr’"of the Proposition. Let z be a local parameter on X near p, so that the sheaf
&, is locally generated by an element (dz/z)!/" which is well defined up to an rth
root of unity. Define the map R,:&,|, — C by R,((ap +arz + ... )(dz/2)""): = ay.
It is easy to check that this definition is independent of local parameter, and hence
defines a canonical isomorphism. O

1.5. GRAPHS

Much of the information about the structure of the boundary of ﬂ;/;m can be
encoded in terms of decorated graphs.

Recall that the (dual) graph of an n-pointed prestable curve (X, py, . . ., p,) consists
of the following elements:

e Vertices, corresponding to the irreducible components of X: a vertex v is labeled
with a non-negative integer g(v), the (geometric) genus of the component;

e FEdges, corresponding to the nodes of the curve: an edge connects two vertices
(possibly even the same vertex, in which case the edge is called a loop) if
and only if the corresponding node lies on the associated irreducible

components;

e Tuils, corresponding to the marked points p; € X, i =1, ..., n: a tail labeled by
the integer 7 is attached at the vertex associated to the component of X that
contains p;.

DEFINITION 1.13. A half-edge of a graph I is either a tail or one of the two ends of
a ‘real’ edge of I'. We denote by V(') the set of vertices of I" and by #(v) the number of
half-edges of I" at the vertex v.

The following definition describes a class of graphs that are dual graphs of stable
pointed curves.

DEFINITION 1.14. Let I be a graph. The number g(I') = dimH'(I) + Y, ) 8)
is called the genus of a graph T.
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A graph I (not necessarily connected) is called stable if 2g(v) — 2 4+ n(v) > 0 for
every v € V(') (in particular, it satisfies 2g(I') — 2 + n > 0, where n is the number
of tails of I).

To describe strata of the moduli space of r-spin curves, we decorate the graphs
with additional data coming from the r-spin structure. In particular, the type

= (my, ..., my) gives a marking to each of the tails.

DEFINITION 1.15. Fix an integer » > 2. A decorated stable graph is a stable graph
with a marking of each half-edge by a non-negative integer m < r, such that for each
edge e the marks m™ and m~ of the two half-edges of e satisfy

m"4+m~ =r—2 (mod r).

As mentioned in Section 1.4, decorated stable graphs with » tails and genus g
correspond to boundary strata in M

DEFINITION 1.16. Given a stable r-spin curve X of type m = (my, ..., m,), the
decorated dual graph of X is the dual graph I' of the underlying curve X, with
the following additional markings. The ith tail is marked by m1;, and each half-edge
associated to a node of X is marked by the order (m* or m™) of the r-spin structure
along the branch of the node associated to that half-edge.

DEFINITION 1.17. Let I" be a connected stable graph or a decorated stable graph)
with 7 tails and of genus g . We denote by M (or by M’ ) the closure in M, , (or in
Ml/ ,) of the moduli space of stable curves (or r-spin curves) whose dual graphis I". If
I' = [,,I'; is the disjoint union of connected subgraphs I'; then we denote by M the
product [[,.; Mr,, and similarly Ml— =[lies /\/lr

1.6. AUTOMORPHISMS OF r-SPIN CURVES

As mentioned in Section 1.3, even in the genus zero case, where there is a unique
r-spin structure of a given type m = (my, . .., m,) for each genus-zero curve (provided
m satisfies the degree requ1rement > m; =2 (mod r)), the automorphisms of the
r-spin structure ensure that MO/n is not isomorphic, as a stack, to Mo,n. The auto-
morphisms of r-spin structures will play an important role later in this paper, par-
ticularly in the determination of the degrees of morphisms and the properties of
various cohomology classes under restriction and pullback. Consequently, we need
to understand the group of automorphisms of an r-spin curve.

First, we introduce some notation. Let X = (X, p1, ..., pu, ({E4}, {ca.a’})) be an
r-spin curve, and let I' be its decorated dual graph. Let V' be the set of vertices
of I" and E,; be the set of edges which do not start and end at the same vertex (i.e.,
non-loops). Furthermore, for each v € V, denote by X, the irreducible component
of X associated to vertex v; and denote by F, the set of all half-edges attached
to v in I'. For each f in F, let p; be the point of X, associated to f, and let my
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be the marking of f. Finally, for each vertex v, if i,: X, — X denotes the obvious
inclusion, then the r-spin structure ({€,}, {cs+}) pulls back to a collection
({iyEa} {17y 41)) of sheaves and morphisms on X,. However, these sheaves are
not necessarily torsion free. Taking the quotient of each sheaf i’€; by its torsion
submodule gives a rank-one, torsion-free sheaf, which we denote by &). It is
easy to see that the homomorphisms {c}; ,}, induced on the {€}} from the homomor-
phisms #€,;, make X, = (Xv,pflv,...,pfkvv,({é'(vl}, {¢+}) into an r-spin curve. We
will call X, the restriction of X to the curve X,. Any e € E, consists of
two half-edges f,;f and f; and we denote by d, the integer
de:= ged(myg+ + 1, my- + 1) = ged(my+ + 1, 7).

PROPOSITION 1.18. If the underlying pointed curves (X, pyr, ..., pyy) of the r-spin
curves X, have no non-trivial automorphisms (this is true for a generic curve with
g+n>2), then

(1) foreachv € V the automorphism group Aut(X,) of X, is isomorphic to y,, the group
of rth roots of unity,; and

(2) given any orientation of the edges of the dual graph I of X, the automorphism group
Aut(X) of X fits into the following exact sequence

I —Aut® — [JAut@) 5 [T ta- )

velV ecEy,;

Here the map 90 is defined as follows. The orientation of each edge e determines the
choice of half-edges f,* and f; and of corresponding vertices v} and v, (the unique
vertex of T attached to f; or f, respeclively) The map 3 maps the element
[1¢ € 1 1,er 1, to the element ]_[(C < (4. Note that, although the map 3 depends upon
the given orientation of the edges ofF the kernel of 0 is independent of orientation.

Proof. If (Xy, pyr, . .., pry) has no automorphisms, then each term &} in the r-spin
structure ({£}, {¢}; 4 }) is locally free (since X, is smooth) of rank one and has
automorphism group C* = HO(X,, Oy,), which acts on &; by multiplication.
However, an automorphism of the r-spin structure must also be compatible with
the structure maps {css}. In particular, compatibility with the isomorphism
e (EN® SN wx,(— Y_rer, Mypr) shows that any automorphism o, of £, must satisfy
(6,)" = 1. Moreover, compatibility with ¢, » shows that 6, = (o) a1 for every d’
dividing d and d dividing r. Thus o, corresponds to some ( € y,, and for every d
dividing r, the automorphism o, is just ¢4 This proves the first part of the
proposition.

For the second part, it is easy to see that any automorphism of the whole r-spin
curve X induces, by restriction, an automorphism of X, for each X,, and the
map Aut(X) — [],., Aut(¥,) is injective.

Moreover, for any edge e € E,; corresponding to half edges /T attached to vertex
vT and /™ attached to vertex v, an automorphism ¢ of X will induce automorphisms
oy ={, € p,ando,- ={_ € u,; and these automorphisms must agree whenever &, is
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Ramond (locally free) at the node p, corresponding to edge e. Similarly, if £, is
Ramond at p,, then ((,)7¢ must equal ({_)”¢. However, if the sheaf &; is
Neveu-Schwarz at p,, then o, and o,- act on distinct vector spaces (the sheaf
Ed |p + is not the same as £, _), and so £; imposes no compatibility condition
on o,+ and o,-.

Since £; is Ramond at the node p, precisely when d divides both m+ + 1 and
myg- 4+ 1, we have that the condition imposed by compatibility for ,+ and o,- is
precisely the equality (a,+)”¢ = (6,-)"“ for

d |P/

d =d,: = ged(mpr + 1, mp- 4+ 1) = ged(myp+ 4 1, 7).

It is clear that any [[o, € HAutOEV) which meets this compatibility condition at
each edge e € E,; defines a global automorphism ¢ € Aut(X). O

Of course, since we only care about the kernel of 9, the right-most term in exact
sequence (2) might as well include all the edges, including loops. This is because
for any loop e, the map 9 will always map every element of [],, Aut(¥,) to
1 € u,,,. since the vertices v* and v~ (and hence also ¢,+ and o,-) alre the same

For r-spin curves of genus 1 and 2 with a generic involution (i.e. in M’} and M2 0)
we have the following description of the group of automorphisms. Note that when
g =n =1, degree requirements force m; to be zero. Also when g =2 and n =0,
degree requirements force r to be 2.

PROPOSITION 1.19.

(1) Ifthe underlying curve (X, p)of a smooth r-spin curve X € ML/;',O,(/) of index j has no
automorphisms other than the elliptic involution, then the automorphism group of X
is

w.x7J2, if j=1orj=2,

Am*:{m, ifi>2.

(2) If the underlying curve X of a smooth 2-spin curve X € /\/ll/2 has no auto-

morphisms other than the hyperelliptic involution, then the automorphism group
of X is AutX =y, x 7,/2.

Proof. In the case of g = n = 1, smooth r-spin curves of type 0 and index j cor-
respond to the torsion points of X of exact order j. It is well known that the
involution i: X — X acts without fixed points on the points of exact order j, unless
jis 1 or 2, in which case the involution fixes all 2-torsion points (including the
identity, corresponding to the trivial bundle Oy = wy).

It is easy to check (e.g. by explicitly writing out the coordinates) that for sheaves &,
of index 2 (or 1), corresponding to 2-torsion, there is a canonical choice of
isomorphism t: i*£, —> &, such that

e [*ro71is trivial,

https://doi.org/10.1023/A:1017528003622 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017528003622

MODULI SPACES OF HIGHER SPIN CURVES 171

e any other isomorphism *&, —> &, differs from 7 by an element { € u,, and
e 7 commutes with all elements of g,.

Thus AutX has order 2r and is Abelian; and if r is even, then every automorphism
has order dividing r. Thus the proposition follows in genus 1.

The proof in genus 2 is similar, but simpler, since every 2-spin structure is fixed by
the involution. ]

1.7. GLUING

In the case of moduli spaces of ordinary stable curves, if a graph I' is obtained from
another graph I' (not necessarily connected) by gluing together two tails of T" (thus
producing a new edge), there is a natural gluing morphism

p:MfHMF(_)Mg,n' (3)

It corresponds to gluing together the punctures on a curve X € Ml: associated to the
two tails, and thus the curve p(X) € Mr will have an additional node and two fewer
punctures than X. A similar gluing operation sometimes exists for r-spin curves, but
even then we often need to include extra data.

