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Modeling pollen dispersal to predict cross-pollination is of great importance for the ongoing discussion of
adventitious presence of genetically modified material in food and feed. Two different modeling approaches
for pollen dispersal were used to simulate two years of data for the rate of cross-pollination of non-GM maize
(Zea mays (L.)) fields by pollen from a central 1 ha transgenic field. The models combine the processes of wind
pollen dispersal (transport) and pollen competition. Both models used for the simulation of pollen dispersal
were Lagrangian approaches: a stochastic particle Lagrange model and a Lagrangian transfer function model.
Both modeling approaches proved to be appropriate for the simulation of the cross-pollination rates. However,
model performance differed significantly between years. We considered different complexity in meteorological
input data. Predictions compare well with experimental results for all simplification steps, except that systematic
deviations occurred when only main wind direction was used. Concluding, it can be pointed out that both
models might be adapted to other pollen dispersal experiments of different crops and plot sizes, when wind
direction statistics are available. However, calibration of certain model parameters is necessary.
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INTRODUCTION

Adoption of genetically modified (GM) crops has led to
increasing interest in evaluating and controlling pollen-
mediated gene flow from crop to crop. Only with reliable
estimation of cross fertilization it is possible to establish
management strategies to limit gene flow and control the
genetic purity of harvests, in order to fulfill market de-
mands for genetically pure products, e.g. achieving levels
below the labeling threshold in the EU (EU, 2003).

Maize (Zea mays L.) is the second most cultivated
crop plant in the world (Eastham and Sweet, 2002; Jarosz
et al., 2005). Maize is predominantly wind-pollinated,
and cross-pollination is promoted by the separation of
male and female flowers on the plant and protandry (i.e.
male flowering begins before female flowering) (Treu and
Emberlin, 2000). Pollen dispersal from maize fields has
been examined in a number of studies (e.g. Ma et al.,
2004; Raynor et al., 1972).

Weather conditions will determine the pollen dis-
persal, with higher wind velocities and unstable condi-
tions promoting dispersal. Maize has large pollen grains
(around 80 to 100 μm) with high settling velocity, on the
order of 20 cm.s−1 (Aylor et al., 2003). Hence, maize
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pollen is predominately deposited inside the source field,
with deposition decreasing rapidly with distance from the
source field (Jarosz et al., 2003; Luna et al., 2001; Raynor
et al., 1972). As discussed in Devos et al. (2005), several
experiments have shown that the dispersal kernel (i.e. dis-
tribution of pollen dispersal with distance) is more lep-
tokurtic than Gaussian, since the tail of the distribution is
longer than that of normal distribution. Besides the me-
teorological conditions, major factors explaining cross-
pollination rates are spatial configuration of the emitting
and receiving fields (Klein et al., 2006; Lavigne et al.,
1998), and synchronization of flowering.

A number of field trials with maize have been per-
formed to study some of these effects (e.g. Henry et al.,
2003; Jarosz et al., 2005, Ma et al., 2004, Raynor et al.,
1972; Weber et al., 2005). Such studies can give di-
rect estimates of pollen dispersal, but cannot be gener-
alized to other geometries, crops and atmospheric condi-
tions, and are therefore of limited use as predictive tools
(Devos et al., 2005). Computer simulations circumvent
these shortcomings because they allow a dramatically in-
creased number of contexts studied.

Various modeling approaches have been used to
predict pollen dispersal (Angevin et al., 2001; Arritt
et al., 2003; Aylor et al., 2003; Bock et al., 2002; Jarosz
et al., 2004; Klein et al., 2003; Klein et al., 2006;
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Loos et al., 2003; Tolstrup et al., 2003; Yamamura, 2004).
In spatially explicit models, dispersal is often mod-
eled through individual dispersal kernel functions (IDF)
(Klein et al., 2003, Lavigne et al., 1998). For pollen, these
kernels are probability functions that describe the prob-
ability that a pollen grain is deposited at a given dis-
tance from its source (Lavigne et al., 1998). Dispersal
kernels of single plants supposedly do not depend on the
shapes, sizes and locations of the whole source and recip-
ient plots (Devaux et al., 2005). The composition of the
pollen cloud at a given site in a non-GMO field is deter-
mined by the pollen dispersal curves for all the plants in
the neighborhood, whether close or farther away. Empir-
ical models try to predict cross-pollination rates with dif-
ferent IDF. Devaux et al. (2005) and Klein et al. (2006)
found that fatter-tailed functions predicting more long-
distance dispersal, and therefore higher cross-pollination
rates than the exponential function, were more consistent
with the data. Angevin et al. (2001) also predicted ad-
ventitious presence due to cross-pollination with Klein’s
equation (2003). The main parameters of these empiri-
cal IDFs are main direction and mean speed of the wind
during the entire course of flowering (Klein et al., 2003).

Apart from IDF approaches, several quasi-
mechanistic or semi-empirical models have been
developed (Arritt et al., 2003; Aylor et al., 2003; Jarosz
et al., 2004; Loos et al., 2003). These models treat pollen
grains as particles that move along simple diffusive-
convective paths, either in normally-distributed Gaussian
plumes (Ashton et al., 2001; Loos et al., 2003), or
by a particle Lagrange (PL) or Lagrangian stochastic
approach, in which independent particles follow statis-
tically random paths (Arritt et al., 2003). The Gaussian
approach was found to estimate both the quantity and
direction of maize pollen movement with good accuracy,
but underestimates cross-pollination near the source
field (Loos et al., 2003). Jarosz et al. (2004) developed
a quasi-mechanistic model. Most likely due to incorrect
parameterization of turbulence, it also failed to correctly
estimate pollen deposition immediately adjacent to the
source. Arritt et al. (2003) showed that the PL model
captured the sharp near-field deposition gradient evident
in the observations, while under-predicting deposition
at greater distances from the field. The PL approach has
also been used in related dispersion applications, such as
dispersion of particles (VDI, 2000), spores (Aylor and
Flesch, 2001), and seeds (Nathan et al., 2003).

