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Abstract

Let L be a linear differential operator with rational coefficients such that 0 is not an irregular
singularity of L and that for sufficiently many p's the equation Lv = 0 has no zero solution
mod p. We show that if u is a formal power series whose coefficients are p-adic integers for
almost all p and if Lu is rational, then u too is rational.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 12 H 25, 11 B 37.

1. Statement of the results and examples

1.1. Let L be a linear differential operator with rational coefficients and let u be
a formal power series such that Lu is rational. We ask whether u too is rational.
We first review the known results on this topic.

1.2. The first mathematician interested by this problem was G. P61ya who proved
the following result in 1921.

THEOREM [8]. Let u = Z)n>o
un£n €E Z[[Z]] be a formal power series with

integral coefficients. If its derivative u' = J2n>i nunX"'1 is a rational function,
then u too is rational

1.3. This result was extended in 1965 by D. Cantor.
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[2] Rational solutions of linear differential equations 185

THEOREM [3]. Let u = 2 n > o un%n be a formal power aeries whose coeffi-

cients are algebraic integers and let P be a non zero polynomial with algebraic

coefficients. If the series 5Zn>o P{n)unZn is rational then u too is rational.

1.4. The hypothesis tha t the coefficients are algebraic integers is in some way

necessary as shown by the counterexample u = J2 xn/n = — Log(l — a;) which is

not rational, while vl = ^ z " = 1/(1 — x) is rational.

Of course it is well known tha t this condition can be weakened. Let K be

an algebraic number field and assume tha t the coefficients un of u belong to K.

Then the conclusions of the two preceding theorems still hold even if we only

assume tha t u satisfies the condition:

(*) for all but a finite number of prime ideals p of K, all the coefficients un of

u are p-adic integers.

If u 6 K((x)) (resp. u € K[[x]]) satisfies (*), we shall write from now on tha t

u G K{{x)) (resp. u e K[[x]]).

It is easily seen that K((x)) is a subfield of K{{x)) stable under the action of
the derivation. It is clear that K[x] is contained in K((x)) and therefore K(x)
is also contained in K((x)). This shows that if u does not satisfy the condition
(*), u is not rational.

1.5. Recently J.-P. Bezivin [2] proposed to interpret Cantor's result in terms
of differential operators: if P € K [Y], consider the Euler differential operator
L = P(xD) where D stands for d/dx; then J2n P{n)unx

n = Lu. He also gave
a new class of differential operators with a property similar to that of Euler
operators.

Before stating Bezivin's result, we give a new definition. We shall say that
the differential operator L = ^AiD1 € /f(x)[D] is a Polya operator at 0 if, for
every u € K((x)), Lu rational implies that u is rational (thus Cantor's result can
be reformulated: every Euler differential operator L = P(xD), with P € K[Y],
is a P61ya operator at 0). To save space, in what follows, when we say "P61ya
operator", we mean "P61ya operator at 0".

An easy consequence of this definition is that if L\ and Li are P61ya operators,
then L1L2 is a P61ya operator; also if L1L2 is a P61ya operator then Li is a
P61ya operator ([2], Proposition 1). Clearly differential operators of order 0
are P61ya operators. Therefore, for any rational functions Q, R e K(x), the
differential operators L and R.L. Q are either simultaneously Polya operators
or simultaneously not P61ya operators. We shall say that L and R.L. Q are
equivalent differential operators.

1.6. We now exhibit Bezivin's new class of P61ya operators.
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186 J.-P. Bezivin and P. Robba [3]

THEOREM [2]. Let L = T,t=oAkDk € #>][#] where Ao is a non zero
constant and for all k > 1 the degree of the polynomial Ak is < k — 1. Assume
further that 0 is not an irregular singular point for L. Then L is a Poly a operator.

A special case of this situation is the case of differential operators with con-
stant coefficients L = P(D) with P e K[Y] and P(0) ^ 0. We can combine this
result with Polya's result to conclude that every operator L = P{D) e K[D] is
a Polya operator (indeed we can write L = Q{D)DS with Q e K[Y], Q(0) / 0,
and s an integer > 0).

1.7. The main result. For each prime ideal p of K we denote by Kp the
associated residue field. Also p will denote the prime number divided by p.
If L e K(x)[D] we denote Lp € Kp(x)[D] its reduction modulo p when this
reduction is defined (which is the case for all but a finite number of prime ideals

P)-

THEOREM. Let L e K(x)[D\. Assume that
(a) 0 is not an irregular singularity for L,
(b) there exists an infinite set S of prime ideals with

(1.7.1) J2

such that for p € S the reduced equation Lvv = 0 has no non zero solution in
*,((*)).