1.7.1. Two Irreducible Components

Consider the case of an r-spin curve with a single Neveu-Schwarz node. Assume the
normalization of the underlying curve X at the node has two connected components:
Xt of genus k, and X~ of genus g — k. The decorated dual graph of the r-spin curve
looks like this

Il ml]+l

The rth root bundle &, factors as & =& @&, with & an rth root
of  wy(=Y)_,myp,—m*qt) on X* and & an rth root of
wx-(— Z7:j+1 m;p;, —m~q~) on X~. Here m™ and m™ can easily be calculated (for
degree reasons) as the unique non-negative integers summing to r — 2 such that
the rth roots of the corresponding (twisted) canonical bundles exist; namely,

J
m* =2k —2-"m; (mod r) (4)
=1
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and

m-=2g—k)—2— Z m;, (mod 7). (5)

I=j+1

Of course, since the degree of the original bundle was divisible by r, each of the two
relations implies the other. The Neveu—Schwarz case occurs exactly when the sol-
utions m* and m~ to the congruences (4) and (5) lie in {0, 1,...,r — 2} (whereas
the Ramond case occurs when the solution is m™ =r—1, m~ =r—1) [18]. If
gcd(m™ + 1, m™ + 1) is one, then these data completely determine the r-spin structure
on X, and in a canonical way, so that in this case we have a well-defined gluing
morphism

—1/r ——1/r ——1/r —1/r ——1/rm
p:Mr i, = Mp, x Mg, — Mg <—>ng,, . (6)

If, however, d:= gcd(m* +1,m™ + 1) is greater than one, there is no canonical
morphism of stacks, as there is in (6). To construct a gluing morphism would require
an isomorphism ¢: €j|q+ N &, that makes £, Ramond at the node. In par-
ticular, ¢ must be compatible with the isomorphism (Sj)®d = (=Y m;p;) and
(5;)®d = (=Y m;p;). We call such an isomorphism ¢ a gluing datum.

DEFINITION 1.20. Given a prestable (n + 2)-pointed curve (X, py, ..., pni2) (not
necessarily connected) and a dth root (£,bh) of wy(—> mp;), such that
Myy1 = myo = —1, denote by X the curve obtained from X by identifying the point
Pnr1 With p,io. A gluing datum for (€, b) is an isomorphism ¢: £|, | —} &lp,., which
is compatible with the d-th root maps 5|§’il — op(— Y mp;) — 8|§iz.
Returning to the case of a curve X with a single node and two irreducible
components, since the normalized curve has two connected components, the root
(&4, cq.1) 1s determined up to non-canonical isomorphism by (€,, ¢, 1). Still, choosing
one gluing datum ¢:£j|q+ - &;ly- does not give a morphism of stacks because
an automorphism of the r-spin structure on X+ or on X~ changes the gluing datum
¢, and thus induces a different (but isomorphic) r-spin structure on the curve X.

1.7.2. Irreducible Curve with One Node
In the case of an r-spin curve X with a single component and one node we have the
dual graph
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This determines an r-spin structure on the normalized curve X, with the dual graph

If d =gedm™ +1,m™ +1)=ged(m* +1,r) =1, then all roots £; in the r-spin
structure are of the Neveu-Schwarz type and we can define the gluing morphism

1/1 m

p M, — M = M, ™
in the obvious way.

However, if d = gcd(m™ + 1, r) is greater than one, then, as mentioned above, an
additional gluing datum is required to construct (4, ¢4.1) from (5,‘.2’"/ d ¢;.1)- In this
case, set uT = (m* +1/d) and u= = (m~ + 1/d) and define

= 5?"/“’ QR OWpT +up),

where p* and p~ are the inverse images under normalization of the node. This shows
that £, is a dthroot of wy(— Y m;p; + p™ + p~); thatis, m™ and m™ are both replaced
with —1. To construct &; from &, we need to choose an isomorphism
¢: &yl —E,l,- compatible with the isomorphisms é'fwl,ﬁ = ozt +p7) =
Ef’d| ,-» and there are exactly d such isomorphisms.

Unlike in the case of the tree, an automorphism of the r-spin structure on the
normalized curve induces the same automorphism on both sides of the gluing datum
¢, and thus it preserves (;’) Consequently, we expect d = ged(m* +1,r) gluing
morphisms p,: /\/l”{' Mr,,, ./\/lgn , indexed by the set of different choices
of ¢. However, in order to construct such a morphlsm one needs to be able to define
the /glulng data in families. That is, if 7:CY" — M /_ is the universal curve over
M r, and if Dt and D~ are the loci in of the two sections o and o~ of 7 to
be glued then we need to define an isomorphism ¢:&,|pr = (&) —

o *(€) = &,lp-. Such an isomorphism may not exist because &,|p+ and &,|p-
may differ by an r-torsion line bundle on ./\/ll/ '1(;l+_2 Y But if g is the set of
isomorphisms &)| p+ l—> E|p- of the sheaf &, = 5®r/d ® O™ D" +u~ D7), we have

—— 1 A,
a morphism pr., : /\/lf/' x g— M Mg,/;m

2. Tautological Cohomology Classes

Unless otherwise stated, all cohomology groups in the paper are considered with
coefficients in Q.
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2.1. DEFINITIONS

There are many natural cohomology classes in H‘(Ml/rm Q); these include the

classes induced by pullback from Mg,n, as well as classes induced by replacing
the canonical (relative dualizing) sheaf w, with &, in the usual constructions of
tautological cohomology classes on M.

In particular, we have the ith Chern classes /; of the Hodge bundle =, w,. However,
&, 18 not especially well behaved. Instead, we prefer to use the K-theoretic
pushforward m&, (also called Rn*é’) * Recall that for any coherent sheaf F on
the universal curve = Cl/’ " M , the element mF of KO(M ™) is the differ-
ence m,F — R'n,F (n has relatlve d1mens1on 1). Here R'm, F is the sheaf whose fiber
over a point p of the base /\/l ™ is the vector space H'(n='(p), F|,- l(p)) Serre duality
shows that H!(X, o) is canomcally 1somorphlc to C, and so R'm,w, is a trivial line
bundle. Hence n.w, = mw,; +O in KO(M ). Therefore, we have an equality
of Chern polynomials ¢;m,0,; = ¢;mw, = 1 Tt 4 Tautological classes
v; are defined as components of the Chern character of the Hodge bundle

chmewr =14 chmoy, =g +vit+ v+ +.... (8)

(The even components of ch,m,.w, vanish by Mumford’s theorem [31].) Similarly, we
define classes y; as components of the Chern character of m,&,:

chm& =D+ ut+ > + ... )

Here —D is the Euler characteristic y(&r|c.) of £ on any geometric fiber C5 of 7, and
by Riemann-Roch

:%((r—Z)(g— 1)+Zm,~>. (10)

Serre duality shows that for any F we have m(Hom(F, w;)) = mF, so ;O = mwy,.
More importantly, for purposes of comparison with Witten’s calculations of [34],
in the special case that R'n, Hom(E,, w,) = 0 (or equivalently, n,E, = 0), the bundle
V: = n,Hom(E,, w;) of [34] corresponds to m&,.

In addition to the Hodge-like classes, there are those induced by the canonical
sections a; of Cl/”“ —>ﬂl/,; ™ These are classes V= ci(of(w,)) and
x// = cl(a*(é' )) (and also class z//d) for each divisor d of r). When working in
ch/\/l , we will abuse notation and use y; to indicate the line bundle ¢} (w,),
and x// the hne bundle ¢7(&,). Finally, there are the boundary classes. In partlcular,
if AU B is a partition of {1,...,n} into two subsets, we denote by oy, 4 the class

*The notation 7, is from algebraic topology and is not to be confused with the sheaf-theoretic
direct image with compact supports, which we never use in this paper.
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of the divisor associated to r-spin curves with the dual graph I' of the form

with {i1,...,7} = 4 and {ij41, ..., i} = B. Of course there is an obvious equality:
Olk;4 = Xg—k;B-

Since the graph I' is a tree, there is a unique choice of m™ and m~, given the original
type m and the partition 4 U B.

If g is greater than 1, and if » and all of the m; are even, then the moduli space has

—1/r.m, —1/r.m,0dd .
two components, M [rmeven nd M frmodd “yp o <k <g-—2, then oy.4 is the

gn a.n
sum of four divisors—two on each irreducible component of the moduli space.

In particular, there are two divisors in Pic M /1M with dual graph

gn

mi.
j+1

The first is the locus where both vertices of the graph (irreducible components of the
underlying curve) are endowed with an even r-spin structure; and the second is where
both vertices are endowed with an odd r-spin structure. Similarly, in Pic ﬂ;{;’mpdd,
the two divisors correspond to the two ways of endowing the vertices with r-spin
structures of differing parities.

In the case of k =0 and g > 1, the divisor g is the sum of only two divisors,
corresponding to the parity of the r-spin structure on the other vertex (of genus
g). If k=1 then o4 is the sum of (potentially many) divisors corresponding to
the choices of index for the r-spin structure on the vertex of genus 1, (as well as
the choices of index or parity for the remaining vertex).

Finally, denote by Sm,w the divisor associated to the graph
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with the r-spin structure inducing

on the normalization; and denote the divisor corresponding to the Ramond root by
Sirr,r—l-* The divisor Sm,w is not necessarily irreducible, since different choices
of gluing will induce distinct (and disjoint) divisors, all in S]’rrmer. Again, there is
an obvious equality Sm,m = Sm,,_z_m.

2.2. BASIC PROPERTIES OF THE TAUTOLOGICAL CLASSES

The followirll% Proposition describes relations between various elements in the Picard
group of Mg,;’“‘. Itis a straightforward generalization of the corresponding result for
the case m = 0 proved in [19].

PROPOSITION 2.1.

o The forgetful map p: ﬂ:,:’m —> My, induces an injection

p*: Pic Mg, ® QO — Pic M @ Q.

g:n

o Let Oy 4 denote the pullback to Picﬂ;{;’m of the class in Pic My, associated to
the union of all strata in My, with the dual graph

Ij+1

in
with A ={i1, ..., i}. The pullback oy 4 is related to oy.4 as follows:
¥
5k;A Ol As

~ged(mt + 1, 7)
where m™ is determined by k, m1 and A, as in Section 1.7.1.

e Let d;. be the pullback to Pic ﬂg{;’m of the divisor of all curves in My, with dual
graph

*Beware that the index m of 5“”,, differs from the index j of y in [19] by one.
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The pullback iy can be expressed in terms of the Sirr,m as follows:

T ~

Oirr = ——————0
ged(r,m+ 1)

r/2—1 <m<r

irr,m-

The fact that, for an r:nh root (&,b) of w(—>Y mp;), the map b is almost an
isomorphism means that y; and ; are closely related.

PROPOSITION 2.2. The line bundles o} w and o7 (E4) on the stack M;/,’,m are related
by

rai (&) = (m; + 1)ai(w) and doi(Eq) = (m; + 1)} (w),

where i is the smallest non-negative integer congruent to m; (mod d). Therefore, in
. —=1/rm
Pic M, ® QO we have

~  m+1 = (d) m,+1\r ~
Vi=——V; and 1)V

Before proving the proposition, we recall the following well-known fact.

LEMMA 23. Let n: Cgy —> Mg,n be the universal n-pointed curve, and o; the ith
tautological section of m. If D; is the divisor of C,, associated to o¢;, and if
w = wy is the canonical (relative dualizing) sheaf, then

51(0(-D)) = { )

Proof. When i # j the bundle ¢7(O(—D))) is trivial because the sections are disjoint.
In the case i = the result follows from the fact that taking residues gives an
isomorphism between w.(D;)|p, and Op,. O

Proof of Proposition 2.2. The map cg.1: £9¢ —>w(— >_mp;) pulls back, via o7, to
give aicy1: (036 —aro(— >_mip;). Since im(c;) is disjoint from the nodes of
X, o7cg1 1s an isomorphism, even on the boundary strata where £ fails to be locally
free.