The probability of cross-pollination requires that for-
eign pollen out-compete local pollen and self-fertilization
of the recipient plant (Aylor et al., 2003). So competition
between locally shed pollen and pollen delivered from
elsewhere on the wind needs to be considered.

We have compared two models for pollen disper-
sal and pollination by combining pollen deposition

predictions with a pollen competition sub-model to pre-
dict cross-pollination rates. The first model is a PL model
(VDI, 2000). The model simulates the path of individual
pollen grains, using a single point meteorological obser-
vation to determine the mean pollen dispersal flow, and a
random-walk approach to account for the effect of turbu-
lence.

The second model uses the IDF concept (Klein et al.,
2006). A transfer function (TF) models the probability for
dispersion of an ensemble of pollen particles from source
to sink. Transfer probabilities are determined using the
Gaussian slender plume equation (Seinfeld, 1986). In
contrast to other IDF models (Angevin et al., 2001; Klein
et al., 2003), we did not use the average wind components
for the entire flowering period to predict pollen disper-
sal. To investigate the required complexity of wind input
data, we compared the deterioration in prediction accu-
racy when using aggregate wind statistics instead of the
original measured time series of wind direction and ve-
locity.

The objectives of this study were

• to compare the two Lagrangian approaches;
• to incorporate meteorological information in cross-

pollination models;
• to assess the dependence of model performance on

the quality of meteorological data;
• to test the models for their predictive power.

RESULTS AND DISCUSSION

Comparison of models

For better comparison, the figures in the following section
are all structured in the same way. In A, measured and
predicted cross-pollination rates are shown in grey-scaled
squares at their respective coordinates in the field. Tran-
sects with cross-pollination rates against distance from
the central GM field are plotted logarithmically in B. The
dashed line represents the minimal measurement result
of one cross-pollination event in 3000 kernels. Measured
cross-pollination rates of 0% are shown in the figures
at half of this value. Transects were aligned orthogo-
nally, north, south, east and west of the GM field (the
winds were predominantly from the west). In C, a sim-
ple scatter plot of predicted versus measured values is
shown, together with the correlation coefficient r. To in-
vestigate whether residuals appear to be systematic or are
distributed randomly around the predictions, the logarith-
mic deviation from the logarithm of the measured value
is plotted against distance from the GM in D.
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Figure 1. Cross-pollination rates for particle Lagrange model with data from 2000. Meteorological data is time series. A: mea-
sured left, predictions right boxes; B: log-transformed transect in four wind directions; C: predictions versus observation and corre-
lation coefficient r; D: residuals of log-transformed data against distance from GM field edge.

Table 1. Parameter estimations of GM cross-pollination rate prediction with particle Lagrange (PL) and transfer function (TF) models
for 2000, with pollen competition sub-model (3 parameters, ηe, ηf , α).

Model Wind Maximum likelihood estimator Least sum of square estimator

ηe ηf α –Ln ME ηe ηf α Sn ME

PL u(φ) 3.01 119 0.051 999 0.821 1.75 103 0.060 0.019 0.830

TF u(φ) 2.50 131 0.036 1009 0.790 1.60 108 0.045 0.023 0.800

TF u, φ 2.64 126 0.042 963 0.806 1.68 105 0.050 0.021 0.816

TF u, φ 2.66 124 0.046 851 0.861 1.53 101 0.058 0.016 0.866

TF u, φ 3.61 94 0.073 978 0.915 2.24 99 0.085 0.009 0.919

u(φ) designates wind data as time series, u, φ wind data in classes, u, φ mean values over entire flowering period. Ln is the log
likelihood value and Sn the sum of squared errors.

Particle Lagrange model (PL), data from 2000 (wind data
as time series, u(φ))

The prediction of the 2000 data was generally good
(Fig. 1A), which is also shown by the modeling effi-
ciency of 0.83 (Tab. 1). Logarithmic residuals decrease
with distance (Fig. 1D). In 2000, the cross-pollination
rates at small distances were underestimated on the ma-
jority of transects. The very high cross-pollination rates
immediately adjacent to the field in an easterly direction
were well predicted. In all other directions, the observed

cross-pollination rates were much lower, and the model
tended to underestimate (Fig. 1A).

The transects in Figure 1B illustrate that prediction in
the south and north directions, which were orthogonal to
the main wind direction, was good and showed no sys-
tematic bias. Prediction in main wind direction (down-
wind; east) was even more precise; whereas the model
systematically underestimated cross-pollination values to
the west (upwind) of the GM plot (Fig. 1B). The dispersal
of GM donor pollen upwind was slightly underestimated
by the PL model. The oscillations in transects predicted
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Figure 2. Cross-pollination rates for transfer function model with data from 2000. Meteorological data is time series. A: mea-
sured left, predictions right boxes; B: log-transformed transect in four wind directions; C: predictions versus observation and corre-
lation coefficient r; D: residuals of log-transformed data against distance from GM field edge.

with the PL model (4B) were due to the random nature of
the PL model.

