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Abstract . The radiative instability was considered in the context of 
pulsar radio emission by Goldreich & Keeley (1971) and rederived and 
extended by Asseo, Pellat, & Sol (1983) and by Asseo (1995). Their 
results can be generalised and reproduced by replacing the thin cylindrical 
ring of charged particles by an infinitesimally thin current carrying sheet 
in either planar or cylindrical geometry, suggesting that the local ring 
geometry may not be essential for the instability. It may be useful to 
further investigate the generalised dispersion equation given below. 

1. Introduct ion 

In the Goldreich and Keeley model, instability occurs for charges moving around 
a thin cylindrical ring bounded by vacuum. Buschauer & Benford (1978) sug
gested that this is due to the acceleration of particles around the ring. Asseo et 
al. and Asseo model the ring as a strongly magnetised pair plasma annulus, and 
obtain a dispersion equation by enforcing boundary conditions on the fields at 
the edge of the annulus. Asseo et al. argue that sharp boundaries are essential 
for instability, particle motion along curved magnetic field lines alone being in
sufficient. Rowe & Rowe (1999a) considered wave modes for a thin pair plasma 
slab in planar geometry and this work implied a connection between the pla
nar and cylindrical cases. We consider an infinitesimally thin current carrying 
interface (beam) between bounding plasmas and obtain an analytic dispersion 
relation for wave perturbations which is independent of the geometry. This re
sult contains and generalises those of both the planar geometry and cylindrical 
geometry cases, and is obtained in a straightforward manner. 

2. General Thin B e a m Dispers ion Relat ion 

The general dispersion equation is derived in a recently submitted article (Rowe 
& Rowe 1999b). We consider a beam of electrons and positrons flowing with 
speed U along a strong magnetic field relative to bounding electron-positron 
plasmas with different plasma frequencies. We use a coordinate system, not nec
essarily cartesian, with basis vectors (x,y,z), where x is normal to the beam in
terface and y is parallel to the magnetic field. Dielectric tensors in each medium 
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have the form K(u, k) = (W — l)yy + S, with S the unit tensor and 

where 7 is the Lorentz factor of the flow and u>p the plasma frequency. For the 
beam 7 = 7P and u>p = wj, say, while for the bounding plasmas, U = 0, 7 = 1 
and u)p = u>i and ur. 

The induced beam current is 

with Esy(u>) the average of the y component of the electric field across the beam 
(of width a) and Wt, the dielectric constant in the beam. This current leads to a 
discontinuity in the magnetic fields across the beam but the surface components 
of the electric field are continuous. The dispersion equation obtained from these 
boundary conditions has approximate analytical solutions if S = a/xo <C 1 

(where XQ is a suitable scale length), of the form u ~ UR+UIIS? where u)R = kyU 

and 

w2 = ^bB^1)(LJR,p)B'i°'1)(UR,p) 
W5 rf[WiBl(uR,p)B<~^)(ojR,p) - WrBr(uR,p)BH°V(uR,p)Y 

with dielectric constants Wi and Wr and magnetic fields Br and B in the bound
ing plasmas evaluated at u = UJR , p = x/xo the dimensionless position of the 
sheet surface and parentheses notation used to denote partial derivatives. 

3. Discuss ion 

This general result depends only on the values and derivatives of the magnetic 
fields and dielectric constants in the bounding plasmas, at the interface, and has 
been shown (Rowe & Rowe 1999b) to reproduce previous results of planar and 
cylindrical geometry with the appropriate choice of the magnetic field values. 
In particular, we can rederive the radiative instability in a local planar geom
etry, without particle motion along curved trajectories. The instability is of 
reactive type and can be attributed to phase bunching of particles in the wave. 
The result suggests that only the magnetic field values and derivatives at the 
interface determine (in)stability and as these values are unknown for the pulsar 
application, it may be of interest to investigate it further for various choices. 
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