Consequently, we have

O';F(Cd,ly 0'?(5?‘!) - GT (w ® O(_ Zm;D]>) =y, + m;‘ﬁz = (m; + ;.

J
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2.3. NON-TRIVIAL RELATIONS INVOLVING THE CLASS g,.

PROPOSITION 2.4. Define the boundary divisors ¢ and 6 by

5irr,m
U, A Vm

8=Z(m++l)(m_+l)0!k;,4+ Z m+Dr—m—1)~
kA

=1 <m<r-1

and 0= 4= Zg—l <m<rﬁ5irr,m + Zk,Aﬁock;A, where v, = ged(m+ 1,71),
.4 = ged(m™ + 1, 1), and m™ is determined bly k, A, and m via relation (4).
Then the following relation holds in Pic Hgf,;‘m.-

re=Q2r —12r+ 1) = 27w + (= DS+ Y mi(r — 2 — m)y,.

1<i<n

The proof of the Proposition is almost identical to its counterpart in [19, Theorem
4.3.3] except that &, is not an rth root of w, but rather of w(— Y m;p;). The only extra
information necessary to prove the proposition is the content of the following two
lemmas and the fact that the divisor we have called ¢ is the product < £.€>in [19].

LEMMA 2.5. Let n:Cy,, —> My, be the universal curve and
(,): PicCqp x PicCq,—>Pic Mg,

be Deligne’s bilinear product defined by
(L, M): =det(m (L ® M) — m L — ;M + 1,0).

If D is the image of a section 6: Mg, —>Cy p, then for any line bundle L on Cq, the
product (L, Oc(D)) is equal to the restriction of L to D; that is, it is just ¢*L.

This is proved in [4, Prop. 6.1.3], but it also follows from the fact that when the
base is a smooth curve B, then deg (£, M) is exactly the usual intersection number
(L.M). Since line bundles on M, , are completely determined by their degree on
smooth curves in ﬂg,n [2], and since in the case of a smooth, one-parameter base
the degrees agree, the lemma is true in general.

LEMMA 2.6. We have

. e
—0fw, = —y;, if i=j,

owy.omn =1 el

This follows immediately from Lemmas 2.3 and 2.5.
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COROLLARY 2.7. If g = 0 then classes 1, and Sm,m vanish (for all m), and

27, = (r—1)0 + Zmi(r —2—m); —re

=5 1=t + D+ Dot
Acn) H0:4

+ Z mi(r — 2 — mp)y,.

1<i<n

3. Cohomological Field Theory

In this section we begin with a review of the notion of a cohomological field theory
(CohFT) in the sense of Kontsevich and Manin [24]. This is an object which
formalizes the expected factorization properties of the theory of topological gravity
coupled to topological matter. The Gromov—Witten invariants associated to a
smooth, projective variety V correspond to the physical situation where the matter
sector arises from the topological sigma model [24, 32]. The analogous intersection
numbers associated to the moduli space of r-spin curves have their physical origins
in a different choice of the matter sector. Our goal in this section is to give a precise
formulation of these notions in terms of the moduli spaces described above.

3.1. AXIOMS OF CohFT

DEFINITION 3.1. A (complete) cohomological field theory (CohFT) of rank d
(denoted by (H, n, A) or just (H, n)) is a d-dimensional vector space H with a metric
n and a collection A:= {Ag,} of n-linear H*(M,,)-valued forms on H

Agn € H*(Mg,) ® H*®" = Hom(H®", H*(M.,)) (11)

defined for stable pairs (g, n) and satisfying the following axioms C1-C3 (where
{eo, ..., eq—1} 1s a fixed basis of H, #*" is the inverse of the matrix of the metric
n in this basis, and the summation convention has been used).

Cl1. The element A, is invariant under the action of the symmetric group S,.
C2. Let

Ptree: ﬂrlurz = MF] X ﬂ1"2 - ml—uee C_)ﬂgy’l (12)
be the gluing morphism (3) corresponding to the stable graph

1 Ij+1
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and the two graphs I'; and I'; obtained by cutting the edge of I'i... Then the
forms A, , satisfy the composition property

PreccNan(V1: V2 <o V)

, (13)
= Ak,j(yil P Vif’ eu)”]‘u ® Ag—k,n—j(ev, ’ylﬂl s an)
for all y; € H.
C3. Let
Ploop* mf = Mg—l,n-ﬂ — mFloop c_)mgs” (14)
be the gluing morphism (3) corresponding to the stable graph
(15)
and the graph I" obtained by cutting the loop of I'joop. Then
p;koop qun(yl s V25 e yn) = Agfl,n+2 (Vl, P25+ Vo €us 8\,) ’7”- (16)

The pair (H, ) is called the state space of the CohFT.

An element ¢y € H is called a flat identity of the CohFT if, in addition, the
following equations hold.

C4a. For all y; in H we have
Ag,n+1(y17 ces Vs 80) = n*Ag,l1(V1ﬂ s ')),,), (17)

where 7: M, 41 — M, , is the universal curve on My, and
C4b.

/_ AosCrt. 7o €0) = 171 7). (18)
Moz

A CohFT with flat identity is denoted by (H, 1, A, ep). A genus g CohFT on the state
space (H,n) is the collection of forms {A,,}, < ; that satisfy only those of the
Equations (13), (16), (17), and (18), where g < g.

Remarks 3.2. (1) In general, the state space H of CohFT is Z,-graded, but here, for
simplicity, we are assuming that H contains only even elements, since this is the only
case that will arise in this paper.

(2) The definition of a CohFT given above has an equivalent dual description
in terms of homology. Consider the maps H.(Mg,n) — T"H* given by
[c]— f[c] Ag . These maps are called the (n-point) correlators of the CohFT. A struc-
ture of a (complete) CohFT on (H, 1) is equivalent to the requirement that these
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correlators endow (H, 1) with the structure of an algebra over the modular operad
{H.(Mg,n)} in the sense of Getzler and Kapranov [14].

(3) Clearly, the definition of a cohomological field theory extends from C to more
general ground rings /.

Let I' be a stable graph, then there is a canonical composition map pr

e T M = Mr > My, 19)

ye V(I

where V(') denotes the set of vertices of I'. Since the map p- can be constructed from
gluing morphisms (12) and (14), the forms Ay, satisfy a restriction property

Pifen = pr'( Q) Agwnn) (20)
veV(T)
where pr': &,y T"" H* — T"H* contracts the factors T"H* by means of the
inverse of the metric # and successive application of Equations (13) and (16). There
is a parameter which can be introduced into the definition of a CohFT. This par-
ameter can be regarded as a coupling constant in the theory.

LEMMA 3.3. Let (H, 7, K eo) be a CohFT with flat identity e and let /. be a nonzero
parameter. If we define A = {Ag,}, where Ag,:= %72 Ay, and n:= 2727, then
(H,n, A, eo) is a CohFT with flat identity.

The proof is obvious.

DEFINITION 3.4. The small phase space potential function of the CohFT (H, 7, X)
is a formal series ® € C[[H]] given by

D(x):= Y Dy(x), 1)
g=0

where @ (x):= Y, & [ </A\'g,,, , X" > Here (- - -) denotes evaluation, the sum over

K : en . .
n is understood to be over the stable range, and x = ), x"e,, where {e¢, } is a basis
of H.

Remark 3.5. The small phase space potential function of the CohFT (H, n, A, ey)
associated to (H,7, K ep) as in Lemma 3.3 may be regarded as an element in
JTEC[IH, 22]).

All of the information of a genus zero CohFT is encoded in this potential.

THEOREM 3.6 ([24, 27]). An element ® in C[[H]] is the potential of a rank d, genus
zero CohFT (H,n) if and only if it contains only terms which are of cubic and higher
order in the coordinates x°, ..., x?' (corresponding to a basis {ey, ... e4_1} of
H) and it satisfies the associativity, or WDVV (Witten—Dijkgraaf-Verlinde*)
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equation 9,9,y n% 9r0:04P9 = 9p0.0.Dyg ne 970,04Po, where n is the inverse
matrix of the matrix of n in the basis {e,}, 0, is derivative with respect to x°, and
the summation convention has been used.

Conversely, a genus zero CohFT structure on (H,n) is uniquely determined by its
potential ®y, which must satisfy the WDV'V equation.

A genus zero CohFT with flat identity is essentially equivalent to endowing the
state space (H,n) with the structure of a formal Frobenius manifold [6, 16, 27].
The theorem follows from the work of Keel [22], who proved that H*(M,,,) is gen-
erated by boundary classes and that all relations between boundary divisors arise
from lifting the basic codimension one relation on Mo 4.

3.2. GROMOV-WITTEN INVARIANTS AND THEIR POTENTIALS

Our construction of CohFTs from the moduli space of stable r-spin curves is guided
by analogy with the moduli space of stable maps and Gromov-Witten invariants.
Let us briefly review this construction. Let V' be a smooth projective variety,
H = H*(V, C), and n the Poincare pairing. Let M, ,(V) be the moduli stack of
stable maps into V' of genus g with n marked points. The Gromov—Witten invariants
of V are multilinear maps H®" — C given by

(to(71) - To() ) = 27672 /7 vy U--Ueviy, (22)
[Mg (M

where [M,( V)]''" is the virtual fundamental class of the moduli stack M, (V) and A
is a formal parameter. The corresponding small phase space potential ®(x) is defined
by (21) where the genus g part is given by

D,(x) = Z /125’”2/ evixU---Uev X,

P M (V]

X =) ,x"e;and{ey, ...,e,}is a basis for H such that e, is the identity element. If
I is a convex variety, then My ,(¥) is a smooth stack and its virtual fundamental
class coincides with its topological fundamental class. In this situation, [11] shows
that (H, n) forms a genus zero CohFT with potential ®,. This result can be gener-
alized to higher genera and to more general varieties, as well.

Remark 3.7. In the usual definition of Gromov—Witten invariants, there is no
factor of 2272 in the definition of the correlators but this factor is inserted into
the potential function by hand. We have chosen our conventions so that this factor
appears instead in the correlator but is not explicitly inserted into the potential
function.
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The gravitational descendants are defined by twisting the Gromov—Witten classes
with the tautological y classes as follows:

(ta @1) - Ta (7)) = 4772 f_ ey Uyt U--- Uevpy, Uy (23)
[Mgn (VI
forallay, ... ,a, = 0,1,2,...and y,, ..., y, in H*(V). This gives rise to the large

phase space potential ®(t) € A72C[[t, 2*]] where t = (to,t;,...) and t, =
(% ..., "), which is defined by

D(t): =Y Dy(t) (24)
g

and

1
(Dg(t):: Z(Tal(em) Tan(eot,,)> R (31)

§ 4 @ pl
Setting % = Oforn > 1and x* = 1 reduces the large phase space potential ®(t) to
the small phase space potential ®(x).

When V' is a point, Kontsevich’s theorem gives that Z(t):= exp(®d(t)) is a
t-function of the KdV hierarchy. In addition, Kontsevich showed that Z(t) is a
highest weight vector for the Virasoro Lie algebra, a condition which allows one
to completely solve for these intersection numbers. The existence of a similar
Virasoro algebra action has been conjectured by Eguchi, Hori, and Xiong
[8] in the case where V" is not a point. Evidence for this conjecture is mounting [10,
15]. A very large phase space has recently been introduced in [21, 29] for the case
where V' is a point and for more general varieties in [9] by including variables
corresponding to the Hodge classes v; as well. These additional variables parametrize
an even larger family of CohFTs than just the large phase space coordinates [21]. We
will shortly introduce, in addition, variables associated to the r-spin structure
(see (52)).

