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Abstract. This work was largely inspired by a paper of Shustin, in which he proves that for a plane
curve of given degre@ whose singularities are not too complicated the singularities are versally
unfolded by embedding the curve in the space of all curves of degreewever, our methods are
very different.

The main result gives fairly explicit lower bounds on the sum of the Tjurina numbers at the
singularities of a deformation of a weighted-homogeneous hypersurface, when the deformation is the
fibre over an unstable point of an appropriate unfolding. The result is sufficiently flexible to cover a
variety of applications, some of which we describe. In particular, we will deduce a generalisation of
Shustin’s result.

Properties of discriminant matrices of unfoldings of weighted-homogeneous functions are crucial
to the arguments; the parts of the theory needed are described.
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0. Introduction

It is a well known principle of singularity theory, established by Thom [9], that a
generic map is transverse to any submanifold of its target, or more generally of any
jet space. There are several versions of the proof; an essential point is that we are
contemplating deformations in the (infinite-dimensional) space of all maps.

There are also in the literature several more delicate transversality theorems
in which the given map is only permitted to vary in a finite dimensional space;
here of course there must be some restrictions on the manifolds to which generic
transversality can be established. Some such results follow from Bertini's Theorem
in algebraic geometry; others may be found, for example, in [1]. We shall prove
further results of this kind.

Our work was largely inspired by a paper of Shustin [8], in which he proves
that for a plane curve of given degreevhose singularities are not too complicated
the singularities are versally unfolded by embedding the curve in the space of all
curves of degree; however, our methods are very different.
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Our main result gives fairly explicit lower bounds on the sum of the Tjurina
numbers at the singularities of a deformation of a weighted-homogeneous hyper-
surface, when the deformation is the fibre over an unstable point of an appropriate
unfolding. The result is sufficiently flexible to cover a variety of applications, some
of which we describe. In particular, we will deduce a generalisation of Shustin’s
result.

Properties of discriminant matrices of unfoldings of weighted-homogeneous
functions will be crucial to our arguments. We discuss the parts of the theory that
we need in the first section. The main result is proved in the second section, and
applications given in the third and fourth.

1. Theory of the discriminant

Letfo: C" — Chave anisolated singular point at the origin: for the purposes of this
paper, we also suppoggeweighted homogeneous. As is well known, it follows that
the ideal/ fo:= (0fo/0x1, ..., 0f0/0z,) has finite codimension in the rir@,, of
convergent power series in thevariables. Choose a basjg = 1, ¢1,...,¢,—1

of the quotient vector spao®,/J fo: it is traditional, and usually convenient,
to choose thep; to be monomials, and we arrange them in some order of non-
decreasing Weight. Now define the unfoldiddx,u) = (y,v) = (f(x,u),u),
wherex = (xl, sy @), U= (ug, .. uu—1), V= (v1,...,0,-1), @aNAf(X,U) =

fO( )+Eu 1uz¢z( )

This is the usual construction of a versal unfoldingfef we recall that the
resulting mapF' has a stable germ at the origin, and using @eaction arising
from the homogeneity (where; andv; are assigned weight wif)-wt(¢;)), it
follows that all germs of are stableF is locally stablein the sense of [2].

Now write O, ,, for the ring of convergent power series in thandu variables,
andJ,f := (0f/0x1,...,0f/0z,) for the indicated ideal in it. It follows from
Nakayama’s Lemma that thé; form a free basis of the quotieid?,-module
Ou.u/Jz f. Hence there exist uniquely determined elemepisc O, such that

u—1
foi=> aij(We; modJ,f(0<i<p). (1)
j=0

Thenthe transpose df = (a; ; (V) — v d; ;) is adiscriminant matrixn the sense of
[2], p. 421. Its importance here is largely in its relation to vector fields. Replacing
the congruence (1) by an equation gives, say

af

8£Ek;

fX,u)g; = Z“w ¢j+2bzkxu (2)
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Then the vector field; defined on the source @f by

r 8 p—1 8
& = ;bi,k(xa U)a—xk + ;(ai,j(u) — f(X, U)5z’,j)a—uj

lifts the vector field); defined on the target by

p—1 o
0 = ]Z:%(ai,j (V) — y5i,j)a—vjy

whered/duvg denotes-0/dy.
We next observe the

LEMMA 1.1. The linear relationXc;(a; , — yd;) = 0 between the rows of the
discriminant matrix holds at a point of the target off” if and only if the function
1 = Yc;¢; satisfies the conditioth f, € J(f,), wheref, is the restriction off to
the fibre ofF overp.