Then L is a Polya operator.

We recall (see [6] for example) that the equation Lpv — 0 has a non zero
solution in Kp((x)) if and only if it has a non zero solution in Kp(x).

We observe that the condition (1.7.1) is verified if S has positive Dirichlet
density (see [7], page 131 for the definition). In particular this condition is
satisfied if S contains all but a finite number of the prime ideals.

We shall now discuss the necessity of condition (a) and give examples of
differential operators satisfying condition (b).

1.8. Singular points. Let L = '£,AiD
i e K{x)[D] of order / and let a G ifalg

(algebraic closure of K). By Fuchs' condition a is an ordinary point or a regular
singular point for L if

orda Ai — I = min(orda Ai — i)

(for a = oo the condition reads ordoo Ai + l = min^ordoo Ai +i)). We shall say
that a is a totally irregular singular point for L if

orda -̂ o < min(orda Ai — i)

(for o = oo the condition reads ordoo A) < minj>i (ordoo M +*'))•
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1.9. PROPOSITION ([2], Corollaire 1). If 0 is a totally irregular singular
point for L, L is not a Polya operator.

For an operator of order 1, an irregular singular point is a totally irregular
singular point.

This situation is illustrated by the following example: L = x2D -\- x — 1,

u = X)n>o n ! a ; n € z([1]] satisfies Lu = - 1 but u £ Q(x).
Observe that by Proposition 1.11 below, if 0 is a totally irregular singular

point for L, L satisfies the condition (b) of Theorem 1.7.
If 0 is an irregular singular point for L but not a totally irregular singular

point, we do not know whether or not L is a Polya operator.

1.10. Assume that the equation Lv = 0 has a non zero solution v € K((x)).
Then for almost all prime ideals p we obtain by reduction mod p a non zero
solution of Lpv = 0, and therefore the condition (b) of Theorem 1.5 is not
satisfied.

Of course if this solution v is not rational, L is not a Polya operator. For
example, consider L — (1 - 2x)D + 1; u — y/T^2x e Z[[x]] is solution of
Lu = 0 but u £ Q(x). Again consider L = x(l - x)D2 + (1 - 2x)D - 1/4;
u = F(l/2,1/2,1; x) € Z[l/2][[x]] C Q[[x]] is solution of Lu = 0 but u <£ Q(x).

If Lv = 0 has a rational solution v, then we have the decomposition L =
L\o(D- v'/v) and D — v'/v — voDov'1, equivalent to D, is a Polya operator.
The problem is reduced to seeing if L\ is a P61ya operator.

It may happen that condition (b) of Theorem 1.7 is not satisfied even if Lv — 0
has no non zero solution in K((x)). This is the case if L = xD—a with a € Q—Z:
indeed for every p which does not divide the denominator of a, there exists an
integer a(p) such that a = a(p) mod p and v — xa^ is a solution of Lfv = 0.

We shall now give examples of differential operators which satisfy condition
(b).

1.11. PROPOSITION. If L possesses a totally irregular singular point, then
for all but a finite number of prime ideals p the reduced equation Lpv — 0 has no
non zero solution in Kp((x)).

The hypothesis of Theorem 1.6 implies that oo is a totally irregular singular
point for L. Thus Bezivin's class of P61ya operators is covered by our criterion.

1.12. We give another example, involving Euler differential operators, where
condition (b) of Theorem 1.7 is satisfied. Consider L = xD — a with a irrational.
Then by Tchebotarev's Density Theorem ([7], Theorem 10.4), there exists a set
S of prime ideals of positive density such that for all p € S a is not congruent
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188 J.-P. Bezivin and P. Robba [5]

to an integer modulo p and thus L9v = 0 has no non zero solution in Kp((x)),
and L is a P61ya operator as 0 is a regular singular point for L.

Although the class of P61ya operators is stable under composition (1.5) the
class of operators satisfying condition (b) of Theorem 1.7 is not stable under
composition. Indeed for all prime numbers p at least one of the three numbers 2,
3, 6 is a quadratic residue modulo p; therefore if L = (xD — \/2)(xD — \/Z)(xD —
\/6) then for all prime ideals p of K = Q(\/2, y/S), Lpv = 0 has a solution modp
in Kp(x), while each of the three factors satisfy condition (b). Of course we see
that L is a P61ya operator as each of the three factors is a P61ya operator.