Transfer function model (TF), data from 2000 (wind data
as time series, u(φ))

The TF model was also able to predict the measured
cross-pollination rates for data from 2000. The modeling
efficiency was 0.79 (Tab. 1). In contrast to the PL model,
values near the GM field edge, i.e. at small distances
in Figure 2D, were rather overestimated. However, the
residuals were generally distributed randomly, with devi-
ations decreasing with distance, which was also true for
the logarithm. The transects in Figure 2C showed good fit
of the data, without systematic bias. Compared to the PL
model, the simulated curve shows a much smoother de-
crease with distance, because the model incorporates no
random walk.

Particle Lagrange model, data from 2001 (wind data as
time series, u(φ))

The goodness of fit of both modeling approaches was
much worse in 2001 compared to 2000. For the PL model,
the model efficiency decreased to 0.421 (Tab. 2). The

plot of logarithmic residuals versus distance (Fig. 3D)
showed a general tendency towards overestimation of
measured cross-pollination rates, especially with increas-
ing distance from the GM field. Prediction was good up-
wind and downwind (Fig. 3B) although cross-pollination
downwind was systematically overestimated. In contrast,
the measured high level of cross-pollination for all dis-
tances north of the GM plot was not mirrored in the mod-
eling results. Especially the high cross-pollination rate
at 2.5 m east-northeast of the GM plot was not simu-
lated (Fig. 3A). The same holds true for the TF model
(Fig. 4A).

Transfer function model, data from 2001 (wind data as
time series, u(φ))

In 2001, prediction of the TF model was much less pre-
cise than in 2000, with a modeling efficiency of 0.523
(Tab. 2). The high cross-pollination rates in the northerly
direction, orthogonally to the main wind direction, were
predicted much better than with the PL model. The de-
crease of the cross-pollination rates with increasing dis-
tance from the GM plot in the southerly direction was
however underestimated (Fig. 4B). For both directions
parallel to the main wind direction, the decrease of cross-
pollination rates with distance from the GM field edge
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Table 2. Parameter estimations of GM cross-pollination rate prediction with particle Lagrange (PL) and transfer function (TF) model
for 2001, with pollen competition sub model (3 parameters, ηe, ηf , α).

Model Wind Maximum likelihood estimator Least sum of square estimator

ηe ηf α –Ln ME ηe ηf α Sn ME

PL u(φ) 1.01 95 0.200 2912 0.421 1.00 98 0.165 0.0273 0.423

TF u(φ) 1.04 68 0.202 1740 0.523 1.02 75 0.168 0.0264 0.524

TF u, φ 1.08 71 0.191 1712 0.522 1.04 77 0.165 0.0264 0.524

TF u, φ 1.00 68 0.201 1754 0.543 1.00 81 0.154 0.0252 0.545

TF u, φ 1.00 119 0.172 2242 0.504 1.00 129 0.116 0.0269 0.515

u(φ) designates wind data as time series, u, φ wind data in classes, u, φ mean values over entire flowering period. Ln is the log
likelihood value and Sn the sum of squared errors.

Figure 3. Cross-pollination rates for particle Lagrange model with data from 2001. Meteorological data is time series. A: mea-
sured left, predictions right boxes; B: log-transformed transect in four wind directions; C: predictions versus observation and corre-
lation coefficient r; D: residuals of log-transformed data against distance from GM field edge.

predicted by the TF model was lower than the measured
values (Fig. 4B). The plot of logarithmic residuals ver-
sus distance from GM plot also confirmed a general bias
towards overestimation of cross-pollination at larger dis-
tances (Fig. 4D).

Summary of model comparison (simulation with wind
data as time series, u(φ))

In summary, the PL and TF models both achieved good
prediction of cross-pollination rates for the data from

2000. In 2001, both models achieved lower goodness
of fit, but still yielded acceptable predictions through-
out the field. In 2001, the predicted cross-pollination
values differed considerably between the two models.
However, the same observation points account for the
highest residuals in both models. The deterioration of
model performance in 2001 can be explained by high in-
field heterogeneity in plant development, which is sup-
ported by observations of individual flowering times.
However observations of flowering times were too in-
frequent to be incorporated in the model. When male
flowering of the GM maize and female flowering in
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Figure 4. Cross-pollination rates for transfer function model with data from 2001. Meteorological data is time series. A: mea-
sured left, predictions right boxes; B: log-transformed transect in four wind directions; C: predictions versus observation and corre-
lation coefficient r; D: residuals of log-transformed data against distance from GM field edge.

the receptor field deviate largely from the assumption of
perfect synchrony, cross-pollination were overestimated.
Single plants with high cross-pollination rates that are
under-predicted can be explained by asynchrony of de-
velopment of the plant itself and surrounding receptor
maize plants, which would lead to lower pollen compe-
tition from receptor pollen and higher cross-pollination.
Another possible explanation for the difference between
the years is the prevalent wind conditions during the flow-
ering periods. In 2000 the variability in wind was much
lower, and mean wind velocity was higher (Fig. 14). The
models might not be suitable to predict pollen dispersal
for low wind speeds. If the models overestimate pollen
dispersal at low wind speeds, cross-pollination is overes-
timated at low and changing winds as measured in 2001.

The transects show that cross-pollination rates are
predicted to rise slightly at the outer field edge of the re-
ceptor fields. An increase in cross-pollination rates at the
outer field edge seems to be reasonable, since the number
of neighbor plants and therefore receptor pollen sources
(especially immediate neighbors with high competitive
advantage, because they can pollinate without wind trans-
portation) decreases. However, no measurements were
taken close enough to the field edge to confirm the pre-
dicted rise.