3.3. r-SPIN CohFT

We perform an analogous construction of a very large phase space where the role of
the moduli space of stable maps Mg #(V) is played by the moduli space of stable
r-spin curves /\/1 Unhke the moduli space of general stable maps, the moduli space
of stable r-spin curves is a smooth stack. Intersection theory is therefore simpler in
this case than for the case of stable maps. However, the difficulty lies instead in
the construction of the analogs of the Gromov—Witten classes.

In the next section, we will introduce ax1oms Wthh a collection of cohomology
classes (called a virtual class) cl/ ’(m) in H ‘(./\/lg " ) must satisfy in order to insure
that the following result holds.
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THEOREM 3.8. Let (H",%) be a vector space of dimension r — 1 with a basis

{eo, ..., e._o } and metric 1 given by
~ ~ 1
niey, e):= Ny ' = » O gy r—2- (26)

Let c;{,:(m) be a virtual class in H'(M;,’/;’m) satisfying Axioms 1 through 5 from the

. 1/r, . .
next section, andletp /\/lg’/,’, " Mg be the map which forgets the r-spin structure.

Let A:= {Ag,} be defined by
ACD s em,) i = pu(cl/r(m) exp(s -+ u - v), 27

where these forms have values in the ring Cl[s, u]], then (H,7], G eo) is a CohFT
satisfying Axiom C4a. Furthermore, if

Agp:= Ag?;”, (28)

then (H,7, K eo) is a CohFT with flat identity. The latter will be called the r-spin
CohFT. Restricting the r-spin CohFT to genus zero shows that (H?, n) is endowed
with the structure of a Frobenius manifold.

This theorem is proved in Section 4.2.

COROLLARY 3.9. Let (H, 1, A, ey) be constructed from (H, 7, /~\, eo) above by setting

1
H(eu, ev) = nyv = W 5u+v,r727 (29)
ASD ey, vem)i= AE2AED e em,), (30)
and
Agni= Ai,‘”;?{ (31

then (H,n, A®Y, e) is a CohFT satisfying Axiom C4a and (H,n, A, ey) is a CohFT
with flat identity.
Proof. This is a direct consequence of Lemma 3.3 and the previous theorem. []

The classes ci,{,f(m) are analogs of the Gromov—Witten classes in this theory. The

analogs of the gravitational descendants (23) are given by

(Ta, (em]) ce Ta”(em,,) >g = iZg—Z/

—1/r.m
g.n

e (m), (32)

and the large phase space potential function is defined by Equations (24) and (25).
The small phase space potential function is defined by restricting (32) to correlators
with a; = 0. We will see that the case of . = 1/\/r corresponds to the generalized
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Witten conjecture. This corresponds to the metric

'/I(eml s emz) = 5m1+mz,r72 (33)
and the forms
Agn(emys - - em):= "5 p,c;/r(m). (34)

Remark 3.10. Strictly speaking, the state space of this r-spin CohFT (34) should
be, instead, (H",#), where H" is an r-dimensional vector space, with basis

{eo, ..., e—1} and a metric given by
i(ea. e4) = 1 ifa+b=(r—2) modr
M€a>€) =10 otherwise.

However, it follows from the axioms for ¢!/" in Section 4.1 that the obvious orthog-
onal decomposition HD = HD @ H', where H is the trivial one-dimensional
CohFT with basis {¢,_1 }, is a direct sum of CohFTs. For this reason, we can (and
will) restrict ourselves to the state space (H", 7).

4. Virtual Classes

To endow the pair (H", #) from Theorem 3.8 with the structure of a CohFT by
Equation (34), we must define cohomology classes c;,,/,’l' (m). We will call this collection
of classes an r-spin virtual class. It should satisfy the axioms described below.
Throughout this section, we will restrict ourselves to the case where the coupling con-
stant A is 1//r, unless otherwise stated. This is done purely for convenience as anal-
ogous results hold for general 4 as well.

4.1. AXIOMS FOR THE VIRTUAL CLASS

DEFINITION 4.1. An r-spin virtual class is an assignment of a cohomology class

e HPP(M", 0) (35)
to every genus g, stable, decorated graph I with n-tails. Here, if the tails of I" are
marked with the n-tuple m = (my, ..., m,), then the dimension D is

1 n
D:;((r—Z)(g—oc)+;mi>, (36)

and o is the number of connected components of I'. In the special case where I has
one vertex and no edges, we denote clr/ " by c;{,;(m). These classes must satisfy
the axioms below.

Axiom la (Connected Graphs): Let I" be a connected, genus g, stable, decorated
graph with n tails. Let E(I") denote the set of edges of I'. For each edge e of T, let

https://doi.org/10.1023/A:1017528003622 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017528003622

186 TYLER J. JARVIS ET AL.

l,:= ged(m} + 1, r), where m} is an integer decorating a half-edge of e. The

classes clr/ " and c;{,:(m) are related by
r r r 1/r
of = ( [ ,—) cy/n(m) € H2P(M;, (37
ecE() ¢

where 7: Mll—/r %M;/,’,m is the canonical inclusion map.
Axiom 1b (Disconnected Graphs): Let F be a stable, decorated graph which is the

disjoint union of connected graphs I'“, then the classes cl/ "and cll_ff,) are related
by

——1/r

1 1 .
o = ® CF{L) € H* (M ).
d

Axiom 2 (Convexity): Consider the un1versa1 r-spin structure ({4}, {cqs.4}) on
the universal curve n C;/ rm_ M . For each irreducible (and connected)
component of M (denoted here by Ml/rm(d) for some index d), if
. =0 on Ml/'m(d) then cl/’(m) restricted to Ml/rm(d) is cp(—R'1.E,),
the top Chern class of the bundle with fiber H' (X 8) at [(X,p1s---sPns
({€a}, {caa D] € Mgn

Axiom 3 (Cutting edges): Given any genus g decorated stable graph I with # tails
marked with m, we have a diagram

M xgg, My™ He M e M
Q’\,
M p P P (38)
%
Hf a J_M_F c ’ —Mg,n-

where /\/l is the stack of stable curves with graph I, the graph obtained by cuttmg
all edges of I, and M " is the stack of stable r- spin curves with graph r (still
marked with m* on each half edge). p; is the following morphism: The fiber
product consists of trlples of an r-spin curve (X/T, {4, ca.a}), a stable curve
X /T, and a morphism v: X — X, makmg X into the normalization of X. Also,
the dual graphs of X and X are I' and I, respectively. The associated r-spin curve
in Mr is simply (X /T, v:{Eq, ca.a}) We require that p1.fi*cy’ lr — r‘E(r”c]/ where
E(T) is the set of edges of I' that are cut in I.

Axiom 4 (Vanishing): If I contains a tail marked with m; = r — 1, then cll-/' =0.

https://doi.org/10.1023/A:1017528003622 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017528003622

MODULI SPACES OF HIGHER SPIN CURVES 187

Axiom 5 (Forgetting tails): Let T be a stable graph whose ith tail is marked by
m; = 0 I' be the stable graph obtained by removing the ith tail, and

2 ./\/l /\/lF be the forgetful morphism. The classes cﬂ’ and m*c 1/ " are
related by cl/’ =)l
Remarks 4.2.

(1) Thefactorof [, (r/l,) in Axiom 1 arises from the fact that the right hand square in
Equation (38) is not quite Cartesian. Rather, because of ramification of p over
M, we have that for any cohomology class ¢ on ./\/lg/n,

pec = (ﬂ zr) pie (39)

(2) Notice that in Axiom 3, unlike the case of a tree, if I' contains a loop and if the
r-spin structure is Ramond at the corresponding node, the dimensions Dr
and Dy of the virtual classes cl/ " and cl/ " are different. Thus Axiom 3 actually

requires the vanishing of both py. i cl/ " and cll_/ " in this case. Of course, for

the Ramond case, Axiom 4 already requires the vanishing of clf/ ", since the cut
half-edges are both marked with r — 1. Thus for any graph (tree or otherwise),
in the Ramond case Axiom 3 amounts essentially to the requirement that
pl*ﬁ*cll-/ " vanish.

(3) Although the vanishing of H® or m, is often called concavity, the Serre dual
Hom(E,, ), corresponding to Witten’s sheaf V in [34], is convex (H' vanishes)
exactly when &, is concave. Moreover, ) = m&,. Therefore, we use the term
convex to describe the case when n,.&, = 0.

(4) One might think that the class cp(mE,) would be a good candidate for a virtual
class, since it coincides with c!/" in the convex case. However, this is not the case
(see Section 4.4).

(5) Witten has described [34, Section 1.3] an analytic construction of a class that he
calls the ‘top Chern class,” but it is not clear that this class satisfies the above
axioms. Witten’s index-like construction is reminiscent of the analytic con-
struction of a virtual fundamental class of the moduli space of stable maps
in the theory of Gromov—Witten invariants. Ideally, one should be able to con-
struct ¢'/" by methods similar to those used in algebraic constructions of the
fundamental class.

(6) Although, as explalned in Remark 1.9, the restriction 0 < m; < r does not change
the moduli space M » it does give a different choice of ¢!/”. Indeed, replacing m;
by m; +r changes the dimension of ¢!/" by 1 and corresponds (up to a
multiplicative constant) to the ﬁrst descendant of the classes associated to m;.
Thus on a given moduli space ./\/l there are potentially several (but still only
finitely many, for dimensional reasons) choices of ¢!/” and the corresponding
CohFT. However, without the restriction 0 < m; < r, the corresponding metric
1 is not necessarily invertible, and several other unusual considerations also arise.
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These issues will be treated in a forthcoming paper [20]. In the remainder of this
paper, we will assume that 0 < m; < r except where explicitly stated.

4.2. VERIFICATION OF THE CohFT AXIOMS FOR (K", )

In this section we give a proof of Theorem 3.8, first for the case wheres = u = 0,
and then in general.

4.2.1. The Cases =u =0

Let c,/; be a cohomology class on /\/l . satisfying the axioms of Section 4.1. We will

show that the collection of classes {Agn} given by (40) satisfies the CohFT axioms

C1-C4 with state space (K", 7). Axiom C1 clearly holds by the definition of {Agn}.
Let p = p,., be the gluing morphism (12). Condition (13) of Axiom C2 is equiv-

alent to

P pacy n(m)r! ¢
r—2

_ 1/r _
= Z r! kp*ck{j+1(mil, Cmy, a)@ri=Ehp, ;/rkn bimy m;
a,b=0
(40)
forall 0 <m; <r—1and m = (my,...,m,). Consider the decorated stable graph
m .
I m+ m— mlj+1
m k g-k

m;.
Il I]+1
: )—m+ m‘<

Ij rnin

. ——1/r
Since the spaces Mr{' are non-empty for 0 < m* < r — 1 only when m* are deter-

mined by the conditions (4) and (5), the sum in the right-hand side of
Equation (40) has only one non-vanishing term. By the definition of the metric
n (33), Axiom C2 reduces to the following:

l/r 1-k 1/r 1—(g—k) : + _
X cr R cilr , ifosm - <r-2
P pacypmyr! ¢ = (7P h ) . (41)
0 if m™=r—1,
with m~ =r —2 —m™. In other words, we must show that

1 1 1/r
P pectlim) = r(poctl’ @ pactl) = 1+ paulel), (42)
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where we have the diagram

i - —-—1/r 1 —1
M xzz, My™ X My M

gn

&

ﬂf‘ X MF i Mg,m

and the map p is i o y. However, if we let [ be ged(m™ + 1, r), then

prpecyr(m) = y*i*pocy) = 7' p.d*(r/Deyy

(by the def. of ¢f/") = y*puci!” = pui*e”” = preprierl”
(by Axiom 3) = (pa.c")r.