1.13. For future applications to transcendental results (see for example 'A
new p-adic method for proving irrationality and transcendence results' by the
same authors, to appear) we would like to mention that the proof of Theorem
1.7 implies the following result:

THEOREM. Let L € if [z][£>] and u e K[[x]]. Assume that
(i) for any infinite place of K (that is, for any embedding of K in C), u has

a non zero radius of convergence,
(ii) u satisfies condition (*),
(iii) there exists an infinite set S of prime ideals with

} _ -Logp = +oo
pes,p|P

 p

such that for allpG S the reduced equation Lpv = 0 has no non zero solution in
Kp(x),

(iv) Lu € K(x).
Then u e K(x).

Indeed in the proof of Theorem 1.7, the hypothesis that 0 is not an irregular
singularity for L is used only to show that u has a non zero radius of convergence
for any embedding of K in C (see point (ii) of paragraph 2.6).

1.14. In paragraph 2, we give the proofs of Theorem 1.7 and Proposition 1.11.
In paragraph 3 we discuss in detail the case of operators of order 1 where we
have a good, albeit incomplete, understanding of the situation.

This article is a development of the ideas of [2] and [10].

2. Proofs of the results

2.1. We begin with the proof of Proposition 1.11, which is simpler.
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[6] Rational solutions of linear differential equations 189

P R O O F OF PROPOSITION l . n . Let L = Y,\=oAiDi € K(x)[D], of order
/, and assume that a € /falg is a totally irregular singular point for L. By
extending K if necessary we may assume that a € K.

Consider a prime ideal p of K such that the reduction Lp of L is denned, a
is a p-adic integer with reduction Sp € Kp, and ordu Ao = ordBp Aop. These
conditions are verified for all but a finite number of prime ideals p. For such a
p, ap is a totally irregular singular point for Lp as

(2.1.1) ordO|) Aop = orda AQ < min(orda Ai — i) < min(ordgp AiP — i).

Let v e ~KP{x), v ^ 0. It follows from (2.1.1) that

ordSp Lpv = ordap AOp + ordaf v

and thus Lpv cannot be zero if v is not zero.

2.2. In order to prove that the solution u of our differential equation is rational
we shall need the following criterion of rationality applied to u(l/x).

For every prime ideal p of K, K will be equipped with the associated nor-
malized absolute value ||p (see [1], page 40) and Cp will denote an algebraically
closed extension of K complete under a valuation extending that of K. We
denote £?(K) the set of prime ideals of K.

For every infinite place w of K, K can be embedded in C. We denote N(w)
the degree of C over the completion of K, N(w) = 1 or 2. We denote I(K) the
set of infinite places of K.

LEMMA (P61ya-Bertrandias, [1], Theoreme 5.4.6). Let K be an algebraic num-
ber field and f = Z)f»>oan/a;n e -^[[l/x]]- Assume that there exists a finite
subset &i{K) of &>{K) such that

(i) for all p £ 3?i{K) and for all n, \an\p < 1,
(ii) for all w € I(K), f defines in C a function analytically extendable on a

connected domain Bw whose complement is bounded and has transfinite diameter

dw,
(iii) for p G £P\{K), f defines in Cp a function extendable by an analytic ele-

ment on a set Bp of Cp whose complement is bounded and of transfinite diameter
dp,

() ()
Then f is rational.

We will not recall the definition of the transfinite diameter , bu t we ob-
serve tha t in our application the complement of the set Bp will have the form
( J 1 < i < s B ~ ( c j , r ) , where B~{ci,r) = {x € Cp; \x — Ci\ < r } , the Cj are in different
residue classes, and r < 1. In this case it follows from [1], Example 5.4.4, t ha t
the transfinite diameter of this set is r 1 / 8 .
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190 J.-P. Bezivin and P. Robba [7]

We recall that an analytic element on Bp is the uniform limit on Bp of a
sequence of rational functions without poles in B9. If Bf has the form described
above and u is an analytic element on Bf which is zero in a neighborhood of
a point a of Bv, then u is zero everywhere in Bp. Thus if / is defined in a
neighborhood of a by a power series and / can be extended into an analytic
element on Bv, then this extension is unique.

2 .3 . LEMMA ([10], Theorem 2.10). Let C be a complete ultrametric valued
field, and assume that its residue field has characteristic p ^ 0. Let L € C[x][Z?].
Let A be the disk B+(c,r) = {x E C; \x — c\ < r}, and consider L as an endo-
morphism of H(A), the space of analytic elements on A. If L is surjective, then
L is injective.