Proof. Letp = (y,Vv). We have the relatio®c;(a; j(v) — yd; ;) = O for each
J. Add ¢; times theith Equation (2), and subtract the sum®f times the;th
relation. The terms im; ; then all cancel. Writef,(z) = f(z,v) —y and (as
above)) = Xc;j¢;. Then the expression may be written as

0
¥z fyle) = Sicibis g -
This establishes the forward implication: for the converse, if any relation of the
form ¢ (z) f, () = Yy, 0fp/ 0z, holds, then reversing the argument shows that at
the pointp = (y,Vv) in question,Xc;(a; ;(v) — yd; j)¢; lies in J f,, whence the
conclusion. O

We define two pointy andy’ in the target of a stable map: N — P to be
equivalentif the germs ofF' at the sets:(F,y) andX(F,y') are K- and hence
A-equivalent (her&(F,y) denotesSF N F~1(y)). The equivalence classes form
a partition of P; here we shall refer to the partslasves

The following results are well known: a convenient reference for them (in more
generality than we require here) is Looijenga’s book [5], Chapter 6.

e A vector field onP is liftable if and only if it is tangent to the discriminant
AF.

e The leaf containing is smooth there, with tangent space given by the values
aty of the liftable vector fields.

e The codimension of this leaf equals the sujof the Tjurina numbers of the
singularities ofF" at the points ok (F,y).

e Thern; form a free basis of th®, ,-module of vector fields tangent ivF.
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The instability locusof a mapf is the set of pointg in the target such that
the germ off at X(f,y) is not a stable germ. Our objective is, under suitable
conditions, to describe this set. More precisely, we consider the partial unfoldings

Fk(xa Uty .- 7u,uflfk) = (fjf(X), U,y .- ,UH,]_,]C),
where

u—1—k

Fa) = fo(x) + D uigi(x).
1

ThusF = FYis the above versal unfolding g§, andF* is obtained by omitting
the lastk unfolding monomials.

By Mather’s criterion [6] for stable map-germs, the instability locuB'6f N —

P is the support of thenstability moduled(K*) /tF*(0x) + wF*(6p), i.e. of the
cokernel ofwF'*. We begin by analysing the moduld (F*) = 6(F¥)/tF*(0y):
in fact, we start with\/ (F').

We have an isomorphism @, ,,/J, f onto M (F'), sincetF(0/0u;) has one
coordinate 1 and all the rest, save the first, 0. In turn, we have idend¥igd J,. f
with the free©,-module on the classes of thig, and hence with the cokernel of
the map of free), ,-modules defined by the discriminant matrix. Sidceis the
restriction of ' where the source variables and target variables; are set equal
to O fori > pu — 1 — k, we obtainM (F*) from M (F) by factoring out by these;.

We now study they F*: again we begin witb . This is a map o0, ,-modules;
it suffices to identify the generators. The soutgef the map is generated ldy 0y
and thed/dv;; which are mapped intéF' by composing with#'. When we project
to M(F) = Oy,/J.f, the first generator maps to 1 and, sind&d/du;) =
$;0/0y + 0/dv;, theith generator maps te¢; for i > 1. These images are thus
up to sign the elements we chose(asgenerators of this module.

ForwF* with k£ > 0, as well as setting the variables= 0 fori > u — 1 — k,
the corresponding generators are not available. ThES) /tF* (Ox) + wF*(0p)
is obtained from the cokernel of": Of , — O! by settingy; = 0fori > pu — k
and factoring out the generators corresponding;tfor i < 4 — 1 — k: thus (after
the substitution) we have the cokernel of the map defined by thé lasts of the
discriminant matrixA”', so by the last columns ofA. The stage is thus set for
application of the theory of the discriminant matrix.

The next result we require concerns the symmetry of this matrix. The following
result is a special case of a result of Mond and Pellikaan [7]; for a proof in the
present context see [2], (10.5.30).

THEOREM 1.2.Let fo: (C*,0) — (C,0) be a weighted homogeneous germ of

finite singularity type. Then any homogeneous unfoldinfp @dmits a symmetric
homogeneous discriminant matrix.
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We have seen above that the instability locusFéfcoincides with the locus
where the rank of the submatrix consisting of a certain set odws of the
discriminant matrix drops below. In the case when the matrix is symmetric, we
canreplace this by a submatrix consisting @ff the columns. To use this, we need
to be able to identify the columns in question, so how assume that the remaining
unfolding monomials have strictly lower weight than those omitted.