Effect of the quality of meteorological input data
on model performance

In this section are presented the results of the models us-
ing different complexities of meteorological input data.
The results when the full information is used, i.e. the orig-
inal time series of wind direction and wind velocity dur-
ing the whole flowering period, were discussed above.

For the TF model, the information content of meteo-
rological input data was decreased in three steps. In the
first step, wind measurements were sorted into distinct
classes for wind speed and wind direction. Wind velocity
was grouped into nine classes, according to the classifica-
tion rules of the WMO (Seinfeld, 1986). The wind direc-
tion was no longer considered as directly measured, but
only frequency of measurements in 10◦ steps was used. In
the next simplification step, mean wind velocity was as-
sumed for all wind directions. The most simplified input
data were mean wind speed and main wind direction.

For the PL model, cross-pollination rates were cal-
culated with the competition sub-model after each hour
during the flowering period in 2000, i.e. the first predic-
tion was derived only from the pollen distribution after
one hour, the second prediction from pollen distribution
for hours one and two, and so on. The resulting model
efficiencies are shown in Figure 5 and discussed below.
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Figure 5. Modeling efficiency of cross-pollination rate predic-
tion with particle Lagrange model during flowering period in
2000 assuming for each time step, that pollen shed stopped and
no further pollen was transported.

Particle Lagrange, data from 2000 (time series, u(φ))

In Figure 5, it can be seen that the modeling efficiency
varied strongly for model predictions using only the first
hours, assuming values of down to less than 0.2. After
the third day of the male flowering period, the goodness
of fit hardly varied further. Modeling the pollen transport
and subsequent cross-pollination in the later stages of
the flowering period therefore hardly improved the model
performance.

Transfer function, data from 2000 (wind direction in
classes, u, φ and u, φ)

Predictions are shown in Figure 6 for wind direction
and wind velocity in classes (u, φ), and in Figure 7 for
mean wind velocity (u, φ). Model efficiency was high
with 0.806 and 0.861, respectively, but systematic er-
rors increased. For the transects parallel to the main
wind direction, the predictions of cross-pollination val-
ues were systematically but only slightly underestimated
(Figs. 6B, 7B). In contrast, cross-pollination rates at
larger distances north of the GM plot were overestimated.
However, for all directions together, no systematic bias
with distance was observed (Figs. 6D, 7D).

Transfer function, data from 2000 (mean wind direction
and wind velocity, u, φ)

While yielding the highest modeling efficiency of all
model runs with 0.915 (Tab. 1), predictions exhibited
strong systematic deviations. The high modeling effi-
ciency was due to the good estimation of the high
cross-pollination rates near the field in the downwind

Table 3. Parameter estimation results for TF model shape pa-
rameters for longitudinal, ax, transversal, ay, and vertical, az,
dispersion.

Year ax ay az
2000 21 33 4
2001 76 61 5

direction. The simplest model version underestimated
cross-pollination rates in all directions but downwind
(Fig. 8B). A general bias towards underestimation of
cross-pollination rates can be observed for all distances
from the GM field edge, as can be seen in Figure 8D.
Overall, the prediction quality with only mean wind di-
rection and velocity was worst, although the plume shape
parameters ax, ay and az of the dispersal function were
fitted for optimal performance (Tab. 3).

Transfer function, data from 2001 (wind direction in
classes, u, φ and u, φ)

As for prediction with wind data as time series, the cross-
pollination predictions also had lower model efficiencies,
together with more bias in 2001 compared to 2000. The
simulation results still lie within the range of variability
of the observations. The distribution of residuals for wind
direction in classes (Fig. 9 for wind velocity classes, u, φ,
and Fig. 10 for mean wind velocity, u, φ) are similar to the
results with the time series in Figure 4, with overestima-
tion at larger distances, and failure to simulate the high
value east-northeast and at larger distances north of the
GM plot (Figs. 9 and 10).

Transfer function, data from 2001 (mean wind
direction and wind velocity, u, φ)

As for the 2000 data set, predictions based on the main
wind direction and velocity in 2001 were highly biased.
However in contrast to the 2000 data set, model efficiency
was also lower for this scenario. Orthogonally to and
upwind of the main wind direction, all cross-pollination
rates were largely underestimated. Only downwind of the
GM plot, bias was not systematic (Fig. 11B). The low
model efficiency can be explained by the wind conditions
in 2001. As mentioned before, in 2001 the wind blew
from different directions at low velocities. Prediction of
pollen dispersal using only main wind direction therefore
increased systematic errors. The dispersal parameters in
2001 were estimated to be much higher than in 2000, be-
cause in 2001 cross-pollination rates were similar in all
directions (Tab. 3).
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Figure 6. Cross-pollination rates for transfer function model with data from 2000. Meteorological data is wind direction and
wind velocity in classes. A: measured left, predictions right boxes; B: log-transformed transect in four wind directions; C: predictions
versus observation and correlation coefficient r; D: residuals of log-transformed data against distance from GM field edge.

Figure 7. Cross-pollination rates for transfer function model with data from 2000. Meteorological data is wind direction in
classes and mean wind velocity. A: measured left, predictions right boxes; B: log-transformed transect in four wind directions;
C: predictions versus observation and correlation coefficient r; D: residuals of log-transformed data against distance from GM field
edge.
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Figure 8. Cross-pollination rates for transfer function model with data from 2000. Meteorological data is main wind direction
and mean wind velocity. A: measured left, predictions right boxes; B: log-transformed transect in four wind directions; C: predictions
versus observation and correlation coefficient r; D: residuals of log-transformed data against distance from GM field edge.