For the reader's convenience we outline the proof.

PROOF. Assume that L is not injective in H(A) and let u € H(A) such that
Lu — 0. Choose am €E C with rm < \am\ < arm, a > 1, belonging to the value
group of C. The functions

p 2 , n - g ;
n>0 v

are unbounded in A, and further the functions uuk are linearly independent over
H(A). On the other hand one sees that L(uuk) € H(A). This implies that L is
not surjective.

2.4. We shall need some properties of differential operators in characteristic

LEMMA, let k be a field of characteristic p ^ 0. Let L e fc[x][D]. / / the
equation Lv = 0 has no non zero solutions in k((x)), there exist P,Q e A"[i][D]
and TV G k[x], P ^ 0, 7r ̂  0, such that

(2.4.1) PL + QDp = ir.

Further there exists a constant a depending only on the degrees of the coefficients
of L and not on p, such that P, Q and IT can be assumed to satisfy the additional
conditions: ordP < p — 1, ordQ < o r d i — 1, the degrees of it and the degrees of
the coefficients of P and Q are at most ap.

If L = J2 AiDx and if we define N(L) = maxj(degylj), then the proof of the
lemma shows that one can take a = N(L). The constant a = N(L) seems to be
optimal.

PROOF. The first part of the lemma is a direct consequence of [5], Corollary
6.1.2.2 which asserts that KerL = {0} if and only if the left sided ideal generated
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[8] Rational solutions of linear differential equations 191

by L and Dp in fc(x)[D] is k(x)[D\. So assume tha t we have P, Q, and IT satisfying
(2.4.1), we shall construct new differential operators P\,Qi and a polynomial
TTI ^ 0 satisfying (2.4.1) and the additional conditions.

Condition on the orders, (a) Observe t h a t as k has characteristic p , one has
DPL = LDP. If we set P = Px + SDP wi th o r d P i < p - 1 and Q i = Q + SL
then we have P\L + Q\DP = n and o r d Q i < o r d ( P i L ) — p < o r d L — 1. So we
may assume t h a t P,Q satisfy (2.4.1), o r d P < p — 1, o r d Q < o r d L — 1.

Conditions on the degrees of the coefficients, (b) Let U be the vector space
of differential polynomials with rat ional coefficients, of order at most p — 1, thus
U cz [k(x)]p. We consider the following linear forms Sfj on U: for R &U

5?j{R) = coefficient of Dj in RL, 0 < j < p - 1.

If R = X ) t ^ » ^ * ' o n e n a s - ^ j ( ^ ) = Z)f=o ajiRi where the a,ji are expressed
in te rm of the derivatives of the coefficients of L and therefore a^ € k[x] wi th
deg(a i i) < N(L).

If P e U is such that 3Q{P) ^ 0 and ^ ( P ) = 0, 1 < j < p - 1, then it is
clear that there exists Q € k(x)[D], degQ < degL — 1 and •K G k(x), ir ^ 0, such
that (2.4.1) is satisfied.

Let r be the rank (over fc(x)) of the linear forms J&j, 1 < j < p — 1. Then
one can find a subset £? — {j\,..., jp-r} C {0 , . . . , p — 1} such that the system
Sj(R) = 0, l<j<p—1 determines uniquely the r unknowns Ri, i $ &, in
terms of the p — r unknowns Rj, j €&>, which can be chosen freely. We obtain

/?. — V^ ^Hp i ct go

where the bij and A are determinants of rank r ext rac ted from the mat r ix (a.ji)
and therefore polynomials of degrees a t most rN(L).

if we subst i tu te these expressions of Ri in -So(i?) we obtain

where the Cj are polynomials wi th deg(cy) < (r + l)N(L).
By (a) we know tha t there exists P e U wi th -2o(P) ^ 0, ^ ( P ) = 0,

1 < J < p — 1- Therefore the coefficients c_, are not all zero. Assume t h a t Ck ^ 0.
Then if we choose Rk = A , R, = 0, j ^ k, j e &, Ri = bik, i £ £°, the
coefficients of R have degrees a t most rN(L). And we have RL + Q\DP = TTI
wi thdegTn < (r + l)JV(L), deg (coefficients of Q{] < (r + l)N(L). As r < p - l ,
this ends the proof of the lemma with a = N(L).