This gives (40); therefore, Axiom C2 is verified. The statement (16) of Axiom C3 is
equivalent by (34) and (33) to

r=2
1 _
P pacyn(m) = r Z D+ cg/fl’nﬂ(ml,...,mn,mﬂm ), (43)

mt=0

where p = py,, is the gluing morphism (14) and

(44)

m =

_ {r—2—m+, if0o<mt <r-2,

r—1, ifmt=r—1.

Let

(45)

be decorated stable graphs. Let I and I' = I'oop be the corresponding underlying
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(undecorated) graphs, respectively. We have the commuting diagram

I__l Fp'm+ _X» I_l H;/:,ﬁ —2—’ M I

(r—2)/2<mt<r (r—2)/2<m*<r
A
] ™ P p p

(r—2)/2<mt<r

N

where Fr+:= ﬂf X, MIF{Zﬁ. Therefore, if , is defined to be gcd(m™ + 1, r), then

—MI" X MF i Mg,n-

P e = 1"Pa Z(z Cen)/le = 1"Pe Y _ il

mt
C Cl/r —7. Cl/r
=p." r m+ = poupisd Tt = 1" D2x Fot
mt mt

This proves axiom C3. To prove Axiom C4a, consider the Cartesian square

——1/r(m1ymn0) T o—1/rm
Mg,n+1 'Mgv"

p p

J— us

Myt ——— M.

By (11) and Axiom 5 (forgetting tails) we have the required Equation (17)

1 l—g =% 1/r
T Agn(Cmys -y em) =1 En* p, g/,:(m) =r gp*n*cg,/,’l(m)
1/r
PE Sy m 0) = Ag it (€ e, €0).

Finally, a direct calculation yields Axiom 4b (see Proposition 6.1).

4.2.2. The General Case

The proofs of Axioms C1 and C4a remain the same. We only need to prove Axioms
C2 and C3. Before doing so, we will need a lemma on regular imbeddings and base
change.
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LEMMA 4.3. Let i be a regular imbedding, and let

Y’ X'
i
i T
y —* . x

be a Cartesian square with m and =’ proper and flat, and £ a coherent sheaf on X', flat
over X. If X and Y both carry an ample invertible sheaf, then the Chern character
commutes with base change, that is i*chm& = chnji*E.

Proof. First, we claim that because i is a regular imbedding it has finite Tor
dimension; that is, there is an integer N such that for every coherent Oy-module
F, the Oy-modules 7 OV]QX(Oy, F) vanish for j > N. This can be seen as follows.
We may assume that X is Spec4 and Y is SpecA/(x) for some regular element x
in a ring A. This gives the free resolution 0 — 4 = A—A4/(x) —0 of Oy,
and shows i has finite Tor dimension.

Since 7 is flat, the sheaves Oy and Oy are Tor independent over X; that is,

Tor{*(Oy, Oy) = 0 for all j > 0.

Let Li* and Li* be the left derived functors of i* and /*, respectively. Proposition
5.13 of [33] states that if i has finite Tor dimension, and if Oy and Oy are
Tor-independent over X, then Li*m = n,L;

However, smce £ is flat over X, we have Li*&:= Z o= l)’TorX(é' Oy) =
E®o, Oy =1 *E;; and since Li* commutes with the Chern character, the lemma
holds. O

Now we prove that Axioms C2 and C3 hold.
First consider the Cartesian square

Cr

™ ™

—1/r

Ml/r . Mgn,
7
where 7 is the universal curve. Let &, be the rth root from the universal r-spin struc-
ture on C. The morphism 7 is projective, and M carrles an ample invertible line
bundle [17, 3.1.1], so Lemma 4.3 gives ch; (mz*S) = ch;(*m&,). Note that *E, is

the rth root from the universal r-spin structure Cr.
Let F be the fiber product

Fi=M; xy My (46)
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We have
Cr Cr
0
Cr Cr
J
M_lf/r Y41 F Ml/r

where Cr. is defined to be the universal curve over HV’ and C rand Cr are the fibered
products Fx—uy Cp and F X b Cr, respectively. The morphism 0 is just normali-
zation, and in fact, 1f Cr — Cr is the normalization of Cr, then we have the following
fibered diagram (all rectangles are Cartesian).*

Cr - Cr ~ Cr
Y41 X
T 0 Or
C F CF
T T

H%‘/T P F X Ml/r

Moreover, if Er, ér, 51-, & CF, and £ r are the r-th roots of the universal r-spin struc-
tures on Cl_, Cr,Cr,Cr,and CF, respectively, we have £p = pi&p. Also, since 0 is finite,
(o 0), SF = m&r. Since j is flat, we have ¥ mé’r =my*ér = mé'p = (mo0), EF Also,
smce p1 is flat p mEr = (no 0)pi€;s = (m o), 5p Furthermore, pfm = (7o 0),p7}.
Ifi: Mpr — /\/l is the inclusion map, then the above implies that

7 Tchi(m €) = 7* chi(m Er) = chi(m 7 Er) =
chi((m o 0), pi E) = chi(pi m &) = pi chi(m ).
The previous equation, the fact that v; on M:/ ;’m is the lift of v; on ﬂg,n, and the

projection formula yield the desired result.
This finishes the proof of Theorem 3.8.

(47)

*Elsewhere in the paper the maps y and 0 were called i and v, respectively, but we have
renamed them here in order to avoid confusion with the cohomology classes y; and v;.
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4.3. THE GENUS-ZERO CASE

As we explained in Remark 4.2.3, we call the r-spin structure ({£4}, {c4.+}) on the
universal curve Clr/ " convex if m,.&, is identically zero. This occurs, for example, when
g =0, as is shown in the following proposition.

PROPOSITION 4.4. Let X be a prestable curve of genus zero with n punctures and
markings (my, . .., my,), such that —1 < m; <r— 1 forall i and m; = 0 for all i except
at most one. Then, if (€, b) is an r-th root of wy(— Y. m;p;), we have H*(X, &) = 0.

Proof. The degree of £ is an integer and is equal to —(2+ ) m;)/r. Thus
> m; =2r—2, and the degree of & is strictly negative. Therefore, when X is
irreducible, £ has no global sections. When X is not irreducible, but £ is locally
free (Ramond) at each node, the same argument holds. If £ is Neveu-Schwarz
at some nodes, then normalization v: X —> X at the nodes of X where & is not locally
free gives € = v,F, where F is locally free on X. Restricting F to X we obtain an r-th
root of wy(— )" m;p;), where the points p; are either marked points or inverse images
of nodes, and thus the collection 7; still meets the hypotheses of the proposition, but
now F is locally free on each component, and hence has no global sections. Since v is
finite, H(X, £) = H(X, F) = 0. O

The previous proposition shows that if a class ¢!/" on ﬂé/ ,'1 satisfying Axioms 1-5
exists, then by Axiom 2 it must be the top Chern class of the bundle with fiber
H' (X, &) at [(X,p1,....pw ({Ea}s {caaD)] eﬂ(l),/,:. In this case, it does indeed
satisfy the required properties.

THEOREM 4.5. Define cohomology classes on ﬂ(l)/,: by
einm) = ep(mEy) = (1) ep(R'm.E)), (48)

where

1 n
D=-[2- ;

and &, is the rth root sheaf of the universal r-spin structure. Then the collection of
classes clr/" defined by (37) for decorated stable graphs of genus zero satisfies
Axioms 1-5.

Proof. 1t is clear from the construction of the classes clr/ " that they satisfy Axiom 2
(convexity).

Axiom 1 follows from the fact that since &, r = &, @ &1, the top-dimensional
Chern class ¢pry = ¢19p of mE, 1, is simply the product of the top-dimensional classes
of m&, r, and mé&, r,.

Now we will show that Axiom 3 holds. If &, is the r-th root from the universal

. -1 . . .
r-spin structure on C;,,/,: - M g’/,: , then since g = 0, &, is convex. Repeating the argu-
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ment in the proof of Axiom 3 in Section 4.2.2 with the Chern character replaced by
the top Chern class yields

Cll‘/r — (,,.|E|/ 1_[ Ze) CD(—RITE*Er)a

ecE

where E denotes the edge set of I'. Also, we can compute the degree of p;: F —> ﬂlf/r

from the diagram

F—X . mr
Q’\-
mlf/r p pr
)
M; Mr.

The morphism Mf- — M has degree 1, since I is a tree, and therefore 7 also has
degree 1. The morphism pr has degree [], /"), as can be seen from the fact
that the coarse moduli space map induced by pr has degree 1, and there are
rVOUT], I, automorphisms of a generic r-spin structure. Thus the map p also
has degree [],Lr "D, the map p, has degree r 1"l so p; has degree exactly
[1.%. Now we can compute p1,7*c;/” using Equation (47) (replacing ch; with ¢p)
to obtain

P/ [T 7 en(—R'm.&r) = (/[ [ Loprecn(pi(—R'm.Er)

= ("] Tlpipien(-Rn.ép) = rFlep(—R'm,&p) = ¥le!!
e

as desired. All that remains to check is Axiom 4 (vanishing). Let p be a point cor-
responding to a tail marked by m = r — 1. Taking the tensor product of &, with
the exact sequence 0— O—> O(p) — O(p)|, — 0 gives the exact sequence
0—& — & —E&|,— 0, where £ =&, ® O(p). Thus £ corresponds to a root
with p; marked by m' = —Nl. Since Rln*(8'|p) =0, and since the residue
isomorphism (1) R,: 7.(E'|,) — O shows that m,(£],) is a trivial bundle, we have
m(£") = O + m(€,). By Proposition 4.4 the sheaves £, and £ are both convex; thus
m& = —R'n,E, and ;& = —R'n,E are both locally free and have the same Chern
classes in all dimensions. However, the vector bundle m& has dimension
D' =D —1, and so ¢/" = ¢p(mé&,) = 0. This gives Axiom 4. O

https://doi.org/10.1023/A:1017528003622 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017528003622

MODULI SPACES OF HIGHER SPIN CURVES 195

4.4. THE CASE M,°

In this section we will calculate the virtual class on m:/; * from the axioms. Let
be the decorated graph as in (45) with the underlying graph I' = I';,,, with one tail,
one node of genus zero, and one loop whose one half-edge is marked with m*
and the other w1th m~ given by (44).

The stack Ml 1'0 is a disjoint union [ [, M}/f @ , where the component indexed
by d has a generic geometric point corresponding to a smooth r-spin curve
(X, &, ¢r1) With E?d isomorphic to Oy. That is, &, is a d-torsion point of the Jacobian
of X. Since &, has global sections if and only if d = 1, the case of d > 1 is convex.

