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Abstract

The results of Szele and Szendrei [‘On Abelian groups with commutative endomorphism rings’,
Acta Math. Acad. Sci. Hungar. 2 (1951), 309–324] characterizing abelian groups with commutative
endomorphism rings are generalized to modules whose endomorphism rings have various restrictions
on their idempotents. Such properties include central or commuting idempotents, and one-sided ideals
being two-sided. Related properties include direct summands having unique complements, or being fully
invariant.
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1. Introduction

Throughout this paper, unless specifically noted, the word ring denotes a unital
associative ring, group denotes an abelian group, and module denotes a unital right
R-module. It is a long-standing problem in abelian group theory to describe those
groups G whose endomorphism ring End(G) is commutative and those commutative
rings which are isomorphic to the endomorphism ring of an abelian group. Krylov
et al. [KMT03] present an authoritative survey of the history of the problems. The
known results are of two sorts: if G is characterized by torsion, then a complete
classification is known for both parts of the problem [KMT03, Corollary 19.3]; if G is
torsion-free, then no classification is feasible; instead, there are realization theorems
stating that large classes of commutative rings can be realized as End(G) for some
group G [KMT03, Section 29]. Naturally, mixed groups lie between these two
extremes.

The purpose of this paper is to generalize the problem by considering modules
whose endomorphism ring is ‘almost commutative’. For example, we describe classes
of modules whose endomorphism rings have commuting idempotents, or in which
one-sided ideals are two-sided. We also consider modules for which direct summands
have unique complements or are fully invariant.
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Let us first establish some notation. Elements of a ring or module are denoted
by lower-case Latin letters, and homomorphisms by lower-case Greek letters.
Functions are written on the left of their arguments. We denote a submodule N of M
by N ≤ M and a direct summand N of M by N ≤⊕ M . In particular, if R is a ring,
then I ≤ R means that I is a right ideal of R. We denote the (not necessarily abelian)
group of units of R by U =U (R) and the centre of a ring R by Z = Z(R).

Let R be a ring and let E = E(R) denote the set of idempotents in R. If e ∈ E ,
then e is called proper if e 6= 0 or 1. There is a natural partial order, denoted ≤,
on E defined by e ≤ f if e f = f e = e, and nonzero minimal elements of E with
respect to this order are called primitive idempotents. A ring R is called abelian
if E(R)⊆ Z(R), that is, if all idempotents are central.

If e ∈ E , then ē = 1− e ∈ E is called the complementary idempotent and eē =
ēe = 0. In general, e and f ∈ E are called orthogonal if e f = f e = 0. If e ∈ E is
proper, then R = eR ⊕ ēR is a proper direct decomposition of R considered as right
R-module. In particular, e is primitive if and only if eR is a minimal right ideal
summand. Similar remarks hold of course for left modules Re and Rē. If e ∈ E is
central, then so is ē and the decomposition is into a direct sum of ideals.

For right R-modules M and N , Hom(M, N )= HomR(M, N ) denotes the additive
group of R-homomorphisms of M into N and End(M)= EndR(M) the ring of
R-endomorphisms of M . The following facts concerning idempotents ε ∈ End(M)
are well known [F73, Section 106]. If ε is a proper idempotent then ε determines a
nontrivial direct decomposition M = im(ε)⊕ ker(ε). Conversely, if M = N ⊕ K is
a decomposition of M into nonzero summands, then there is a unique idempotent
ε ∈ End(M) such that ε|N is the identity map and ε|K is the zero map. We say
that N ⊕ K is the decomposition corresponding to ε and that ε is the idempotent
corresponding to the decomposition M = N ⊕ K .

The paper is organized as follows. In Section 2, we describe the rings in which
direct summand right ideals are uniquely complemented and relate this property to
subcommutativity and certain one-sided ideals being two-sided. In Section 3 we show
that these properties are equivalent to R being abelian.

In the rest of the paper, the results of Sections 2 and 3 are applied to
endomorphism rings of modules. For example, in Section 4 we show how unique
complementation of summands of End(M) implies unique complementation of
summands of M . We also find a module theoretic generalization of the main result
of Szele and Szendrei [SzSz51] on abelian groups with commutative endomorphism
rings. Section 5 is devoted to characterizations of the fully invariant submodules and
direct summands of a module.