PROPOSITION 1.3 ([2], Theorem 10.5.32l).F¥ is the unfolding obtained by
omitting thek unfolding monomials of highest weight, the instability module for
F* is the submodule oP* spanned by thé columns of lowest weight of any
discriminant matrix forF'.

For thek rows of lowest weight of the discriminant matrix must correspond by
symmetry to thek columns of lowest weight.

COROLLARY 1.4.For f as above, a poing = (y, V) lies in the instability locus
of F* if and only if there exists a linear combinatiaf(x) of the £ unfolding
monomials of least weight such thaf, € J(f,).

This follows at once from the Proposition on recalling Lemma 1.1.

In what follows, we will not need to study the full instability locus Bf , but
only thepositiveinstability locus, which is the intersection of the instability locus
of F* with the subspace of positive weight of its target (obtained by seifirg0
whenever wiv;) < 0).

2. A bound on Tjurina numbers of unstable maps

Let fo be a weighted homogeneous function of finite singularity type; Wit¢o)
for its Hessian determinant. Lebe a positive integer, and define

k(c) = #{i > 0 wit(i) > Wt(H(fo)) — ¢},

by duality,k(c) = #{i > O|wt(¢;) < c}.
We consider the corresponding mapsind £%(¢), as above. Define also

. O,
vl o) = mex{cme 777
where the supremum is taken over homogeneous polynomiadé contained in
J(fo) and of weight less than The theory we present is independent of the value
of ¢, but usually it will be small: we will mainly be interested in cases where
¢ < Wt H(fo) — wt(fo), so that the unfolding monomials omitted have weight at
least as great af%.

THEOREM 2.1.The positive instability locus df*(¢) presents only multi-germs
of Tjurina number> u(fo) — ve(fo).
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We may observe that when= 1 this is essentially equivalent to the algebraic
part of Wirthmiller's Theorem [12]. For clearly, = 0, and the positive instability
locus of F¥(1) thus presents only multi-germs of Tjurina numbern(fo). But
the only (multi-)germ of Tjurina number>) u( fo) is presented at 0, and so the
positive instability locus i§0}.

We shall require a number of preliminaries before commencing the proof proper.
We begin by re-stating a consequence of the theory of the discriminant. For a point
p of the target oft”, write f, for the corresponding map, considered globally, and
7, for the sum of the Tjurina numbers at the singular pointﬁpﬂf(O).

LEMMA 2.2. The following numbers are equal:
(i) the differenceq — 7;
(ii) the dimension of the leaf through
(iii) the dimension of the span of the vectgyat p;
(iv) the dimension of the quotietit/U,,, whereU is the vector space spanned by
the¢;, andU,, the subspace of thogesuch thatp. f, € J(fp).

Proof. The equality of (i) to (iii) follows from the general properties of the
discriminant cited (from [5]) in Section 1; equality with (iv) now follows from
Lemma 1.1. O

Sincefy is weighted homogeneous, = 7(fo) = i(fo) andfo € J(fo).

We will, from now on, supposg to be contained in the subspace of positive
weight of F, so thatf, differs from fy by terms of weight less than wh).

We will work in the polynomial ringC[x]. Define K, to be the ideal in it
generated by the such that.f, € J(f,).

LEMMA 2.3. We haverp — 7, = dim¢ C[X]/ K.

Proof. Sincel,, = UNK), the conclusion follows from the equalityx] = U+
K,.Infactwe assertthalix] = U+J( f,). Forthis holds whep = 0, by definition
of U. The generatordf,/0z) are obtained from the weighted homogeneous
polynomialsdfo/dz by adding terms of lower order. Thus for agye C[x], if
we writeg = Xa;¢p; + Xby0fo/ Oxy, then the difference — Xa;¢; + b0 fp/ 0z
has lower degree than The result thus follows by induction. O

We may suppose the weights, of the coordinates;, to be positive inte-
gers. Introduce an additional parameterof weight 1. We can then define a
homogeneous functiotd, of x,t¢: if fo has weightd, setF,(z1,...,z,,t) =
tdf,(t~V1zy, ..., t~ V). Write J,F, for the ideal inC[x, ¢] generated by the
0F,/0z), and

I, = {y € C[x,1] | .F, € J,F,}.