Figure 9. Cross-pollination rates for transfer function model with data from 2001. Meteorological data is wind direction and
wind velocity in classes. A: measured left, predictions right boxes; B: log-transformed transect in four wind directions; C: predictions
versus observation and correlation coefficient r; D: residuals of log-transformed data against distance from GM field edge.
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Figure 10. Cross-pollination rates for transfer function model with data from 2001. Meteorological data is wind direction in
classes and mean wind velocity. A: measured left, predictions right boxes; B: log-transformed transect in four wind directions;
C: predictions versus observation and correlation coefficient r; D: residuals of log-transformed data against distance from GM field
edge.

Figure 11. Cross-pollination rates for transfer function model with data from 2001. Meteorological data is main wind direction
and mean wind velocity. A: measured left, predictions right boxes; B: log-transformed transect in four wind directions; C: predictions
versus observation and correlation coefficient r; D: residuals of log-transformed data against distance from GM field edge.
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Summary of the effect of the quality of meteorological
input data

The results can be summarized as follows.

(i) Model efficiencies were much higher in 2000 than
in 2001, regardless of the model type. This could be
due to inadequacy of the models to predict pollen
dispersal for low wind velocities, as prevalent in
2001. In retrospect, this could also be ascribed to
large observed in-field heterogeneities in plant de-
velopment in 2001 that were not measured in high
spatial resolution, and therefore could not be incor-
porated into the model.

(ii) The overall model efficiencies of the transfer func-
tion model were hardly decreased when wind direc-
tion was sorted into classes. This also holds true for
assuming a mean wind velocity for the whole flow-
ering period.

(iii) The model version with mean wind direction and ve-
locity for the whole flowering period showed high
systematic deviations with underestimation in all di-
rections except the main wind direction, and is there-
fore not recommended, despite yielding the highest
modeling efficiency for the 2000 data.

Competition model parameters and transferability
of models

For the competition model with three parameters, to ac-
count for the edge effect, the values of the competition
factor ηf and ηe were similar in both years (Tabs. 1 and
2). Only the α value, which indicates the range of the edge
effect, deviated an order of magnitude between years. For
the 2000 data, the TF model parameter estimates were
more similar to the PL parameter estimates than for 2001,
except for ηe, which generally showed very low variation
in 2001. Variation in parameter values was very low be-
tween TF model scenarios, with wind direction in classes
or as time series. Only parameters for main wind direc-
tion over the entire flowering period deviated substan-
tially (Tabs. 1 and 2).

Similarity between parameter estimates was gener-
ally high enough to feel confident about the ability of the
Lagrangian models together with the competition model
to be used to predict the spatial distribution of cross-
pollination rates and scenario modeling.

The model concept is well suited to explicitly account
for spatial designs of source and receptor plots with sev-
eral sources in an agricultural landscape, rather than only
a single emitter and a single receptor. This is more repre-
sentative of potential coexistence contexts, however val-
idation data sets are not available (Devos et al., 2005).

It must be concluded that deviations between the estima-
tions of the pollen competition model parameters are not
negligible. Transferability to other sites and geometries is
therefore not guaranteed, and pollen competition param-
eters should be calibrated.

Cross-pollination maps

The spatial distribution of predicted cross-pollination
rates are presented for the receptor fields as contour
maps in Figure 12. The nature and complexity of the dif-
ferent model approaches is mirrored in the maps. The
particle Lagrange (PL) model yielded very small con-
tours with highly resolved variability (Fig. 12A). This
small-scale variability is caused by the random nature of
the PL model. The smoothness of the contours increased
with the number of repeated runs. The contour plots from
the transfer function (TF) model rendered much smoother
contours. Their general patterns however matched those
produced by the PL approach (Fig. 12B−D). The patterns
of the contour maps of the TF model were similar for all
wind input data types, with the exception of mean wind
velocity and direction. Here the contours were much sim-
pler and appear artificial. The same observations held true
for the predictions in 2001 (not shown here).

CONCLUSION

For using the models to predict GM cross-pollination
from a central maize plot into an adjacent surround-
ing conventional maize plot we arrive at the following
conclusions.

(i) Similar results were obtained for pollen transport
models with particle Lagrange (PL) and the much
simpler Lagrangian transfer function (TF) approach.

(ii) The model performance varied strongly between the
two years considered. For the first year of the exper-
iment, the measured cross-pollination rates could be
well predicted by both models. In the second year,
the goodness of fit decreased considerably. This is
mainly due to in-field heterogeneity in flowering and
different meteorological conditions.

(iii) Using wind statistics instead of the time series, the
TF model performances were hardly worse, as long
as wind direction was considered in frequency of
10◦ steps. Systematic errors occurred slightly more
frequently, with a tendency towards underestimation
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Figure 12. Contour maps of predicted cross-pollination rates for 2000 using different qualities of meteorological input data.
A: PL time series; B: TF model time series; C: wind direction and velocity in classes; D: mean wind direction and velocity. The
central GM donor plot is shown in white.

of cross-pollination in all but the main wind direc-
tion, because pollen transport in the main wind di-
rection received too heavy weighting.

(iv) Systematic underestimation of cross-pollination in
other directions than the main wind direction in-
creased strongly when pollen dispersal was simu-
lated using main wind direction and mean wind ve-
locity for the entire flowering period. Therefore it
can be concluded that wind direction needs to be
considered for pollen dispersal predictions.

