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Abstract. “Deep learning” is finding more and more applications everywhere, and astronomy is
not an exception. This talk described the application of convolutional neural networks to time-
domain astronomy, specifically to light-curves of sources. The work that is discussed is based on
a published paper to which reference can be made for more detail. The talk finished with a note
cautioning new practitioners about the pitfalls lurking in out-of-the-box use of deep-learning
techniques.
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1. Introduction

Astronomy has been a “Big Data” science for a long time. With the advent of
multibillion-row sky surveys with tens to hundreds of pointings over large areas of sky,
real-time and archival studies are receiving a big boost. The bigger surveys and corre-
sponding data transfers are served by better CCDs, faster electronics, and higher internet
speeds. Data analyses are helped by the availability of GPUs, larger clusters and better
libraries.

This talk highlighted an area of time-domain astronomy that is crucial for source
classification, whether from images or from time series. It described the problems, and
showed how convolutional neural networks are useful for the classification of light-curves.
The work is based on Mahabal et al. (2017), where the reader will find more details than
could be included here.

2. Deep Learning

Conwvolutional neural networks (CNNs) (LeCun et al. 2015) are a special type of artifi-
cial neural networks, ANN (Hastie et al. 2009, Murphy 2012). A CNN consists of different
types of layers: an input layer, an output layer, and a few between them. The last layers
before the output layer are often standard fully connected layers, called dense layers. The
layers before these dense layers are of three kinds (a) Convolutional layers consist of a
small set of filters (e.g., 3x3, 5x5, ...), called kernels; convolutional layers convolve every
input image with each of the kernels. Several such kernels are used typically as filters
in a given convolutional layer to match desired shapes in the input images. That gives
rise, for each kernel, to a new representation of the input image. Those representations
are called feature maps. The convolutional layers are used with rectifiers to introduce
non-linearity. (b) Pooling layers decrease the number of parameters of the network by
aggregating values of spatially-adjacent pixels. One prominent type of pooling layers is
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Figure 1. Left: Schematic light-curve, without error-bars, to demonstrate dm (dashed lines)
and dt (dotted lines) values. Each pair of points in the light-curve leads to one dmdt pair. Four
pairs are shown. Right: Corresponding dmdt grid, populated by the pairs shown on the left.
Each unequal-area rectangle/bin translates to one of the equal-area pixels in the 23x24-pixel
images in our experiments (examples are in Fig. 2).

max-pooling, which replaces patches of an input feature map by the maximum value
within each patch. While that reduces the sizes of the feature maps, it also makes the
network more robust to small changes in the input data. (¢) Dropout layers omit hidden
units randomly by setting their values to zero. The network therefore cannot rely on them
fully, and this helps prevent overfitting. The depth afforded by the multiple layers, and
the extensive mappings provided by them, is what gave rise to the name deep learning.

Although dropout layers, maxpooling, etc., guard against overlearning, the large num-
ber of adjustable weights in the multiple layers offers a control factor. It is easy, for
instance, to have a deep network and have individual examples learned by a subset of
the weights. Cross-validation is thus essential during network testing. In our project we
started with a three-layer network, and were able to tune it to a single-layer one.

Deep learning has been applied in astronomy to many areas: galaxy classification
(Hoyle 2016), supernova classification (Cabrera-Vives et al. 2016), light-curve classi-
fication (Mahabal et al. 2017, Charnock & Moss 2017), identifying bars in galaxies
(Abraham et al. 2018), separating Near Earth Asteroids from artifacts in images
(Morii et al. 2016), Gravitational Wave transient classification (Mukund et al. 2017),
and even classifying noise characteristics (Zevin et al. 2017, Abbott 2017, George et al.
2017). The main distinction of our work is to convert light-curves to images and use
existing CNN machinery with the images for classification.

3. Light-Curve Classification

We create image representations of light-curve data in order to use them with CNNs
(LeCun et al. 2015) that work really well with images. In early experiments we have
used data from the Catalina Realtime Transient Survey (CRTS; Drake et al. 2009,
Djorgovski et al. 2011, Mahabal et al. 2011, Mahabal et al. 2012, Djorgovski et al. 2016)
and the Palomar Transient Factory (PTF; Bellm, page 160) surveys. In particular we
have used a set of periodic variables (seven classes) from CRTS (Drake et al. 2014). In the
representation we create, the image pixels are bins with delta-time (dt) as one dimension,
and delta-magnitude (dm) as another (Mahabal et al. 2011, 2017). The (normalised)
density of points in each bin is the intensity in the corresponding image pixel (see Fig. 1).
The dt and dm bins are semi-logarithmic in order to capture the cadence of the survey
as well as possible time-scales for variability (e.g., the dt bin boundaries we have used are
[1/145,2/145,3/145,4/145,1/25,2/25,3/25,1.5,2.5,3.5,4.5,5.5, 7, 10, 20, 30, 60, 90, 120,
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Table 1. Number of objects in the seven periodic variable classes with at least 500 members.
The variable types include EW (contact binaries), EA (detached binaries), three types of RR
Lyrae stars, and Mira and semi-regulars lumped into LPV. RS CVn stars are rotating variables.
Thus — broadly speaking — we have three classes: binaries, pulsating, and rotating. Class refers
to the numeric labels used in Drake et al. (2014)

