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1. INTRODUCTORY.

There are various methods in existence for the practical solution
of a set of simultaneous equations,

(1) aix z1 + ai2x2+ + ain xn = cu i = 1,2, , n.

Some of these methods are appropriate to special systems, as for
example to the axisymmetric " normal equations " of Least Squares.
In many applications, however, as in problems of statistical correla-
tion of many variables, it may be desired not merely to solve a
given set of equations but to obtain as much knowledge as possible
about the system or matrix of coefficients; perhaps to evaluate its
determinant and various minors, such as principal minors, possibly
also to determine the elements of the adjugate matrix, or the
reciprocal matrix. The examination of the sign of successive
principal minors of an axisymmetric determinant, in order to find
the signature of the corresponding quadratic form, is a case in point;
and there are many such applications.

I t seems to us, after considerable numerical practice, that if we
are granted the use of a machine capable of forming and adding or
subtracting binary products, both positive and negative, and of
dividing the resulting sums by arbitrary divisors, then the elementary
and old-established process of reduced elimination can be so arranged
as to provide almost everything that is desired. The eliminations,
which in practice are simply cross-multiplications supplemented by
divisions at the proper stage, lead to successively condensed systems,
the elements of which are signed minors of the original system, the
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208 A. C. AITKEN

sign being determined most easily by the use of Sylvester's " umbral
notation "x and the usual rule of inversion of indices. By augmenting
the original array with suitable columns containing zeros and units,
in fact with a " unit matrix," the scheme can be used at the same
time to form the adjugate matrix (by solving the set of equations, in
matrix or vector notation, Ax = y), and therefore, if desired, the
reciprocal matrix; and an additional column can be kept for a
-" check sum." The method could likewise be used to solve the more
general system of equations of transformation,

(2) aa xi + ai2x2+ . . . . + ain xn = bilyi + bi<iy2 + + bin yn,

in matrix notation Ax = By, and hence to evaluate the matrix A~1B.

Methods of the kind described below have been used for two
or three years by the author and by students working under him,
and have been found well adapted to machine work. The present
paper, which has been in manuscript a considerable time, is now
published in the hope that, while of little theoretical importance, it
may be of interest and value to computers.

At the suggestion of an interested friend the author some time
ago applied the routine to the set of six normal equations by which
Gauss in 1809 calculated2 the corrections to the elements of the
minor planet Pallas. This particular set of equations has a formid-
able appearance, owing to the wide range of magnitude of the
numbers involved; but the solution was performed, and the results
verified by substitution in all six equations—a check well worth
applying in any circumstances—in some two hours or less. The
results proved to be in considerable disagreement with those of Gauss.
Our conjecture is that Gauss misread the coefficient [ab], or 720391,
-as 703921, an error (arising from transposition of figures) which threw
out the calculations almost at the very beginning. At this late date

1 According to which the minor, e.g. arising from the 1st, 3rd and 4th rows, and

Und, 5th and 6th columns, is represented by ( 1.

2 Werke VI, 18-24; see also Bertrand's translation in his Methode des Moindres
Oarres, 139-141.
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the circumstance has not much interest, and certainly no import-
ance; and we mention it solely to account for the discrepancy.

In an appendix we describe by means of a brief example a
method put forward by T. Smith1 for building up the adjugate in
stages, a method which does not seem to be widely known, and
which, subject to the reservations we mention, might often be
employed with advantage.

2. ARRANGEMENT or REDUCED ELIMINATION.

The process of reduced elimination consists in the repeated use
of such determinantal identities as

(1) 11 aY b2 c3 d, | | 62 c3 d4 e511 = | aa b2 cs dt e 5 1 . | b2 c3 d i 1 ,

i.e. (2) \axbic3die5\ =\\a1bicsdi\ | 62 c3 d4 e511 4- |62c3d4|,

where determinants, and compound determinants, such as that on
the left of (1), are represented by their diagonal elements. The
identity (1), in Muir's terminology, is simply the " extensional," by
means of the extension2 [b2c3d4], of the trivial identity

(3) 11 o, | | e511 = | »i e51.