Since the dimension (36) of the virtual class c}/ 1" is 0, we have that cl/ r0.) _
for d > 1. Moreover, consider the graph I',_;. By Axiom 3, py.ji*cr, , = e where

l:,,,l is I',_; with the loop cut. Since both the half-edges of the cut loop will t’{é labeled
by r — 1, by Axiom 4 the corresponding class must vanish. Therefore, the (Ramond)
case of I',_; with a trivial gluing (i.e., & = Oy) yields

M =i = 1, (49)

since all the remaining Ramond components have i*¢ 1/ r0) — 11, and thereare r — 1

of them. Since D = 0, this means cl/r *M s also equal to —(r—1). Notice that this
differs from the top Chern class of the bundle cp(m &) = co(m&, )

Now, the map p: /\/l *M M| has degree 1/r, and p©: M = My
has degree d*/r [[(1—1 /p2). The latter is 1/r times the number of pomts of order
precisely d on the Jacobian of the

pecy{ =1/rY T ] =1/p) = (r=D/r

d>1 pld

10(4)

21 -1
_r T B

r r

Therefore,

(100 / et = [ it == [
1,1

Mi
and we conclude that

r—1

24 0

(t1001 =

Equation (50) is consistent with the prediction from CohFT stated in Equation (61).

4.5. THE CASE r =2

In this section we will show that in the case of theta-characteristics (i.e. when r = 2)
there exists a unique virtual class c'/? satisfying the axioms of Section 4.1.
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THEOREM 4.6. The collection of cohomology classes c!/>(m) e H'(M )satisﬁes

gn

Axioms 1-5 of Section4.1i 2fcma’ onlyifc 1/z(m) = 0form # 0, and form = 0 the class
ci/2(0) belongs to HO(M *) and is given by

——1/2,0,even

1 on M
9 _g,n ’ (51)
_1’ on M1/2,0,odd

g.n

c2(0) =

Proof. Let us show first that the conditions of the theorem are necessary. I[f m # 0,
then by Axiom 4, cl/ 2(m) must vanish; therefore, we can assume that m = 0. In this

case the dlmensmn D (given in Equation (42)) of tllle2 glass 01/12 is e%%ald (;[0 Zero,
and since /\/l % has two connected components (M, /20N and M Y it will

a.n
be 1sgfﬁcwrllt2 (t)o find cl/ 2 for two %raphs Ty and Fl, such that the intersections
My / /\/lg/,, " and /\/lF ﬂ/\/lg N are non-empty.

Let Iy be the graph with one genus-zero vertex, # tails, and g Neveu—SChwarz (1 e.,
all half-edges are decorated with zeroes) loops. In this case, M ==

Mr X, /\/lr in (38), so by Axiom 3 (cutting edges) the class clr/ pulls back

to clf:/ 2 where 1:() is the graph with one vertex of genus zero and n + 2g tails. Since
the %enus is zero, the universal square root £ of w on the universal curve over
Mo 2 18 convex by Proposition 4.4. Therefore, if E is the set of edges of Iy,

we have

N0) = 2 PON0) = ol = o R'm8) = 1,
where the first equality follows from Axiom 1, the second from Axiom 3, and the
third from Axiom 2. To find ¢!/>°% consider the graph I'; with a single vertex
of genus one, n tails and g — 1 Neveu-Schwarz loops. Axiom 3 again shows that
1/ % pulls back to C~ , where T'; has a single vertex of genus one and 2g — 2 +n
ta1ls Since m = 0, Axiom 5 (forgetting tails) shows that ¢!/>°4d is a pullback from
MUZOOdd = 1/2 @ and ¢ 1/2(1) —1 by Equation (49).
, y Eq

Now let us show that the classes ci,{,f(m) defined above for r = 2 indeed satisfy
Axioms 1-5.

Axiom 2 (convexity) holds when m = 0, since in this case the class has dimension 0,
and if £ is convex (and, therefore, even) R!'n,£ =0 and ¢!/ = = Glop = 1 as required.

If m # 0 then £ is not convex on the universal curve over M VR for any g > 0. In
particular, consider the degenerate curve of genus g which has two irreducible com-
ponents E and C joined at a single node, the component E of genus zero, containing
all n marked points, and the component C of genus g. For degree reasons the node
must be Neveu-Schwarz, and so & corresponds to £ @ E¢, for £ a square root
of typemof wg = Op(—2 — > m;), and for £¢ a theta-characteristic on C. In general,
Ec has non-zero global sections. Thus £ also has non-zero global sections, and the
universal square root is not convex.

When g = 0 and m # 0, the sheaf £ is convex by Proposition 4.4. By Theorem 4.5
(and Axiom 4) the class ¢p(—R!m,.£) vanishes, and so agrees with our definition
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of c;{,f(m). Axiom 1 holds because of the simple observation that the parity of a root £
over a curve with the graph I'; LI T, is equal to the sum modulo 2 of the parities of the
restrictions of £ to the components corresponding to I'; and I'.

To prove Axiom 3, we may assume thatm = 0, and it is sufficient to check the case
that I' has only one edge. We have by definition c]/z e — 2 and />0 = 2 for F a
tree. Let F be defined as in Equation (46). The canonical morphlsm piiF— J\/l
actually an isomorphism if I' is a tree, and so we get py.ji*cf’ 2_-9. cl/2 since the
parity of & does not change when restricting to the normalization. In the case
of a loop, there are two subcases. First when m™ = 1, F is isomorphic to two copies
of p1(F) C Mr/2 (because of the two choices of gluing data — see Section 1.7.2). In the
second case m*t = 0, and F is isomorphic to ./\/ll/2 so p; has degree 1. Also, cl/2 is
20 c/m if m* =0, and l*c'/2 if m* = 1. Thus, when mt =0, pjite? = 2c1/2 as
des1red

When m* = 1, the two choices of gluing give different parities. Since parity is
deformation invariant, this can be seen by degenerating to the special case of
the curve X, whose partial normalization X at one node ¢ consists of two irreducible
components joined at a single node ¢g. One component C is of genus g — 1 and con-
tains the marked points py, ..., p,. The other component E is of genus zero and
contains marked points ¢ and ¢~. Degree reasons force the node to be
Neveu-Schwarz, and so £ is simply a direct sum £c @ £5. Moreover, since E 7 1is
a square root of w; = Op(=2) of type (0, —1, —1), £ must be trivial (£; = Oy,).
Gluing £ via +1 and —1 yields the trivial bundle O = £} and another non-trivial
bundle &, of degree zero, respectively. Consequently, h°(E") = h'(Ec @ O) =
1+ h%(Ec @ ). Since the parities of £ and £~ are simply the parities of h°(E™)
and h°(E7), respectively, £7 and £~ have different parities. The different parities
under the two gluings give pl*,&*cl/ 2=0= cll_/ 2 since T has a tail marked with
+1 = m™. This completes the proof of Axiom 3.

2,0m1,enes 1,0 —
Axiom 5 is true because the projection Mg/n Jr(:nl 0 M

n
parity of components. Axiom 4 follows from the definition of thge classes ¢

This theorem together with Theorem 3.8 implies that in the r = 2 case we obtain a
well-defined complete CohFT of rank one. It turns out to be the same as the
Witten—Kontsevich rank-one CohFT of the pure topological gravity. Namely,

we have the following result (cf. also [34]).

1/2,
[2m respects the

12

COROLLARY 4.7. The class Agn(m,, - -, em,) € H*(My,) of the 2-spin CohFT
given by (34) is equal to 1 if m; =my = ... =m, =0 and 0 otherwise.

Proof. We only need to check the case m; = my = ... = m,, = 0. Since the class has
dimension 0, Equation (34) gives

Agnleo, ... e0) =2 %pc,/2(0) =2"78(2571 (25 + 1) = 267125 — 1)) /2 =

where 2¢71(2¢ £ 1) are the numbers of even/odd theta characteristics on a smooth
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curve of genus g and the last 2f%ctor of 1/2 is the local (orbifold) degree of the map p
near a generic point of Mgﬁ’ . O

In Section 7.2 we will see that this corollary together with Kontsevich’s theorem
gives the generalized Witten conjecture for r = 2.

5. Intersection Numbers and Recursion Relations

In this section, we use relations between boundary classes and tautological classes in
order to derive recursion relations between intersection numbers on the moduli space
of stable r-spin curves. Throughout this section, we assume the existence of a virtual
class ¢!/ satisfying Axioms 1-5 of Section 4.1. This class was shown in Section 4 to
exist in genus zero for arbitrary r, and in arbitrary genus for r=2. Let
(H(’), n, A, eg) be the r-spin CohFT with the standard basis {ey ..., e,_»} described
in Corollary 3.9.

We will find it convenient to introduce the notion of a very large phase space
potential in this section. For all v, ..., v, in H", define

(g, (v1) -+~ Ta,,("n)))g:: (ta,(n1) -+ Ta,(vn) eXp(t-T+s-p+u-v) >g’
where
t-7T= Z Tam by

0o<m<r-2
a>=0

and t,,, = t4(em). Here

u-v = E Ui vi, Sluz § siluh

i>1 i>1

where the classes v; and y; are defined by (8) and (9) as components of the Chern
characters of the Hodge bundle and its r-spin analog. These expressions should

be understood as formal power series in variables 7, u;, v;. The correlators are
defined by

(Tay(em) -+~ Ta, (emm)) gt = 2772 J— { ey m) exp(s - p+u - ),
g.n
where m = (my, ..., m,). In particular, the very large phase space potential is
o8
Ot,s,u) = ) Dylt,s,u), (52)
g=0

where @g(t, s,u) = ({ )),. The other two potentials are restrictions of ®(t, s, u). The
large phase space potential ®(t) = ®(t, 0, 0) corresponds to setting all the s and u
variables to zero. The small phase space potential is ®(x): = ®(x’, ..., x"2), where
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x':= t and all other variables are set to zero. The function ®(x) is the small phase
space potential of the r-spin CohFT. It will also be useful to define

Z(t,s,u): = exp(D(t, s, u)). (53)

5.1. THE EULER VECTOR FIELD

We begin with a differential equation arising from the grading. The dimensions of
the moduli spaces and cohomology classes induce a grading on the potential
function.

DEFINITION 5.1. The Euler vector field E is the differential operator

m . 9 9 3
E= ( —1 f)zm - Qa— D, -2 ).
Z a + r/ ¢ azgl+a>1<as asa+( @ = Du Bua)

az=0
0<m<r=2

PROPOSITION 5.2. The very large phase space potential ®(t,u,s) satisfies the
grading equation

ED® = <1+l)ii(l). (54)
r) 94

Proof. This follows from the definition of the potential, the dimensions of the

cohomology classes, and the dimensions of the moduli spaces M;/,:“‘ It encodes

the fact that intersection numbers between cohomology classes vanish if the classes

do not have proper the dimension. O

This equation encodes the fact that the potential function is invariant under the
rescaling 77 i— e~ 17y, 1= 27y, 5,1 ¢ sg, and Li— g

Remark 5.3. This grading shows that our small phase space potential function
cannot arise as the small phase space potential associated to the Gromov—Witten
invariants of a smooth, projective variety. This is because the elements in 4" have
fractional dimension with respect to this Euler vector field, whereas cohomology
classes of a space always have integral dimension.