Substituting the value 1 fot, or, equivalently, factoring out the ideé& — 1),
projects this to an idedl, in C[x].
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LEMMA 2.4. We havd, = K,,.

Proof. The inclusion/,, C K, is immediate.

Now suppose thap € K,, so that we can writep. f, = X,g,0fp/0zk. AS
above, we introduceto turn this into a homogeneous equation, say

$.F, =" gxOF,/0xy.
k

Thusy € I, and now substituting = 1 we deduce € I,,. O

Substituting the value 0 far, or, equivalently, factoring out the idegl, projects

I, to an idealL, in C[x].

LEMMA 2.5. We havedimC[x]/L, > dimC[x]/1,.

Proof. Choose homogeneous functiofeg, . .. , ay,, } in C[x] whose classes in
C[x]/L,, form a basis. We will show that the, spanC[x, ¢|/I asC[t]-module. It
follows, substituting = 1, that they also spatyx]/I,, which proves the result.

For any elemeny(x,t) € C[x,t], we can find elements, € C[x] such that
(9(x,0) — X, A\rar) = ' € L. Chooses € I which projects ontg?’. Then
g(x,t) — X, N, — B is divisible byt, so is of formtg’, whereg’ has lower degree
thang. The result thus follows by induction on degree. O

We are now ready for the
Proof of Theoren2.1. It follows from the above lemmas that

170 — 7, = dimU /U, = dimC[x]/ K, = dimC[x]/1, < dimC[X]/L,.

Since I, containsJ,(F), it certainly follows thatJ(fo) C L,. It follows that
C[x]/ L, is supported at the origin, and has the same dimensidh,a%,0,. We
will showthatZ, — J( fo) contains a homogeneous polynongialf weight less than
¢, if so, thenL,, containsJ( fo) + C[x].g, so dimC[x]/L, < dimO,/(J(fo),9);
but this is< v.(fo), completing the proof.

We have not yet used the condition thebelongs to the instability locus. By
Corollary 1.4, it follows from this that there is a non-trivial linear combinatjon
of the k& unfolding monomials of least weight — and so of weight less than
with ) € K. Making this homogeneous usingyives a homogeneous € I,
of weight less tham, and not contained if¢, J,(F,)). Now settingt = 0 gives a
non-zero homogeneous polynomyat L, — (fo), and of weight less than This
concludes the proof. O

3. Applications to hypersurfaces

To apply Theorem 2.1, we need to estimate the numbgrf). In the case of
homogeneous functions, such an estimate is in some cases obtained from
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PROPOSITION 3.1Letf = (f1,..., fn) be a regular sequence of homogeneous
polynomials of degreé in C[x] (with X = (z1,...,z,)). Let h be a nonzero
homogeneous polynomial of degre@ hen

dimCX]/{f1,. .., fn,h) <rk" L.

Proof. We can regarflas a ma” — C", which is finite sincd f1, ..., f,) is
aregular sequence. The variétyC C" given byh = 0 has dimension—1, hence
alsof (V') has dimensiom — 1. Choose a poinP ¢ f(V'): then since everything
is homogeneous, the lir@” meetsf (V') only in the origin.

Making a non-singular linear transformation fofwhich does not affect our

hypothesis), we may suppose this line givenfay= --- = f, = 0. Thenh is
a nonzero-divisor modul®fa, ..., fn), SO{f2,---, fu, h} IS a regular sequence.
Hence dinC[x]/(f2, ..., fu, k) = rk™ 1, and the result follows. O

COROLLARY 3.2.If fo:C* — C is homogeneous of degréand of finite singu-
larity type, therv.(fo) < (¢ — 1)(d — 1) L.

This follows from the Proposition on settinfy = 0fo/0x; and takingh as any
homogeneous polynomial of degree:.

Of course, the estimate is non-trivial onlyci< d.

We now consider a hypersurfateof degreed in projective spacé™(C). We
suppose thdt has isolated singularities, so that we can choose a hyperplane, which
we may take aso = 0, transverse td. If the equation of" isy(x) = 0, we define
fo(z1,...,x) = ¥(0,21,...,z,): then fo is homogeneous of degrdeand has
an isolated singularity at the origin (with = (d — 1)"). Setg(z1,...,z,) =
7(17 Ii,... 73377,)'

The functiong occurs as a fibre in the unfoldinfg of fy obtained by taking all
monomials of degreg d as unfolding monomials. Since the Hessiffy) has
degreewd — 2n, this is an unfolding, trivial by [2], (10.2.1), of the unfoldidgf(<),
wherec = nd — 2n — d. Thusg is equivalent tof,,, for somep in (the positive
subspace of) the target (). Theorem 2.1 gives a condition fprto belong to
the instability locus of#(¢), Since an unfolding is stable if and only if it is versal,
this coincides with the condition that the singularitieg;@fre not simultaneously
versally unfolded byF*(©), As T has no singular points omy = 0, this is in
turn equivalent to the condition that the singularitied’adre not simultaneously
versally unfolded by the family of all hypersurfaces of degiée P" (C).