Type EW EA RRab RRc RRd RSCVn LPV
Class 1 2 4 5 6 8 13
Num 30743 4683 2420 5469 502 1522 512

240, 600, 960, 2000, 4000] days to accommodate the four images in the thirty-minute
cadence of CRTS and the long time-baseline.

Learning based on such images has several consequences: (1) Features based on
the light-curves that are typically computed for classification (Richards et al. 2011,
Donalek et al. 2013, Graham et al. 2014) are not required in our method. This is good,
since the features are subjective and often bias classifiers. The CNNs create from hundreds
to millions of features based on the configuration and carry out classification within their
framework. (2) Operating on short and partial light-curves become possible - a handy
plus for real-time analysis for surveys. (3) It becomes possible to train the CNN on one
survey, and — with small modifications — to use the trained models on other surveys. In
this instance we handled PTF data with models trained on CRTS data.

There are multiple ways in which experiments can be carried out to improve perfor-
mance: (1) Changing the layers of the CNN based on the size of the training sample, image
sizes, unbalancedness between the classes, (2) Changing the dmdt bins based on classes
and surveys, and (3) modifying the light-curve to dmdt-image mapping to highlight
differences between classes.

We used 32x32 kernels, two dense layer of 128, and two dropout layers. More details
are in Mahabal et al. (2017). We used the theano framework (http://deeplearning.net/
software /theano/) with lasagne (https://lasagne.readthedocs.io/en/latest/) on NVIDIA
GeForce GTX 560 GPU for our runs.

Binary classification. We trained the network with pairs of classes as well as with
all seven periodic classes together (see Table. 1). When it was used in binary mode, we
noticed poor performance when class 1 was involved (it contains two-thirds of all periodic
objects in our sample), as it overwhelmed every other class individually. Class 13 reached
the highest accuracy (89%) against class 1. Those are the Long-period variables (LPVs);
the long-term structure was probably getting picked up. In general the separation of
all other classes from class 13 was similarly far better than other binary comparisons.
Except in a few cases, the binary dmdt-classifier was comparable or better than the
corresponding feature-based random forests (RF') classifier.

Multi-class classification. When used in the 7-class mode, the dmdt-images pro-
duced an average accuracy of 83%. Without fine tuning, or accounting for the lack of
balance in the data, that result is remarkable. The performance is comparable to a
feature-based RF'-classifier. Class 1 still dominates to an extent but not as blatantly as
in the binary cases. In order for this to be useable in real-time for light-curves containing
far fewer points, binary classification may be somewhat preferable.

Varying dmdt binning. The input image size of 23x 24 pixels is small for CNNs and
the training is relatively quick. As a result one can consider finer binning in both dm
and dt. On the other hand, the discriminating structure probably resides in a few smaller
areas, and one could use more granular binning. While it is desirable to determine the
binning for a given survey and classes under consideration, such a systematic approach
will need more extensive work. Experiments with our data set suggest that finer dm bins
improves performance a little, and fewer dt bins do not seem to affect the performance
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Figure 2. Example of composite dmdt images for RRc (top row) and RRd (bottom row)
classes. In the first column all individual images are stacked together. Median dmdt images are
shown in the second column. The max class background as determined using the robust PCA
method is shown in the third column. A more complex version of this Figure can be seen in
Mahabal et al. (2017).

adversely. Since we do not take in to consideration the error bars explicitly, and the error
bars are equivalent to dithering to the adjacent dm bin, it is not surprising that we do
not see large variations.

Background Subtraction. The survey cadence provides a particular dt spacing
for all sources irrespective of class. Despite adjusting dt bins to match the cadence,
residual commanalities in dmdt-images of all sources do contain a common background
(b). In addition, individual classes contain their own patterns at characteristic times
and corresponding magnitude differences (c; for the i*" class): dmdt-image ="b+ c; + s.
Estimating these backgrounds, subtracting them, and then using CNNs can reveal
individual signatures of objects.