By way of illustration of the method we shall first set out the
solution of a set of equations and the calculation of the elements of
the adjugate matrix of the system, choosing a rather simple example
and including a check sum. The first equation of the system is

17a;, — 9x2 + 12«3 — 22z4 = — 3,

which will show how the others are entered in the scheme. The
rows and columns in successive stages on the left are named
"umbrally" by bracketed indices depending on the position of the
"pivotal elements" used in preceding stages. The use of these will
be described in more detail in a moment. The work is set out thus:

1 Phil. May. (3), 18 (1927), 1007.
2 An extension, i.e. added letters and suffixes, can of course be inserted not merely

at the end, as \ a1b2 \ becoming | ax 62 c3 d4 | , but in the middle or elsewhere,,
as | ax d4 | becoming | ax 62 Cgdi \ .
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I.

II.

(1)
(2)
(3)
(4)

(13)

(23)

(43)

x.

(1) (2) (3)
17
19

— 7
31

(12)
22
18
29

(4)
— 9 12 —22

— 11 15 —27
5 - 6 13

(124)
(132) 10

I I I . (432) —130

— 18 24 —37

(32) (42)
6 7
9 8

12 49

(324)
3

- 6 9

IV.

(4321)
~ 10.
-f-8.
-f-5.

(3241)
— 135

135
135

. - 1 3 5

c.

- 3
- 8
14

10

111
114
302

18
-634

-500
-393
-477
-288

y-

(1) (2) (3) (4)

9
11

18

- 7 —1

— 49 —79

130
-69

9
36

— 175
42
18

— 198

— 115
— 21
-9

— 171

10
3

— 18
63

s.

— 4
— 11

20
11

160
165
415

25
- 9 5 3

— 785
— 573
— 612
— 693

Explanation. The arrangement at Stage I hardly calls for
description. The last column contains the check sums, that is, the
sums of all the entries in the respective rows. A pivotal element is
chosen at will, as here the underlined 5, and elimination is performed
with respect to the variable it affects. The procedure is simply to
evaluate, in the whole array I of four rows and ten columns, every
minor of the second order which involves this 5, treating the diagonal
which includes the 5 as the principal diagonal however it is actually
placed; that is, giving its own sign to the cross-product involving
the 5, and reversing the sign of the other cross-product. For
example, the entry 22 at Stage I I comes from (5) (17) — (— 7) (— 9),
the entry 29 from (5) (31) — ( — 7) ( — 18), and the entry 415 in the check
column from (5) (11) — (20) (—18). I t is easily proved that the check
value, as computed in this way by cross multiplication, ought always
to agree with the sum of the elements in the row in question, and the
"verification should be made as each row is completed.
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THE EVALUATION OF DETERMINANTS 211

At Stage II we choose another pivot at will, namely the under-
lined 8, and cross-multiply with respect to it in the same way,
dividing each result, however, by the previous pivot, 5. For
example the entry - 69 at Stage III comes from (8) (12) — (9) (49),
divided by 5. It is a consequence of the identity (1) that such
division, when the cross-multiplications have been extended to their
full accuracy, should be exact without remainder. In ordinary
numerical practice, however, it would be uselessly laborious to retain
all the digits necessary for such a check, unless indeed all the
elements were small; and the check sum is used instead.

Later stages1 follow the same rule, that is, cross-multiplication
about a chosen pivot, supplemented by division by the previous
pivot. For example the ultimate single entry —135 at Stage IV
comes from (10) ( — 69) — (-3) (-130), divided by 8. (It will be
explained later why this result is entered in four places in Stage IV.)
This actually gives with correct sign the value of the determinant
A of the system, but it is necessary now to describe by what rule of
sign we are able to assert this, as well as to fix the sign of the
various signed minors which appear as entries in the intermediate
stages.

Rule of Sign. Row indices are put at the left side of the rows
and column indices at the heads of columns. The first index within
a bracket names the row or column of the original array from which
the entry in question has been derived. When at any stage we use
a pivot named by brackets with first row index i, first column index
j , we annex i and j respectively as la-it indices in the umbral brackets
which designate the rows and columns of the next stage. Inspection
will show that this has been done in our example. I t may then be
proved without trouble2 by aid of the identity (1) that all entries are
thus designated umbrally in the notation of Sylvester with correct
sign. (For example the entry —3 at Stage I I I would be written as
/I oo\
( ' ), namely the minor based on rows 1, 3, 2, columns 3, 2, 4 of the
\324/

1 If the original determinant is of less than full rank, we shall come to a stage in
which all entries are zero. Of. L. H. Rice, Journ. Math, and Phys. (Massachusetts), 11
(1932), 146-149.