A similar argument applies if we consider the family of hypersurfaces whose
intersections withzg = 0 coincide with that of". Here we must take = nd —
2n—d+1.

A direct application of Theorem 2.1, using the estimate of Propaosition 3.1 for
Ve, NOW gives
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LEMMA 3.3. LetT" be a hypersurface of degreein P™(C) with isolated singu-
larities only.

(i) Supposd/n + 1/d > 3; seté = (d — 1)""1(2n + 2d — nd). If 7x(T) < 6,
then the family of hypersurfaces of degienduces simultaneous versal
deformations of all the singularities of.

(i) Supposd/n +1/d > 3(1+ 1/nd); setd’ = (d —1)"~*(2n +2d — nd — 1).
Let H be any hypersurface transverselfolf 7io(I') < ¢', then the family
of hypersurfaces of degreéwith the same restriction td/ as ' induces
simultaneous versal deformations of all the singularitieE .of

The results given are, in fact, best possible. This, together with similar results in
cases where the hypotheses above pm & 1/d do not hold, will be discussed
elsewhere.

If n = 2, the hypotheses are satisfied and we obtain:

COROLLARY 3.4.LetI" be a reduced (projective) plane curve of degiee

(i) If the sum of the Tjurina numbers of all the singularitied’as < 4(d — 1),
then the family of curves of degréénduces a simultaneous versal unfolding
of all the singularities of".

(i) LetL be any line transverse . If the sum of the Tjurina numbers of all the
singularities ofl" is < 3(d — 1), then the family of curves of degréavith the
same restriction td, asT" induces a simultaneous versal unfolding of all the
singularities ofl". O

Here (i) is the result of Shustin [8] which inspired this paper. A different
generalisation of Shustin’s result has been obtained by Greuel and Lossen [4].
Case (ii) in the casé = 5 was cited in [11].

Whenn > 2, Lemma 3.3(i) applies, apart from the trivial caskes- 2 and
d = 3,n = 3 (where all hypersurfaces with only isolated singularities are versally
unfolded by the family), in four further cases; these are summarised in the following
table.

n|3 3 4 5
d| 4 5 3 3

0118 16 16 16

These will be considered further elsewhere.

Whenn > 2, Lemma 3.3(ii) applies, apart from the trivial cagles 2 (where
all hypersurfaces are versally unfolded by the family), in three further cases; these
are summarised in the following table.

nl3 3 4
a3 4 3
o8 9 8
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The caser = 3,d = 3, where ¢ = 1’, follows from Wirthmiiller's Theorem [12],
as discussed earlier; the other two cases will be considered further elsewhere.

4. Further applications

We now consider examples with distinct weights. Begin wigh= 3 + z°, of
weight 3 if wt z = 3 and wty = b; we haveu(fo) = 2b — 2, and the singularity
has modality wherem = [b/3] — 1 (3m + 3 < b < 3m + 5). For any value of
¢ < m, we havek = c. The critical value fow.(f) is obtained by taking = z¢~1
(the only monomial of this weight), yielding(2— 2). Thus any combination of
singularities with total Tjurina number less thafb 2- ¢ + 1) is versally unfolded
by Fe.

It is shown in [3] that this result too is best possible. Indeed consider deforma-
tions of the formy® + [[5=] (= — &;)% with $b; = b: these have Tjurina numbers
2(b—c+1) and, as is shown in [3], fail to be versally unfolded by the deformation
in question.

In fact, in [3] we give a complete determination of the unstable deformations
of the weighted homogeneous singularities in fieZ and @ series. To save
repetition, let us agree thatcan stand for any of® + «° (here we setv = b/3),
y3 4 uyz® + v with 4u® + 2702 # 0, andy® + yz® (here we setv = a/2).