5.2. THE STRING EQUATION AND ITS COUSINS

We begin by proving the analog of the string equation, the dilaton equation, and a
new equation arising from our identity on the g, class.
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THEOREM 5.4. Let (g, n) be a pair of nonnegative integers such that2g —2 +n > 0.
The following identities are satisfied.:

(70,0 T0.m; To.my €XP(S * £+ W - V) ) = Ny, (55)
and
<TO,OTa1,m1 et Ta”,m” exp(s . +u- v))g
n
= Z(Tal,m] o Tai=1mg * " Taymy, CXP(S “H +u- v)>gv
i=1

where we assume that the terms in the sum containing t,, with a < 0 vanish.
These two equations are equivalent to the string (or puncture) equation

L7 =0, (56)
where
0 1 my m m 0
Lor= _@_{_ Z ZﬂmlmztollOz + Z t“*lﬁl
0 0<my,m <r-2 O0<m<r-2 a
a=0

Similarly, the following identities are satisfied:

r—1
(tioexp(s-ut+u-v) ) = (57)
24
and
<T0,0Tal,m1 © o Tay,my exp(s “ptu- v))g
= (2g -2+ n)<‘ca1,m1 © Taymy, exp(s “ptu- v))g’
These two equations are equivalent to the dilaton equation
DZ =0, (38)
where
0 a a r—1
D=—— — 4+ 1= . 59
8t?+ Z “8t2“+ BAJF 24 (39)

0o<m<r=2
a=0

Finally, if Ly denotes the differential operator

1\ 9 m+1 0 rr—1

Lo=—|1+-)— ] 4

o=-( 4 )art, (o g
a=0

3 3
+) ((2a - 1)uau—u+ aga)

a>1
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then the following equation holds:
LoZ = 0. (60)

Furthermore, [Lo, L_1] = L_1. When restricted to the large phase space
(u=s =0), the operators Ly and L_; become the usual generators Ly and L,
in the Virasoro Lie algebra.

Proof. Recall that on the moduli space of stable curves, ﬂg,,,, the y; classes (where
i =1,...,n) satisfy the equation ; = n*y; + D; 11, where D; 4 is the image of
the i-th canonlcal section and n: Mg 11 — M,,. Let p be the forgetful morphism
M;,/rm — M, then since the class y; on /\/ll "™ is the pullback via p of the
Y; class on M,,, one can lift the same formula to /\/l "M to obtam
V; = TY; + Din+1, where this equation is now regarded as belng on M ,
D; 41 is the pullback via p of the divisors with the same name on /\/lg,,, and 7T
is the forgetful morphism /\/lg :l J:nluo — ﬂ;{;’m Suppose that (g,n+1) #
(0, 3), (1, 1). Using the lifting formula and canceling trivial terms, we obtain

Ui = A+ Dy ).

Since 7*c'/" = /", we have

<TO,0T01,m1 ce Ta,,,m,,)g

L I R
——l.r.m
M

g.n+1

2 : 2g—2 a ai—1 ap 1/r
- 4 ) /_l-hm Di-”""]lpll e lpi, e nnc / ’

1 < i <n g.n+1

where the right hand side is underostood ‘[0l vanish if an exponent is negative. Inte-
gration over the fiber of Mg ,', :llu SNV M yields the desired result. Inclusion

\n
of the additional i and v classes into the cogrrelators does not change the argument,
since 7* y; = u;, and similarly for v;.

Finally, the excepuonal cases follow from dimensional considerations and the fact
that on MO ;. /" is the identity element in cohomology provided that
my + my + m3 = r — 2. The dilaton equation is proved by a similar analysis, where
the exceptlonal case can be computed by using the explicit presentation for i, on

/\/ll 1’ to obtain

_r—l
24

mym_ <

1
(T1,001 =541 70,070,m, T0,m_)0 (61)

Finally, the equation £y Z = 0 is obtained by combining the dilaton equation and
the grading Equation (54). O

The new relation for the y; class yields new equations between correlators.
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THEOREM 5.5. Let ¢: H" — H" be defined by

m_ ., __ myme_ (5
fer c = %) my +m_,r—=2»

relative to the standard basis, and let £™"- : = p"+" £, "= The following differential
equation holds:

od 12— 6r+ 600 U om0
s AP B L
az=0 a+1

_ Z 1 9@ m+,m o0 Z 82(1) éin+,m,
2 Btm+ 81’"’ 4 31‘81* 1y~ ’

my m_

where the summation over my. and m_ runs over 0, ..., r — 2. This is equivalent to the
following relations between the correlators:

<<Tal,ml U I'a,,,nu,,ul»g,r

2
_rf—6r+6
- ((Ta] m "t Ta",m,(vl»g +

+ E ém, Tal m; T Ta,--‘rl,m;. T I-a,,,m,,>>g_

1<i< n
m;
mo,m_
- E l_[ Taim; | T0,my & T0,m_ 1_[ Taj,m; -
Lrul,:[n] iel, jel_
gi+g-=¢ &+ 8-
my,m_
§ : m—,m_
- n ((Tal,m] o Tan,nl,,TO,m_,_TO,m_))g—lé 5
my,m_
where we use the notation [n] = {1,2,...,n}.
. . . N . . ——1/rm
The class vi which appears above is precisely 1. This class vanishes on M, " for

g=0.

Proof. The proof follows from the facts that p,(c'/" exp(su)) forms a CohFT, and
that v and  are lifts of the analogous classes on the moduli space of stable curves,
and from Proposition 2.4, ]

5.3. TOPOLOGICAL RECURSION RELATIONS

Topological recursion relations are relations between correlators which arise from
presentations of tautological classes in terms of boundary classes.
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THEOREM 5.6. The following topological recursion relations hold in genus zero:

<<Ta1+l,m1Taz,mzfa3.ln3))0 = Z ((Tal,mITO,n1+>>077m+m_((TO,m,Taz,mgTag,m;>>0’
my,m_

which is equivalent to the differential equation

Py 3 PO . P

1 mg - miy o Jm M_ o Ny o M3 *
8t’a” ' 10ta; tay i arg,' oty oty dtay dtg,

-1 . .
Proof. On M, /r , the class i, can be written in terms of boundary classes as

bi= Y. o
Lul_=[n
n—1,nely

lel_

This equation is obtained from lifting the analogous relation on M ,. The classes ;
can be written similarly by applying an element of the permutation group S,. The
recursion relation follows from this presentation and the restriction properties of
the ; to the boundary strata. ]

THEOREM 5.7. The following topological recursion relation holds in genus one:

<<Ta1 +1,m; M ((Tal 1 T0,my TO,m_ >>0’1m+m, +

24
+ Z ((Tal,171170,m+>)0’7m+m_<<TO,m,>)1-

m—,m_

This is equivalent to

P, = L & e 4 Z 82(D0 R 00,
arm, 24 dtg,' oty azg”* o1y, oty oty
aj my,m_ my,m_

The topological recursion relation for vi = A1 from [21]

((v1)) Z " ((To.m, Tom_ o

m+ m_

can be written as

0D, . mom. RO
oy 24 Z oty oty

my ,m_
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Proof. The proof of the first topological recursion relation arises from the relation

—1Jr,
on Ml./):m
1
l//1 = ﬁ 5ii‘r + Z 50;[+7
Lul_=[n]
n—1,nely
lel_

which is obtained from lifting the analogous relation from M ,. The action of S,
yields ;. This, combined with the restriction properties of the i classes, yields
the desired result. The second comes from the presentation of 1; on
M}/,:m 41 =[] dire and the restriction properties of Z; = vy. 0

These two relations allow one to completely reduce the large phase space potential
to the small phase space potential in genus zero and one. Combined with the previous
equations, we can compute O(t, s, u) in genus zero and one when we sets; = u; = 0
foralli > 2.

The genus one potential satisfies an analog of the WDVV equation due to Getzler
[12], which arises from relations between codimension-two boundary classes on
M 4. Using this equation, Dubrovin and Zhang [7] showed that if the Frobenius
manifold is semisimple, then the genus-one potential is determined by the Frobenius
structure. Since the Frobenius manifold structure on (H", 1) associated to ®y(x) is
known to be semisimple [6], ®;(x) is determined. On the other hand, the latter must
vanish due to dimensional considerations. Together with the topological recursion
relations in genus zero and one, we obtain the following corollary.

COROLLARY 5.8. Let s=u=0 so that we are on the large phase. Let V":=
Z;ﬁo((ro,oroﬂ)on/m. Let A(t) denote the matrix with entries 8v’"8t6 where
m,[=0,...,r—2, then

O (t) = % Indet A(t). (62)

Proof. Dijkgraaf and Witten [5] write down a formula (see Theorem 15 of [13]
for an explicit proof) for the large phase space potential ®(t) which in our
case is (I)l(t)z(exp(ro(v)))l+ﬁ1ndetA(t), where v::Z:;:zO v"e,,. The term
(exp(to(v))); i1s equal to the small phase space potential ®;(x), evaluated at

x" =v" for all m=0,...,r— 2, but the small phase potential ®,(x) vanishes. []

In genus 2, there exist relations among products of psi classes and boundary
classes, which give rise to topological relations [3, 13]. However, unlike in genus
0 and 1, these relations do not allow the expression of the large phase space potential
as a differential polynomial of the small phase space potential, since some of the
terms in these relations involve a single descendant, which cannot be eliminated.*

*We would like to thank the referee for both the content and the wording of this paragraph.
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6. The Genus-Zero Large Phase Space Potential

In this section, we compute the genus-zero, three- and four-point correlators and
show that they completely determine the genus-zero, large phase space potential
function ®y(t). We roughly follow the outline provided by Witten [34] and are able
to rigorously prove the validity of his computations, now that the relevant moduli
spaces and classes have been constructed.

Throughout the rest of this paper, we will consider only the large phase space
potential ®(t) (setting the other variables u, and s, of the very large phase space
potential to zero). We will also fix the coupling constant A as A = (1/4/r), since this
is the value which is relevant to the generalized Witten conjecture.

The following proposition rigorously demonstrates the formulas from [34], but the
idea of our proof is quite different, as it uses our new relation for the u; class.

PROPOSITION 6.1. The three-point and four-point correlators of the r-spin CohFT
are given by the following formulas: {7om, T0.m T0.m; )0 = Omi+mr+msr—2 and

(Tomy --- T0.my Yo = % Min; ¢; < 4(my, r — 1 — m;), where Min is minimum value.
Proof. MO{;’m is nonempty if and only if (2 + ), m;)/r € Z, where m =
(my,...,my)and m; = 0 ... r—1 for all i. The genus zero correlators are given by

1/r
(Toumy - Tom, )o = T /_m_m crr,
i

0,1

where ¢!/ = cp(—R' 1, &,) is the (top) Chern class of degree
2 1
D=—-1+-4-%"m,
+ ; + r2 m

The class ¢!/ vanishes unless m; = 0,...r—2 for all i by Theorem 4.5.
Furthermore, the correlator can only be nonzero if D = n — 3.

If n = 3 then the dimensionality condition becomes m; + m; + m3 = r—2, in
which case ¢!/" is the identity. This proves the first part of the proposition.