2 Cf. § 5, infra. This rule of sign differs from that given by the author in a very
similar method for computing determinants, Trans. Fac. Act., 13 (1931), 272-275.
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212 A. C. AITKEX

original array, taken in that order.) To fix the sign the ordinary
rule of inversions of indices may be used. The writer here often
adopts the simple expedient of writing the row indices above the
column indices, joining by a line each row index to the same column
index, and giving plus or minus as the number of intersections of the
lines is even or odd.

We could of course avoid all trouble regarding sign by choosing
always either the leading element or indeed any diagonal element of
an array for pivot, as one would naturally do in solving a symmetric
system of normal equations,—for then the minors would all be entered
with their own sign; but in a non-symmetric system it might well
happen that diagonal elements were either zero or else so small as to
have large tabular uncertainty, in which case the choice of a non-
diagonal element for pivot would be enforced.

At row (4321) of Stage IV the original equations have been
reduced to " triangular form." To complete the solution we might
copy out, for example, equations (4321), (132), (13) and (1) from the
scheme, and solve in succession. It is neater and easier, however, to
choose the solving set according to the pivots already used, and to use
the latter once more in reversed order, proceeding thus:

Enter the value of A in a new row under the last pivot, 10, as
shown. Cross-multiply in row (132), which contains the pivot 10,
with respect to the underlined —135 or A in the row (4321), dividing
all results by the pivot 10. For example the entry —393 comes
from ( — 135) (18) — ( — 500) ( — 3) divided by 10, and so on.

Next, enter again a A, or —135, in a new row under the still
earlier pivot 8, and perform cross multiplications with respect to the
two earlier A's together, using row (23), in which the 8 occurs, and
dividing by the 8. For example the entry —477 comes from
( — 135) (114) - (—500) (9) - (-393) (18), divided by 8; the entry -612
from ( — 135) (165) - (-785) (9) - (-573) (18), divided by 8.

Last of all, enter another A, or —135, under the first pivot used,
5, and compute, e.g. —288 as (-135)(14) — ( — 500) ( — 6) —( — 393) ( — 7)
_ (_477)(13); divided by 5.

This step completes the work. Rearranging the rows in Stage
IV so that the A's fall in the diagonal, we write down the solution of
the proposed equations as

? g 2 1 3 3 , * = £ £ = 3-704, ^ * " 3-538.
135 13D 13D
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At the same time the adjugate matrix, by the same rearrange-
ment, is found from the rows on the right of Stage IV to be

; - 6 9 42 - 2 1 3 |
! 36 - 1 9 8 —171 63 I

ad3A = \ 130 - 1 7 5 - 1 1 5 10
j 9 1 8 - 9 - 1 8 ^

We use the word adjugate strictly in the matrix sense, which involves
co-factors or signed minors in the elements, and differs from the
determinantal definition, as ordinarily given, in that rows replace
columns and vice versa. By dividing each element of the adjugate
by A we obtain the reciprocal matrix.

It is believed that, with experience and practice, the above
method will be found uniform and straightforward.

3. EXAMPLE OF A SET OF NORMAL EQUATIONS.

In the present section we shall set out the solution of the normal
equations in the astronomical problem of Gauss, earlier mentioned.
The coefficients themselves are in some cases in slight disagreement
with those given by Gauss; this is due to the fact that on discovering
the discrepancy in the solution, and conjecturing the reason, we
went through for ourselves the work of deriving the six normal from
the eleven observational equations, and found a few disagreements
too large to be explained by the ordinary rounding off of results to
such and such a number of significant figures. We also solved the
normal equations using Gauss's values (after replacing 7032-91 by
7203-91), obtaining results which hardly differed from those obtained
below.

The computation has been restricted to five significant digits,
and a characteristic index in heavy type has been used to indicate
the order of magnitude. E.g. 3-12345 would represent 123-45, and
312345 would represent 0-00012345.