(v) To improve prediction of gene flow from wind-
pollinated plants, it is not necessary to use sophisti-
cated pollen transport models, but to improve the de-
scription of plant development, e.g. spatio-temporal
distribution of male and female flowering phases.

(vi) Variability of the fitted competition parameters was
low, mainly within the same order of magnitude.
Larger differences in parameter values were found
only when main wind direction was considered.
Transfer of the models to other sites seems pos-
sible; however they should be tested with differ-
ent sized experiments under different meteorologi-
cal conditions.

MATERIALS AND METHODS

Experimental design and data acquisition

Cross-pollination data from farm scale field trials, which
were carried out at the Federal Biological Research Cen-
tre for Agriculture and Forestry (BBA) in Braunschweig,
Germany, in 2000 and 2001, were used for model ap-
plication and verification (Meier-Bethke and Schiemann,
2003). The model predictions were compared with mea-
sured cross-pollination rates in conventionally bred maize
(pollen recipient) at distances up to 100 m around a
source plot of isogenic but herbicide tolerant GM maize
(pollen donor) of about 1 ha (approx. 100 m × 108 m).
Around the GM maize plot a maize-free strip of about 2 m
was established. The maize was planted in rows at inter-
vals of 0.75 m with a distance of approx. 0.16 m between
the plants in a row. The plants grew to an average height
of 2.45 m, topped by tassels (male inflorescences) of
about 30 cm, so most of the pollen was emitted at heights
of about 2.30 to 2.60 m. The mean maize ear height (fe-
male inflorescence) was located at 0.85 m. Main flow-
ering periods were estimated for the whole field. Con-
siderable in-field heterogeneity in flowering times was
observed, especially in 2001. Due to the lack of more
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Figure 13. Experimental design in 2000 (A = left) and 2001 (B = right). GM field is grey, non-GM field within thick line.
Thin lines mark sampling distances, with black points marking end points of transects, and grey points marking exemplary transect
sampling points.

specific information on this heterogeneity, flowering was
considered to be homogeneous in the models.

The source plot was surrounded by concentric squares
of sampling points, which were spaced at approximate
22.5◦ intervals or lines of equidistant sampling points.
Sampling points were located at distances of 3, 4.5, 7.5,
13.5, 25.5 and 49.5 m distance in 2000, and at 3, 4.5, 7.5,
13.5, 20, 35, 50, 65, 80 and 100 m in 2001 from the edge
of the GM field (Fig. 13). At each sampling point, about
60 ears were sampled. From a sub-sample of 1.5 kg of
shelled seeds, the target was to test at least 3000 seeds
(actual minimum 2497) for herbicide resistance (Meier-
Bethke and Schiemann, 2003). The maize seeds were
germinated in the greenhouse, and after 10 days the
seedlings were sprayed with the herbicide Glufosinate,
and after 3 weeks the surviving seedlings were counted
(i.e. genetically modified seedlings that carried the trans-
gene conferring resistance to the herbicide). The theoreti-
cal minimal measured cross-pollination rate was 0.033%.
However, due to sampling variability, the probability for
detection of cross-pollination was greater than 0.95 only
for cross-pollination rates above 0.1%.

Meteorological data

A meteorological station was positioned immediately ad-
jacent to the experimental site. Wind direction and wind
velocity were measured at a single point 2 m high at 1-h
intervals. Further available data include relative humid-
ity, precipitation and air temperature. Mean wind velocity
was 1.4 m.s−1 and 0.7 m.s−1 in 2000 and 2001, respec-
tively. A summary of the wind measurements during the
flowering period in 2000 and 2001 is shown in Figure 14.

Figure 14. Frequency of hourly wind directions during flower-
ing periods in 2000 and 2001.

Cross-pollination models

Modeling concept

The cross-pollination, i.e. gene flow via pollen, of
anemophilous higher plants like maize comprises several
processes at different scales. Once a pollen grain has been
emitted from a donor plant, it is subject to atmospheric
dispersion (Aylor et al., 2003). During this phase the
pollen grain can be treated as any other particle, and its
movement described in terms of classical fluid dynamics
transport theories. In this study, two different Lagrangian
approaches were employed, a stochastic Lagrange parti-
cle model (PL), and a model based on explicit probabil-
ity density functions for pollen transfer probability from
a point source to a point sink (TF), also known as individ-
ual dispersal function (Klein et al., 2003). The stochastic
particle model is based on the tracking of large ensembles
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of individual particles (VDI, 2000). General conclusions
can only be drawn from the statistics of the ensemble.
The advantage of this approach is that dispersal can be
simulated for each weather situation during anthesis. Me-
teorological data have to be provided in high resolution to
this end.

The alternative approach, TF, is based on the explicit
formulation of the concentration statistics in terms of the
stochastic properties of the paths of ensembles of parti-
cles. Transport of a particle from a location (x′, y′, z′) to
a location (x, y, z) is mediated via a probability density
or transfer function Q(x, y, z | x′, y′, z′) (Seinfeld, 1986).
The transfer function depends on the statistics of the wind
field during pollination. The total amount of pollen that
reaches a certain location is then derived by the integral
over all sources.

After atmospheric transport, the pollen eventually
reaches the upper layer of the canopy of the recipient
crop. Close to and inside the canopy, it competes with the
pollen of the recipient population to fertilize (Luna et al.,
2001). The probability of a cross-pollination event is thus
not simply proportional to the number of donor pollen
grains. Among other factors, such as the phenology of
the recipient population, j, it depends on the position of
the plant within the stand.