We determine backgrounds to subtract before training in a few different ways (see
Fig. 2): (1) for individual class backgrounds we consider dmdt-images of just that class. It
needs to be seen how non-uniform lengths of time-spans for individual light-curves affect
individual dmdt-images. (2) For a pseudo-cadence background we consider all our objects
together. We call this the pseudo-cadence background because all our objects in the cur-
rent set are periodic variables. (3) As another possibility we ignored the class imbalance,
took all training samples, and used the max from the background for subtraction from
all training and testing samples.

Fig. 2 shows how this plays out for subclasses RRc and RRd of RR Lyrae stars. We
singled those out because these are particulary tough to separate. The light-curves look
quite similar, and the number of RRds in a sample is far smaller than the number of
RRes. Visually, one can make a case for being able to separate them. The robust PCA
based backgrounds look rather similar; so do the median dmdts. The max-values do look
different and we will want to see how those can be used for separating these two difficult
sub-classes.

Transfer Learning. Part of the real power of techniques like the dmdt is its cross-
survey applicability. We used models trained with the CRTS-N dmdt-images and tested
them on CRTS-S dmdt-images with the same classes (Drake et al. 2017), but no over-
lapping objects, and with PTF dmdt-images with a subset of the same objects as in the
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Figure 3. Confusion matrix for the CNN with fiducial dmdt-images. Note the high misclassifi-
cation between classes 5 and 6, both RR Lyrae (RRc and RRd). Class labels are as in Table 1.
A more detailed version of this Figure is given by Mahabal et al. (2017).

CRTS-N sample. CRTS-S uses the same asteroid-finding cadence as CRTS-N and also
has an open filter. PTF used a more mixed cadence with a greater emphasis on looking
for explosive events, including a repeat cadence of 1, 3, and 5 nights. We used PTF data
taken with the r filter. The results, using both the shallow and deep CNNs, are not as
good as with CRTS-N, but that is not unexpected. In fact, for many classes, especially for
CRTS-S, they are better than one would naively expect. In the case of PTF the survey
cadence is very different, in addition to diferences in aperture and wavelength range, and
the results were somewhat worse. But the very fact that they are still useable, and defi-
nitely a good starting point, indicates the merit of using such a technique. With proper
survey-based background subtraction the results should improve further. The implica-
tions for domain adaptation are obvious, especially with applicability to forthcoming
surveys like ZTF and LSST.

4. Discussion

We have shown how to transform light-curves to simple dmdt-images for use with CNNs
for classification of objects with performance comparable to random forests, and without
having to resort to designing or extracting features. The internal features the CNN uses
need to be explored further using tools like deconvolutional networks. That will make the
results interpretable, and provide insights. Many explorations are possible to improve the
results further e.g. background subtraction and varying the dmdt bins. We have further
demonstrated the application of the technique to transfer learning and thereby classifying
objects from a completely different survey. Figure 3 shows the confusion matrix for the
periodic variables considered.

Misclassified sources. Objects belonging to some classes were more frequently mis-
classified than others. We investigated the light-curves for some of these sources in order
to identify the source of errors. In some cases it was a genuine error (wrong label) indicat-
ing that the network was working well. In some other cases the misclassification was due
to a sparse light-curve, indicating that in a handful of cases a smaller number of features
may be tilting the classifications one way or another. In still other cases, the subclasses
were just too close for the technique to discern them apart just from the dmdt-images
based upon the light-curves (e.g. RR Lyrae of different types).
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5. Future Work

We continue to explore various possibilities related to varying CNN hyperparameters,
improving background subtraction for more reliable classification, expanding to more
classes and surveys, as well as identifying the misclassified sources. We will also exper-
iment to make the technique more useful in real-time cases with far fewer data points.
A couple of tests using error-bars to augment smaller classes did not work well; that
needs to be explored further for reducing the unbalance of the different classes. There is
also the possibility of using Generative Networks to create large simulated examples for
different classes to understand the features that really separate different classes. We are
already exploring extensions to initial work on finding transients from difference images
using CNNS (Sedaghat & Mahabal 2017).

6. Cautionary note

It is tempting to use techniques used elsewhere without fully understanding the impli-
cations. For example, large networks with settled weights are often used by training just
the last later. Often these are initially trained on datasets like Imagenet which has terres-
trial images rather than astronomy. The results have to be investigated properly keeping
in mind issues like label pollution and imbalance. In particular, the networks have to be
tested thoroughly using adversarial examples. At the same time more experimentation
in this field for astronomy data sources is welcome as we look to classify sources from
more surveys in near real-time.
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