In each stage the leading element is pivot, a choice which makes
the method here resemble Gauss's own method, the point of difference
being that we perform the divisions a stage later than he did, thereby
obtaining minors, and finally the determinant, of the system. In
symmetric systems the choice of a diagonal pivot preserves symmetry
and thus practically halves the labour of computation.
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(1)
(2)
(3)

(5)

(6)

-f-1

1

4
— 1
— 1

-0
-0

X.

•59157

•72039
•93458
•22851
•34664
•18197

(12)

(13)
(14)

(15)
(16)

•59157.

y-

4-72039
810834

— 2-49064

— 4-32298
— 3-19864

— 3-14306

812195

3-38301
— 4-26449
413221

3-46459

(123)
(124)

(125)
(126)

H-812195.

^-7-87278.

-h8-

z.
-T-93458
-2-49064

0-71919
111338
T-58616
0-26284

3-38301
1-42458
1-64937

0-31436
115379

7-87278

8-13558
6-56244
7-31402

(1234)
(1235)
(1236)

81136.

u.
— 1-22851
— 4-32298
1-11338

212003
-0-37137

— 0-12040

— 4-26449
1-64937
2-65784

— 1-29890
— 1-11281

8-13558
9-13443

— 7-55706
— 7-21178

8-81136
— 7-46121

— 7-50069

(12345)
(12346)

V.

— 0-34664
— 319864

T-58616
— 037137
122821

— 036261

413221

031436
— 129890

213380
-1-22082

6-56244
— 7-55706
8-27287

— 7-46560

— 7-46121

819503
— 7-34771

9-17887

— 8-34970

w. c.
-018197 3-37109
-314306 6-58010
0-26284 3-11334

-012040 —3-26839
-0-36261 -2-94274
1-56246 2-31764

3-46459 6-75840
115379 3-70517

-1-11281 -3-73974

-1-22082 -3-42906
2-33240 3-25543

7-31402 1014046

— 7-21178 —1011859
-7-46560 —1010540
8-68487 9-46700

-7-50069 —10-24103
-7-34771 —9-81911
8-48207 —8-27457

-8-34970 —10-88884
9-44527 —10-16380

4-75780
811418
2-66357

— 4-34878
-3-29165
-310607

812953
4-11008

-4-33165
3-90154

3-75146

1014306
— 10-10456
-10-10364

9-53185

-10-23388
— 9-80770
8-12266

— 10-87445
-1012277

-215593 1 53996 3-21841

(1) (2) (3)
3-37109 658010 3 11334

(123456) 9-96656 —10-74420 -10-64754
-233092 —251197 -176995 11 -1-66995

(4) (5) (6)
-3-26839 —2-94274 2-31762 (check by substitution)

Thus x = — 15 593; y= 0053996; z = 218-41; u = - 3 3 0 9 2 ; v = - 5 1 1 9 7 ; w= — 7-6995.

The values given by Gauss (loc. cit.) were

z = _ 3 - 0 6 , y=0-054335, z = 166-44, w=-4-29 , v= -34-37, w=-S-15.

I t may be verified that these values do not satisfy the original
equations. They do not even satisfy equation (1), which was used by
Gauss in finding the last of his unknowns; but it may be noted that
they would do so, if it were again allowed that 7203-91 had been
misread or miscopied as 7032-91.

In conclusion we may make some general remarks. Suppose that,
in some non-symmetric system, we were working to four significant
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THE EVALUATION OF DETEKMINANTS 215

digits, and had a choice between pivotal elements 0-8723 and 0-1078.
It would be natural in most cases to choose the former, since its
tabular uncertainty is only about one eighth of that of the other, and
this will be of importance when it comes to be used as a divisor. On
the other hand it does not follow that such a choice will be vindicated
at the next stage, for the minors resulting from the chosen pivot may
have much greater tabular uncertainty than those resulting from the
one rejected. The truth is that, whereas in the ordinary algebraic
theory of matrices and determinants with exact elements many
questions (e.g. questions of rank) hinge simply on whether minors are
exactly zero or not zero, in the statistical and observational use of
these functions we have1 varying degrees of sensitiveness to error in the
minors, and the fixing of a limit to the error committed by the result
may indeed be a very difficult matter. There can be no doubt what-
ever that in common practice considerations like these are either lost
sight of or treated perfunctorily.