It should be stressed that the data obtained in cross-
pollination experiments do not reflect single dispersal
events. They reflect rather the history of meteorologi-
cal and phenological conditions during the entire female
flowering period of the receptor population.

Particle Lagrange model

The particle Lagrange (PL) model for atmospheric dis-
persion of the VDI (2000) was used in this study. The
change of position of a particle during a time step of
length τ is determined by the mean wind velocity �V, the
turbulent velocity �u and an additional velocity vector �U
due to gravitational settling:

�xnew = �xold + τ (�V(�xold) + �u + �U). (1)

The turbulent velocity u is updated during each time step
via a Markov process, which is governed by the tensor Ψ
and the stochastic velocity increment �w. The components
of the tensorΨ depend on the atmospheric diffusivity ten-
sor K. The components of K are related to the local me-
teorological conditions (VDI, 2000):

�unew = Ψ.�ualt + �w. (2)

Input data of the model are the meteorological conditions,
such as wind velocity and wind direction, the geometry
of the source, thermal stability of the atmosphere, and

roughness lengths of the terrain. Here the latter two were
kept constant throughout. We assumed a constant pollen
release height of 2.45 m, and the end point of simulation
where we considered pollen as deposited was 0.85 m, cor-
responding to the male and female inflorescences, respec-
tively. The PL model was used to predict pollen dispersal
for the whole flowering period using the hourly time se-
ries of wind direction and wind velocity.

Lagrange transfer function model

The core of the Lagrange transfer function (TF) model
is the transition probability density function or individual
dispersal function (Klein et al. 2003) Q (x, y, z | x′, y′, z′ )
for the transport of a particle from location (x′, y′, z′) to
(x, y, z).

The pollen concentration at point x, y, z is then given
by the integral over the product of the source density
S (x′, y′, z′) and the transition probability density or in-
dividual dispersal function Q:

c (x, y, z) =�

G

Q
(
x, y, z

∣∣∣ x′, y′, z′
)

S
(
x′, y′, z′

)
dx′ dy′ dz′. (3)

For the transition probability function, a general Gaussian
form is used for particle transport from a point source at
location (x′, y′, z′) in a stationary wind field with wind
velocity u and direction φ (Seinfeld, 1986). Loos et al.
(2003) showed that the Gaussian plume model predicted
maize pollen dispersal with good accuracy for locations
further than 7 m from the source field for simple terrains.
Starting from this approach, we used the slender plume
equation for the individual dispersal function to guarantee
the highest comparability to the PL approach. According
to Seinfeld (1986) transition probability function Q has
the form

Q
(

x, y, z | x′, y′, z′, u (φ)
)
=

q
2π
√

ayaz r

× exp

[
u (φ)
ax

r − (x − x′) cosφ − (
y − y′) sin φ

]
(4)

with

r2 =
((

x − x′
)

cosφ +
(
y − y′) sinφ

)2
+

(
ax

ay

)

× ((
y − y′) cosφ − (

x − x′
)

sin φ
)2
+

(
ax

az

)
(z − z′)2.

(5)

Equation (4) is valid for a point source in a wind field
with constant wind velocity u and wind direction φ.
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Figure 15. Example pollen deposition concentration contour plots. Wind blew from the left. For A (left) a point source at (50,
50) and B (right) a superposition of point sources which cover the area of a field within the edges (0–100, 0–100).

We approximated the difference in height from z′ to z to
be 1.6 m for the whole maize field. The pollen transport
on even ground is therefore basically a two-dimensional
problem. The shape of the plume in Equation (4) is de-
termined by the parameters ax, ay and az, describing the
dispersion longitudinally, transversally and vertically to
the wind direction, respectively (Seinfeld, 1986).

In reality, the source, i.e. the maize field, is not a con-
tinuous source but an ensemble of point sources, i.e. the
single plants. Therefore the integral (3) can be approxi-
mated by summing the individual dispersal functions for
pollen transport from all point sources, i.e. the position
of plants ((x1, y1), (x2, y2), . . ., (xn, yn)) to the considered
point (x, y) (Fig. 15):

cPollen (x, y) =
n∑

i=1

Q (x, y | xi, yi ) S(xi, yi). (6)

The number and positions of point sources are chosen at
a resolution high enough to represent the maize fields,
but not at every plant position to save computing time.
Point sources of the GM pollen are situated within the
GM field, while the conventional fields contain the point
sources for conventional pollen, thus covering the whole
GM or conventional plot, respectively.

In each model run, only one wind direction φ and
one wind velocity u as considered. When different wind
directions or velocities were considered, the model was
run repeatedly, and the pollen deposited at each sink
site (x, y) was simply summed for each considered
u-φ-combination. The pollen deposition distribution cal-
culated with the single plume equation (Eq. (4)) was
weighted according to the frequency of readings with the
given u-φ-combination. In this way, we could consider
wind data as a time series or using aggregate statistics.