If n = 4 then the dimensionality condition becomes m; + --- + myg = 2r — 2. If
this condition is satisfied, then ¢!/" = yu,. The correlator is

(Tomy -+ Tomg do = T /71/”“ Hy-
i

0,4

The right hand side can be computed using the relation for the class y; in
Proposition 2.4, which becomes, in genus zero,

4y = Z mi(r_z_mi)l/ﬂ—i- Z r—1—(my +Dim-_+1)

2 i 3
1<i<n 2r Il 2r

50;I+’

where m and m_ are uniquely determined by the divisor do.7, . Let d; 4 denote the
divisor do.(; ;) on ./\/lo_/:l’m
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Plugging in this formula, one obtains (after doing a little case by case analysis to

write my and m_ in terms of my, ..., my)
/ imxr—z—m» it
M= 53 |—im 71
Mrl,_/;'m i—1 2r? M(l)./4
r—=1—=(n23a + D0 =1—=71234)
+ 2,-2 /—1/)'.'71 512’34 +
M()A
r— 1= Guaas + D0 = 1= 71132
n 13,24 = 13,24 | St
2}" My,
F—1— Qs+ D0 = 1= 71423)
n 14,23 s 14,23 71/’%514’237
M

0,4

where y;; ;1= Min(m; + m;, mi +my). Since each 04 18 Poincaré dual to the
(topological) homology class represented by a point, one has r [im d; = 1.
Similarly, each class y; can be represented by J;;x; for some i, j, k.l. Therefore,
one obtains

4

mi(r —2 — m;)
r/—l/r‘.711 M] = Z 2;,-2 +
M(),4

i=1
r—1—( +Dr—1—
n (412,34 X 1612,34)+

2r2
r—1—( +Dr—1—
+ (%13.24 2)( /Cl3,24)+
2r
r—=1—=0nas + D0 =1 = 71403)
+ 5 .
2r

The right-hand side of this equation can be shown to be equal to
1/rMin; ¢; <4(m;, r — 1 —m;), an elementary but not obvious identity. O

PROPOSITION 6.2. [34] The genus zero potential ®y(t) is completely determined by
(Tay.m Taymy Tas.ms Tagmy Yo and the fact that (Ta, m, Tay.my Tasms )0 = Omy+mytms.r—2-
Proof. The large phase space, genus zero potential @y(t) is completely determined
by its values on the small phase space by the topological recursion relations. Let
®y(x) denote the small phase space potential, which must satisfy the WDVV
equation since ¢!/” yields a CohFT. Furthermore, the grading Equation (54) shows
that the small phase space potential is a polynomial in the variables
{(x%, ..., X2} of degree of at most r+ 1. One then performs an induction on
the degree of the polynomial to show that ®y(x) is uniquely determined by the above
data and the WDVYV equation. The proof is straightforward. O
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7. Gelfand—Dickey Hierarchies and the Generalized Witten Conjecture

In this section we present a mathematical folrmulation of the generalized Witten
conjecture, relating intersection theory on Mgf,;’m with Gelfand-Dickey integrable
hierarchies and prove this conjecture in various cases.

7.1. GELFAND-DICKEY HIERARCHIES AND THEIR POTENTIALS

In order to fix notation and normalization constants for the generalized Witten con-

jecture, we recall the definition of the Gelfand-Dickey hierarchies KdV, and their

special solutions. A more detailed review can be found, for example, in [26, 34].
Fix an integer r > 2 and consider the space

r—=2
D= {D’ -y um(x)D’”} (63)

m=0

of differential operators in D = (i/4/r)(3/9x) (the factor (i//r) is added for con-
venience), where u,, are formal functional variables. For every operator L € D there
exists a unique pseudodifferential operator L'Y" =D+ _ w, D™, such that
(L' = L. All coefficients w,, of L'/" are differential polynomials in ug, uy, . .., u,_;.

For a pseudodifferential operator Q=73 - _, v,D™", denote by Q) =
ZO v, D" its differential part, and consider the following infinite family of

m=—n
differential equations on D:

L _
RN

where the constants

[(L”+"“_*‘)+, L], (64)

_ (1)t
T m+D+m+D) . (r+m+1)

kn,m

have been introduced for convenience. It can be shown that the corresponding flows
on D commute, and thus the following definition makes sense.

DEFINITION 7.1. The infinite system (64) of partial differential equations with
r — 1 unknown functions u;(x, #), i=0,...,r —2,m=0,...,r—1,n > 0 is called
the rth Gelfand-Dickey hierarchy or KdV,.

The KdV,; hierarchy is the usual Korteweg—de Vries hierarchy.

For L = D" — Y"2 u,(x)D™, consider the functions

m=

r
+1

res(L!/")"™, (65)

vy = —

where the residue of a pseudodifferential operator is defined as the coefficient of D~
The functions v, can be expressed in terms of u; by a triangular system of differential

https://doi.org/10.1023/A:1017528003622 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017528003622

208 TYLER J. JARVIS ET AL.

polynomials. This means that u; can be expressed in terms of v, in a similar way, and
we may regard vy, vy, ..., v,_» as a new system of coordinates for D.

DEFINITION 7.2. A formal power series ‘P(t), in variables #', m=0,...,r =2,
n = 0, is called a potential of the KdV, hierarchy if it satisfies the following con-
ditions:

1) ¥(0) =0,

(2) the functions v,,(t) = 8*¥(t)/0133r7 satisfy the Equations (64) with x = ) and u;
related to v, via (65),

(3) P(t) satisfies the string equation

P 1 , =S 70)
8[0 2 Z mnlJ tO + Z Z lk+1 atm ’ (66)
m,n=0 k=0 m=0

where 1,,,, = Omtn.r—2.

It can be shown that the potential W(t) is uniquely determined by these conditions
(cf. [36]).

Finally, we introduce the semiclassical limit of the hierarchy KdV, (87) and its
potential.

For a differential operator L =D"— Y""2 u,(x)D" € D, denote by L=p—
o 20 u(x)p™ the polynomial in a formal variable p obtained by replacing D with
p. The commutator [L, Q] of differential operators will be replaced in (64) by
the Poisson bracket

(o= %%
p 0x  Jp Ox

DEFINITION 7.3. The semiclassical limit KdV; of the KdV, hierarchy, is the system
of equations

8L kn m+l 7
S {L”+ 1 L} (67)
o r
in unknown functions uy, . .., t_>.

The corresponding potential function Wy(t) is defined as the unique function
satisfying the string Equation (66) and the condition W(0) =0, and such that

the functions uy, ..., u,_, given by (65) and
FPo(t)
= 68
) = % (68)

satisfy the equations of the hierarchy (67).
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7.2. THE GENERALIZED WITTEN CONJECTURE

Even before the moduli space M;/,:m of r-spin curves was constructed, Witten [34]
conjectured that these moduli spaces would exist, and that intersection numbers
on them would assemble into the potential W(t) of the KdV, hierarchy. Now we
can give this conjecture the following mathematical formulation.
CONIJECTURE 7.4. There exists an r-spin virtual (cohomology ) class ¢!/ on ﬂ;/,'lm
satisfying Axioms 1—5 of Definition 4.1, such that the large phase space potential ®(t)
of the r-spin CohFT (34) coincides with the potential function Y(t) of the KdV,
hierarchy.

Using results from Sections 4, 5, and 6, we prove this conjecture in two special
cases.

THEOREM 7.5. Conjecture 7.4 holds for r =2 and arbitrary g.

Proof. Theorem 4.6 shows that when r = 2 the class given by (51) satisfies the
axioms of a virtual class, and Corollary 4.7 implies that the large phase space poten-
tial of the corresponding 2-spin CohFT is equal to the generating function of
tautological intersection numbers on M, (the large space potential of pure
topological gravity). By Kontsevich’s theorem [23], this generating function
coincides with the potential function of the Korteweg—de Vries hierarchy, which
is the same as the KdV, hierarchy. O

THEOREM 7.6. Conjecture 7.4 holds for g = 0 and arbitrary r.

Proof. In this case, the conjecture means that the genus zero part ®y(t) of the large
phase space potential (24) of the r-spin CohFT (34) coincides with the potential Wy(t)
of the semiclassical limit of the KdV, hierarchy.

In genus zero the virtual class ¢!/ exists by Theorem 4.5. From Theorem 5.4 it
follows that the corresponding potential function @, satisfies the string Equation
(606).

Because of the uniqueness of the potential function of the KdV, hierarchy (and its
semiclassical approximation) all that remains is the proof of the following
proposition. OJ

PROPOSITION 7.7. The functions u,(t), m =0, ...,r—2, given by (65) and

BRON (t)

m(t) = ——=, 69
) =S (69)

satisfy the equations of the semiclassical limit of the KdV, hierarchy (67).

Proof. By Proposition 6.2 there is a unique formal power series ®@y(t), of the proper
grading, satisfying the equations of Proposition 6.1, WDVV, and the genus-zero
topological recursion relations. Witten [34] shows by a straightforward computation
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that any such power series yields a solution of the semiclassical limit of the KdV,
hierarchy. O

COROLLARY 7.8. The Frobenius manifold structure on (H",1), defined by
Theorems 3.8 and 4.5, is isomorphic to the Frobenius structure on the base of the
versal deformation of the A,_y singularity.

Proof. The proof follows from Theorem 7.6 and the fact that the potential of the
Frobenius structure on the base of the versal deformation of the A,_; singularity
is equal to the potential Wy of the semiclassical limit of the KdV, hierarchy

(ct. [6]). O

Remarks 7.9. (1) The generalized Witten conjecture, as it is stated here, should be
viewed as a refinement of Witten’s original formulation of his conjecture [34], since
it is not clear that his construction yields a class with the desired factorization pro-
perties.

(2) The coincidence of Frobenius structures given by Corollary 7.8 appears to be a
genus zero manifestation of some mirror phenomenon [28], relating the moduli space
of r-spin curves and singularities of type A4,_;.

(3) There is additional evidence for Conjecture 7.4 in genus one for arbitrary r.
Witten [34] states that the formula (50) for the intersection numbers when g = 1
can be derived from the conjecture for all r > 2. Furthermore, when r <4, it
can be shown that Equation (62) holds for the genus-one part of the potential
of the KdV, hierarchy (cf. [5, 7]).

(4) The fact that W(t) (in all genera) is independent of the variables /! for all
n = 0 is consistent with Axiom 4 (Vanishing) of the virtual class.

The exponential of the KdV potential function is called a z-function and can be
defined as the unique function Z(t) annihilated by certain differential operators
L;, i > — 1, generating (a part of) the Virasoro Lie algebra. This gives an alternate
formulation of the original Witten conjecture. Similarly, the exponential Z(t) of
the KdV, potential is annihilated by a series of differential operators which forms
a so-called W -algebra [1, 25] (part of which forms a subalgebra isomorphic to (half
of) the Virasoro algebra). Thus we obtain an alternate formulation of the generalized
Witten conjecture.

CONIJECTURE 7.10 (W-algebra conjecture). There exist a collection of differential
operators forming a W," algebra (in which the generators {L,}, - _, of the Virasoro
algebra form a subset) which annihilates and completely determines Z(t).

This conjecture can be regarded as the KdV, analog of a refinement of the Virasoro
conjecture [8]. When r = 2, this conjecture reduces to the usual Virasoro highest
weight condition.
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