4. APPENDIX ON T. SMITH'S METHOD OF FORMING THE ADJUGATE.
For the theory of T. Smith's method of building up the adjugate

in stages we refer to his paper itself, cited earlier, remarking only
that his rule for computing interior elements, within the border, can
be looked upon, and might have been demonstrated, as a direct
consequence of Jacobi's theorem on any minor of the adjugate. We
shall display the practical working of the method by using it to
calculate the value of the numerical determinant used in our own
example of § 2, and the elements of its adjugate. The work appears
thus:

Ar

I. 17 17

I I .
— 11

9
7

-9
6

-3

31

-19
17

5

9
-18
. 27

— 18

12
15

— 6

18
— 22
-16

24

— 22
— 27
13

-37

III.

— 69 36 130 9
42 —198 —175 18

I V - —21 —171 —115 —9
3 63 10 —18

16

— 18

- 1 3 5

A.

17
19
— 7

31

-9
— 11

5
-18

12
15
-6
24

— 22
— 27

13
-37

1 Cf. I. M. H. Etherington, in Proc. Edin. Math. Soc. (2), 3 (1932), 107-117.
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Explanation. Stage I simply contains the leading element of the
system. At Stage II the adjugate (in the sense used in the theory
of determinants, without transposition of rows and columns) of the
leading minor of the second order is written down, as shown within
the dotted lines, and the numerical value of the minor is entered in
the column headed by Ar. The adjugate is then bordered by
elements from the third row and column of the original determinant.

At Stage III we use these bordering elements as multipliers
thus: the entry —3 comes from (12) ( — 11) + (15) (9) with sign
altered; the entry — 27 from (12) ( — 19) + (15) (17), with sign altered.
Similarty the entry 18 comes from ( — 7) ( — 11) + (5) ( — 19), with sign
altered; and the entry —22 below it from ( — 7) (9) + (5) (17), with
sign altered. The corner element —16 is just the value of Ar at the
previous stage.

The determinant of the partial adjugate at Stage III is now
easily calculated, for the entries —3, —27, —16 are the co-factors of
the entries —7, 5, —6 in the border of Stage II, so that we now enter
( —7)( —3) + (5)( —27)+ ( —6)(—16), or -18, in the A column; a
result which is checked at once by (12) (18) + (15) ( —22) + ( —6) (-16).
The interior elements at Stage III are now calculated thus: e.g. the
entry —9 comes from ( — 18) (-11) + (18) ( — 3), divided by —16,
where the —11 occupies the same place in Stage II that this —9 is
going to occupy in Stage III, the —18 and —16 are the respective
A's, and the 18 and —3 are the already calculated exterior elements
in the same row and column as the —9. Each interior element is
calculated in a similar manner. The whole is then bordered with
elements from the fourth row and column of the original determinant,
and first the border, then the interior elements of the final adjugate
at Stage IV are derived in the same manner as at Stage III.

Thus the determinantal adjugate is derived. The more useful
matrix adjugate is obtained by transposition of rows and columns.

• It will be seen that the arrangement is ingenious and effective.
It must however be pointed out that there are situations which would
throw it into difficulties. One is the case in which any intermediate
Ar proved to be either zero, in which case it could not be used as
a divisor at the next stage to find the interior elements, or else small
and with large tabular uncertainty. The former disability would not
arise with a set of normal equations, for the matrix of such a set
is necessarily positive definite, so that the principal minors Ar are
essentially positive and non-zero; but they might quite conceivably
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THE EVALUATION OF DETERMINANTS 217

be small. There is a similar caveat regarding Dodgson's method of
evaluating determinants; and one may say indeed that any system
of solving equations or of computing determinants which does not
possess flexibility of choice in divisors is likely to be thrown out by
circumstances of the kind we have mentioned.

5. A NOTE ON EXTENSIONAL IDENTITIES. (Added Nov. 12, 1932.)

The rule of sign of the working process of § 2 may perhaps be
elucidated by the following brief account of those types of deter-
minantal identity which Muir has named " complementary" and
" extensional" respectively.