Competition of pollen

In the case of maize, pollen grains are released from
the male inflorescence (tassel) at the top of the maize
plant. The female ear(s) bloom at the middle part of the
stem, exposing stigmas (silk). It seems reasonable to de-
scribe the competition between donor pollen and recipi-
ent pollen on the stigmas of target plants simply by their
relative proportion at the target site. However, the con-
tribution of nearby receptor plants within a stand has to
be given special attention, because pollen from neighbor-
ing plants can reach the target from within the canopy
without wind transportation (Aylor et al., 2003). To take
this into account, we developed a competition model. The
competitive advantage of the receptor pollen was consid-
ered by multiplying the receptor density by a weighting
factor η. However, at the edge of the receptor field, the
number of neighboring plants is lower. Loos et al. (2003)
found that the Gaussian model under-predicted outcross-
ing in the first 7.5 m of the receptor field. To account for
this edge effect, the weighting factor was considered a
function of the distance, d from the edge of the field in
the following way:

η(d) = ηf (1 − e−αd) + ηee−αd. (7)

The cross-pollination probability, Pout(x, y), was derived
from the predicted donor, cdonor (x, y), and recipient,
creceptor (x, y), pollen concentration at position (x, y) by

Pout(x, y) = γ
cdonator(x, y)

cdonator(x, y) + η(d)creceptor(x, y)
(8)

and will be referred to as the cross-pollination rate in the
discussion.

In Equation (8), we also introduced the factor γ to be
able to take into account the time overlap of male flow-
ering phases of donor and recipient populations. In this
study we considered γ to always take the value of one,
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i.e. we assumed the flowering phases were at perfect syn-
chrony. Due to the lack of more detailed information, the
pollen source strength of all point sources was also con-
sidered to be equal throughout all plots, because the GM
maize varieties were isogenic to the varieties in the sur-
rounding conventional plot. Only differences in the den-
sities between the plots would affect the results, because
only relative not absolute pollen ratios were considered.
Documentation of the flowering phases confirmed that
no obvious differences between the plots arose in 2000.
However, in-field heterogeneity was observed by botan-
ical rating in 2001, both in the GM plot and recipient
plot, but was not incorporated in the model, because the
spatial resolution of the measurements was too low for
interpolation.

Parameter estimations

Particle Lagrange model

The only parameters to be estimated for the cross-
pollination prediction with the particle Lagrange (PL)
model were the parameters of the pollen competition sub-
model. The parameters pertaining to the transport model,
such as the turbulence parameters, were all derived from
the meteorological input data, and the roughness length
by the use of a meteorological pre-processor sub-model
implemented in the model (VDI, 2000). For estimation
of the parameters of the competition model, the densities
of donor, cdonor(x, y), and recipient pollen, creceptor(x, y),
were computed for each sampling point (xk, yk) and in-
serted into the competition sub-model.

The goal of the parameter estimations was to find the
value of the parameter set θ ∈ Θ, where the predicted
values of the competition sub-model Pout(xk, yk, θ) were
overall closest to the observed values of cross-pollination
rate, i.e. the ratio of number of seeds to total seeds of an
ear that are herbicide tolerant, HTk/Cornk. Because the
number of seeds sampled on the kth ear, Cornk, is a co-
variate, a binomial model for the probability of observing
i herbicide tolerant seeds, HTk, on the kth ear is given by
(Klein et al., 2003)

Pθ[HTk = i] =

Ci
Cornk

Pout(xk, yk, θ)i[1 − Pout(xk, yk, θ)]Cornk−i, (9)

where Ci
Cornk

is the binomial coefficient.
Two statistical criteria were used to optimize the pa-

rameter set θ. The first criterion was the log likelihood

(Tufto et al., 1997)

Lk(θ; HT1, ...,HTk) = LK(θ) = log

⎛⎜⎜⎜⎜⎜⎝
K∏

k=1

Pθ[HTk]

⎞⎟⎟⎟⎟⎟⎠

=

K∑
k=1

log(Pθ[HTk]). (10)

Combination of Equations (9) and (10) leads to:

LK(θ) =
K∑

k=1

log(CHTk
Cornk

) + HTk log[Pout(xk, yk, θ)]

+ (Cornk − HTk) log[1 − Pout(xk, yk, θ)]. (11)

The second objective function is the extensively used
least-squares (LS) criterion:

S SK(θ, n1, ..., nk) = S SK(θ)

=

K∑
k=1

[
HTk

Cornk
− Pout(xk, yk, θ)

]2

. (12)

With nonlinear regression, we determined the value of θ
where LK(θ) is maximal, which is defined as the maxi-
mum likelihood estimator (MLE) θ̂MLE and the value of θ
where S SK(θ) is minimal, and will be referred to as the
least sum of square estimator (LSSE) θ̂LSSE. To calculate
the results, only the MLE was used, because ML estima-
tions are not biased towards high cross-pollination rates.
The LSSE was presented for comparison of both estima-
tion methods.

To compare both parameter estimation methods, we
present a general statistical criterion for the overall good-
ness of fit with the model efficiency (ME), which is de-
fined by

ME = 1 −
K∑

k=1

[
HTk

Cornk
− Pout(θ, xk, yk)

]2

K∑
k=1

[
HTk

Cornk
−

(
HTk

Cornk

)]2
· (13)

Since the ME criterion considers all measured values lin-
early, the contribution to the ME is higher for large cross-
pollination values.

Lagrange transfer function model

The parameters in the plume Equations (4) and (5) are
in principal related to meteorological conditions. How-
ever, we used the dispersion parameters ax, ay and az as
shape parameters for the plume. We used the maximum
likelihood method to optimize the values of ax, ay and az
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simultaneously with the competition sub-model param-
eters for the mean wind direction and wind velocity in
2000 and 2001, respectively (Tab. 3). All further simu-
lations considering more than one wind direction, wind
velocity combination were run with the same values for
ax, ay and az, and numerical parameter optimization was
only performed for the competition model parameters in
the same way as for the particle Lagrange model.
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