For the E series we sefg = ¢ and consider the unfolding*, where we require
k < w — 1 so that no monomial of degree at most thatfgfis omitted in the
unfolding. Since there is only one monomial in the relevant degrees; and

ve(fo) = dim O,/ (J(fo) + Op gyt 1) = dimO, , /(v 2% 1) =2k — 2.

The instability locus ofF’* is the union of the images of the following, where
s < k and theg; are all distinct in each case

S

v+ [ — &) Ybi=3w Y b =0,
1
Pruy[[e-&* +v][(z-&)* Tea=w Ya&i=0,
1 1
4y ][ - Yai=2w Y ai&=0.
1

In each case, the Milnor numbers (which equal the Tjurina numbers, since the
singularities are weighted homogeneous) of the singularities at the singular points
(&;,0) add up to @ — 2s; sincerp = 6w — 2, we haverg — 7, = 2s — 2 < 2k — 2.

Thus all the deformations with = £ realise the bound obtained above.

For theZ series, matters are a little more complicated. We tigke z¢, with
¢ as above, and consider the unfoldidgswith £ < w. Again we have: = k and
ve(fo) = dimO,, /(y3, zy?, 2%~1) = 2k — 1.
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The unstable deformations are, withk¢ £ — 1 in each case

S
xy3+H($—§i)b" Soby=3w+1,
* S

s +uy[[(e —&)* +o][(z - &)*) Ta=uw,

1 1
:1:y3+yH(x—§i)2ai Sa;=2w+ 1,

where¢; is nonzero fori > 1, and eithex = 1 orx = 0 and&y = 0. Here we
find that the sum of the Milnor numbers is6+ 2 — 2s for the first deformation
with x = 1, and @ + 3 — 3s in all the other cases, so that— 7, = 2s + 1 or 2s
correspondingly. Thus our bound is achieved by the first deformation st
ands = k — 1: this is available only fromy® + 2°: i.e. from the strati{_l), Z(*l)
and the part ot with u = 0.

For the Q series we takefp = 122 + ¢ with ¢ as above, and consider the
unfoldingsF* with & < w. We again find only one monomiaF in the relevant
degrees, c = k andv.(fo) = dimO, ./ (y?, 2%, zz,2%~1) = 2k.

The unstable deformations are, withk¢ £ — 1 in each case

(1) z22+ 13+ (x — &) > b = 3w.

(2) 22+ Fuy[li(z — &) +olli(e —&)% T =w.

3) w4y +ylli(x — &)™ Y a; = 2w.

4 = Y@z + 0P+ oy’ + I — &)} 2 bi=3w+1,

where (as before); is nonzero fori > 1, and eithex = 1 orx = 0 andép = O,
and in the final cas&;' is such that the division is possible. Here we find that the
sum of the Milnor numbers isu6 — 2s for (1) and (3) withx = 1 and for (2), and
6w + 2 — 3s in all the other cases, so that— 7, = 2s + 2 or 2s correspondingly.
Thus in each case there are some deformationsswithk — 1 producing equality.
Finally we consider other weighted homogeneous germs of low modality, and
the unfolding omitting all unfolding monomials of weight at least thaf of
For parabolic (simple elliptic) and exceptional unimodal (triangle) singularities,
we takec = 1. Here, as discussed earlier, the instability locus consists only of the
origin.
For quadrilateral and exceptional bimodal singularities, there are two unfolding
monomials, and two candidates fgrone of which is 1 (when = 1, with conclu-
sion as above) and the other is the variable -asapf least weight. The calculation
of v then turns out to depend only on the series, and we exhibit it in tabular form.
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Series Equation J(f)+(z) v
E y3 4 ya(z) + b(x) (2, z) 2
7 zy® + ya(z) + b(x) (z,9°) 3
Wyt yPa(z) +yb(z) + c(x) (z, > 3
Q 222 + 43 + ya(x) + b(x) (, y 2?) 4
S 22% +y%2 + za(x) + yb(z) + () (z, y yz,2%) 3
U v+ 22 4 yza(z) + yb(z) + ze(z) + d(z) (z,y?, 2%) 4

We have already seen that for most bimodals inEhe€Z and () series these
estimates are best possible. This is true for all bimodals in the remaining cases: the
deformations for théV series appear in [2], Chapter 11 and we have obtained the
others subsequently.

These calculations aof are valid for all singularities in the series in question,
provided that only the cage= 2 is under consideration.

Itis similarly easy to compute for all weighted homogeneous trimodals (these
were enumerated in [10]), and again the estimate is best possible in most cases. We
defer the details to a subsequent paper.
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