Jacobi's theorem1 on a minor of the adjugate states that any
minor of the adjugate, e.g. \AlB2GiDi\ of a determinant
A = | ax b2 c3 d41 (determinants being indicated here by their diagonal
elements), is equal to the complementary minor of the determinant
multiplied by a suitable power of A. For example,

| B2 C's | = | «i d41 A, \AlC3D4\ = b2 A
2, and so on.

Here let us observe that A itself may conveniently be considered as
a minor, its complement being unity, which we may regard as a
minor of zero order.

It follows at once from Jacobi's theorem that to every homo-
geneous identity involving minors taken from a general array, such
as (ai62C3(Z4), there corresponds a complementary identity, obtained
by writing complementary capital letters and suffixes instead of the
original small letters and suffixes. Further, the elements of the
original array being quite general, so also are those of the adjugate
array; whence we infer that the complementary identities are not
merely valid qua complementary, but are valid in their own right,
so that one may quite well replace capital letters by small.

We thus arrive at the true conception of the duality of comple-
mentary identities, while we also observe the reflexive property, by
which the complementary of a complementary identity, with respect
to the original array, restores the original identity. But here one
might proceed otherwise; from a complementary one might proceed
to form a second complementary, not with respect to the original
array but with respect to an augmented or extended array, such as
(aib2c3dieof6). In such a case we return, not to the original identity,

1 Of. Turnbull, Determinants, Matrices and Invariants, 77-79.
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but to one derived from it by elongating each diagonal repre-
sentation of a minor by the " extension," e.g. (e5f6), and in most
cases, for purposes of homogeneity, inserting powers of the deter-
minant | ef/GI, which may be regarded as the extension of a minor
of zero order. These new identities are what Muir has called
"extensionals" of the original ones; and the discrimination of such
types effectively condenses much of the older literature of
determinants.

To take a simple example, so trivial an identity as

yields, by an extension like (c3d4), the by no means obvious identity
in compound determinants

11 a-i C3 dt I I 62 c3 d411 = I a,\ 62 C3 di | . | c3 cZ41.

Writing the last identity umbrally as

1 3 4 \ / 2 3 4 \ | _ / 1 2 3 4 \ / 3
1 3 4 / \ 2 3 ± ) I ~ V l 2 3 4 y ! . V3

we observe that extensionals can be written in umbral notation with
equal vividness, and in some respects with more flexibility, since upper
and lower indices may be freely permuted. The extension here is

3 4N
4y

The rule of sign of § 2 will now be seen at once to be based on
umbral extensionals. For example, if we agree to write the pivotal
element last in diagonal representations, we may observe that the
passage from Stage III to Stage IV in the example of § 2 is based
on the extensional

4 3 2 \ / I 3 2 \ | _ /4 3 2 1\ /3 2\
3 2 4/ V1 2 V I ~ \3 2 4 l) . \2 4,

(3 2\ /2 3\

J, that is f ), is the pivotal element at the previous
Stage II. The effect has been to attach first upper and lower indices
of the pivot at III as last indices of the entry at IV, and the reader
can easily build an induction to show that in the arrangement
adopted this must always hold.

As a final example of the use of extensionals, we shall derive
the important expansion of Schweins1 for the quotient of two

1 Muir, History of Determinants, Vol I, Part I, p. 172.
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determinants differing in one column (or row) only. Thus for the
fourth order the theorem is

= |0i62c3rf4| = î_ + | 0i Qg | fri , | ̂ i CT2 &311 6, c2

|rt bcd' a a | a b \b2c3d4' ai a ! | a x b 2 \ | a 2 b 2 1 1 " i & 2 c 3 1 |dj b2c3\\atb2c3d4\

To prove this, we have, if Q3 is the quotient for the thi rd order,

(1) Qi — Qz = 11 0i b2 c3 dt 11 a, b2 c3 \ | H- | aj 62 c31. | aj 62 c3 <Z41.

The numerator is the extensional, by (b2 c3), of 110x d411 ax \ |, t h a t
is, of 10i «41. aV Hence its value is | 0t b2 c3 a41. | dj 62 c31, or, by com-
pensating interchanges of columns, 10, o2 63 c4 \. \ bi c2d3\.

Now substi tut ing in (1), and adding the analogous results for
Qs — Qi> Q-2 — Q\, Q\, we derive the Schweins expansion.
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