2.5. We recall a result on the analytic extension of solutions of differential
equations with polynomial coefficients. Here C denotes an algebraically closed,
complete ul t rametr ic valued field.
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For L = 1£AiD
i € C[x][D] we define

m(L) := max(degylj — z).
i

LEMMA ([9]). Let u be an analytic element on the unit open ball of C and
L € C[z][£>]. Assume that Lu is a polynomial. Then u extends into an analytic
element on all the residue classes of C except in at most ord L + m(L) of them.

For the convenience of the reader we outline the proof.

PROOF, (i) Consider the Mittag-Leffler decomposition of u

where a runs through the residue classes of C, «<» is an analytic element on the
closed unit ball, ua is an analytic element outside the residue class a and tends
to zero at infinity.

If m(L) = 0, then Lua is analytic outside a and tends to zero at infinity. The
unicity of the Mittag-Leffler decomposition together with the relation

Lu — Luoo + 2 J Lua

shows that Lua = (Lu)a is the singular part of Lu associated to a and therefore
Lua — 0, as Lu is a polynomial.

But then, as the dimension of the kernel of L is at most the order of L, and as
the ua are linearly independent, we conclude that there is at most ord L residue
classes a with ua ^ 0. This proves the lemma in the case m(L) — 0.

(ii) If m(L) = m > 0, define Lx = DmL. Then ro(Za) = 0, ordLi =
ordL + m(L), L\u is a polynomial, and we can apply (i).

(iii) If m(L) = -m < 0, then necessarily L = LiDm with Lx € C[z][I>] and
m{Li) = 0, ordi i = ordL + m(L). We apply (i) to Dmu and conclude that u,
as Dmu, extends in all residue classes except at most ordZ-i of them.

2.6. PROOF OF THEOREM 1.7. Let L e K(x)[D], u e K{{x)) such that
LueK{x).

We can find an integer s > 0 and a polynomial A G K[x] such that u = x"ui
with ui 6 ^[[x]], AL has polynomial coefficients and ALu is a polynomial. Then
the operators L and L\ = ALxs are equivalent, L\ G /f[x][jD], L\U\ € K[x\.
Further L and L\ satisfy simultaneously the conditions (a) and (b) of Theorem
1.7.

Therefore we can assume without loss of generality that u € ^[[x]], L €
/f[a;][D] and Lu = ip e K[x], L satisfying conditions (a) and (b) of Theorem 1.7.
Define I := ordL.
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[10] Rational solutions of linear differential equations 193

Define f(x) := u(l/x) = £„>(,"«/*"•
(i) The hypothesis u € K[[x]] means that there exists a finite set P(K) of

prime ideals of K such that for all p £ P{K) and all n, |un|p < 1.
(ii) For any infinite place w of K, we have an embedding of K in C. As 0 is

not an irregular singular point of L, it is well known that formal power series
solution of L have a non zero radius of convergence. Therefore u converges in a
disk of positive radius and / defines an analytic function outside a bounded disk
of transfinite diameter dw < +oo.

(iii) For any prime ideal p G P{K), let Cp be an algebraically closed complete
extension of (K, ||p).

The exponents of L at 0, that is, the roots of the indicial polynomial of L at
0, are algebraic numbers, therefore they are not p-adic Liouville numbers and by
a result of Clark [4], formal power series solutions of L have a non zero radius
of convergence. Therefore, again, / defines in Cp an analytic function outside a
bounded disk of transfinite diameter dp < +oo.

(iv) Consider now a prime ideal p ^ P{K) such that Lp is defined and the
equation Lpv = 0 has no non zero solutions in Kp((x)). Then, by Lemma 2.4,
we can find P*, Q* € #P[z][I>] and n* e Kp[x] such that

P*LP+Q*DV = TT*.

We may assume that ord P* < p — 1, ord Q* < ord Lp — 1 and that the degrees
of 7T* and of the coefficients of P* and Q* are bounded by aip, where o\ is a
constant depending only on L and not on p = char K p.

Again Cp denotes an algebraically closed complete valued extension of (K, ||p).
Consider liftings P,Q € Cp[x][Z)] and TT € Cp[x] of P*, Q* and it* which preserve
the orders and the degrees of the polynomials. We may also assume that in each
residue class ir has at most one zero, possibly with multiplicity exceeding 1.

One then has
PL = w- QDp + R

where R € C][x][D], R = Y.bjD* w i t h ordi? < p + Z - 1, deg(bj) < o2P (with
a-i depending on L but not on p), \bj\p < l/p^p^ (with /(p) = [Kp: Fp]), where
\bj\p denotes the Gauss norm of bj.

For 0 < r < 1, let Br := {x € Cp; |x| < r"1, |x — Cj\ > r} where Cj runs
through the zeroes of TT and let H = H{BT) be the space of analytic elements on
Br equipped with the sup norm || ||# on BT.

Then ir is invertible on Br and as degx < <Tip, and as the gauss norm |TT|P of
7T is 1, one obtains

\\1M\H < l/r"1".

Using the estimates on the order and on the degrees of the coefficients of P,
Q, R, we also obtain the estimates of the operator norms of P, Q, R and Dp
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considered as endomorphisms of H

\\Q\\H <

\\R\\H <

Finally we have

where <T3 and w depend on L but not on p.
Therefore if r = rp := i / ( p i / 2 ( ^ P + ' - i ) ) ) w e have

< 1,

which shows that •K~1PL - l + n~1(-QDp+ R) is invertible in if and so is PL.
Consider a disk A of radius r = rp contained in Br. The same estimates hold

on H(A) and therefore again PL is invertible in H(A). Thus P is surjective in
H(A) and by Lemma 2.3 we see that P is injective in H(A) and therefore P is
also injective in H(Br) as H{Br) c #(A).

Thus P is surjective and injective ini/, and as PL is invertible, we conclude
that L is invertible in H. Therefore the equation Lv = <p has a unique solution
v(EH. t

As p ^ P{K), for all n \un\p < 1, and u defines a bounded analytic function
in the unit open ball B~(0,1) of Cp.

Let Ai be the annulus BTf n B~(0,1) and let W be the space of functions
analytic and bounded on Ax. The same estimates hold and the same argument
can be used to prove that L is invertible in W. The restrictions of u and v to
Ai are both in W and both solutions of Lv — <p, therefore these restrictions
coincide, which means that v is the analytic extension of u on BTf.

But now that we know that u is an analytic element on B~(0,1), we can
use Lemma 2.5 to conclude that u extends analytically in all the residue classes
except in at most M of them, with M — ordL + m(L).

Finally we have shown that u extends analytically onto a set of the form

{x e Cp; \x\ < l / r p , \x - Cj\ >rp,l<j< &>p)

where the c, are in distinct residue classes and £PP < M.

It is equivalent to say tha t / defines in Cp an analytic function on a set whose

complementary is the union of &p + 1 disks of radii rp contained in distinct

residue classes and therefore of transfinite diameter dp — r p
/ l p ' .

(v) The result of (iv) is valid for all prime ideals p of a set S satisfying condition

(1.7.1). Therefore

p€S
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because

One can then find a finite subset Si of S such that

n <{w) n * n *
One then applies the rationality criterion 2.2, with &\ (K) = P(/f) U Si, to

conclude that / , and therefore u, is rational.

3. Operators of order one

We shall now discuss the different possibilities for an operator or order 1,
L = D + A,v/ithA€K(x).

(i) 0 is an irregular singularity of L, therefore a totally irregular singular point
of L, and by Proposition 1.9 L is not a P61ya operator.

(ii) 0 is not an irregular singular point of L, but there exists a G K*lg U {oo}
which is an irregular singular point of L and therefore a totally irregular singular
point of L. Then by Theorem 1.7 and Proposition 1.11 we conclude that I, is a
P61ya operator.

(iii) L does not have irregular singular points. Then A(x) = J2i o^/fa - a*)-
The singular points of L are the a» with exponent o .̂ If one of the exponents
<*j is not rational, we can again apply Theorem 1.7 and the argument of 1.12 to
conclude that L is a Polya operator.

(iv) There remains the case when A(x) = J2i ai/(x — â ) with cti G Q for all i.
Observe that for all n e Z and all a € A"al«(x - a)nL{x - a)~n = L- n/(x - a)
is equivalent to L. Thus by considering an equivalent operator we can reduce to
the case where all the c*j € Q — Z. The different situations are

L = D; this is a Polya operator (Theorem 1.2),
L = D - a/x; this is a P61ya operator (Theorem 1.3),

L = D - Yl'=i ai/(x ~ ai) w i t h « > 1, (»i e Q - Z, ^ / 0. Then u =
flj(l - x/ai)ai € ^[[z]]> is solution of Lu = 0 and is not rational. So L is not a
Polya operator.

L — D — a/x - J2i=i ai/(x — ai) with s > 1, a, a* e Q — Z, a* ^ 0. In this
case we cannot prove either that L is a Polya operator or that it is not.
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