2. Uniquely complemented summands of rings

Suppose that R = I ⊕ J is a nontrivial decomposition of the ring R into right
ideals. Then the idempotent endomorphisms considered above can be realized by
multiplication by elements of E , the set of idempotents of R. In this section,
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we examine the connection between the centrality of e ∈ E and uniqueness of
complements of the direct summand eR. We begin with some known facts and some
elementary results.

PROPOSITION 2.1 (Folklore). Let RR = I ⊕ J be a right ideal direct decomposition
of R. There exists e ∈ E such that I = eR and J = eR.

Much is known about idempotents e and f for which eR = f R. For example, here
is a selection from Lam [Lam95, Section 21].

PROPOSITION 2.2. Let e and f ∈ E. The following are equivalent:

(1) eR = f R;
(2) e f = f and f e = e;
(3) there exists r ∈ R such that f = e + ere;
(4) there exists u ∈U such that f = eu;
(5) Re = R f̄ .

The direct complements of a right ideal direct summand may be characterized as
follows.

LEMMA 2.3. Let R = eR ⊕ gR. Then gR = (e − ere)R for a suitable r ∈ R.
Conversely, for every r ∈ R, (e − ere)R is a direct complement for eR.

PROOF. According to Proposition 2.1, there is an idempotent f such that eR = f R
and gR = f R. By Proposition 2.2, f = e + ere and g = f + f s f for suitable
r, s ∈ R. Thus g = f (1+ f s f ) and u = 1+ f s f is invertible in R with inverse
1− f s f . Hence g = (e − ere)u so that gR = (e − ere)R.

As for the converse, again by Proposition 2.1, eR ⊕ (e − ere)R = R if there is an
idempotent f ∈ R such that eR = f R and (e − ere)R = f R. Clearly f = e + ere is
suitable for this. 2

Since eR always has the direct complement eR, we say that eR has a unique
complement if R = eR ⊕ gR implies that eR = gR.

PROPOSITION 2.4. eR has a unique complement if and only if eRe = 0.

PROOF. Since by Lemma 2.3 all the direct complements of eR are of the form
(e − ere)R, eRe = 0 implies that eR has a unique complement.

Conversely, if for all r ∈ R, (e − ere)R = eR, it follows from Proposition 2.2(2)
that (e − ere)e = e and so ere = 0 for all r ∈ R. 2

Similarly, eR is the unique direct complement of eR if and only if eRe = 0.
We now consider the question of when not just the complement of eR but even its

idempotent generator e is unique.

PROPOSITION 2.5. Let R = eR ⊕ f R with e, f ∈ E. Then f = e if and only if
e f = f e.
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PROOF. If f = e then e f = e(1− e)= (1− e)e = f e.
Conversely, since e f = f e, e f = f e so that e f R and e f R are both contained in f R.

Decompose f R as f R = e f R ⊕ e f R. Since e f R ⊆ eR ∩ f R = 0, e f = 0 so that
f R = e f R ⊆ eR. Similarly, eR ⊆ f R so that eR = f R.

It follows that e = f r for some r ∈ R and f = es for some s ∈ R. Hence f e =
f 2r = f r = e and similarly e f = f . By commutativity, e = f . 2

A similar property concerns commuting idempotent generated right ideals of R.

PROPOSITION 2.6. Let e, f ∈ E satisfy R = eR ⊕ f R. If ēR f R = f ReR, then
f R = eR.

PROOF. Since

eR ≤⊕ eR ⊕ f R, eR = e2 R ≤ e f R ≤ eR f R = f ReR ≤ f R,

so that eR ≤ f R. Similarly, f R ≤ eR so we have equality. 2

A property of idempotents related to unique complementation is subcommutativity.

DEFINITION 2.7 [R65]. An element a ∈ R is right subcommutative if Ra ⊆ a R; it is
left subcommutative if a R ⊆ Ra. The element a is subcommutative if it is both left
and right subcommutative. A subset of R is left (right) subcommutative if each of its
elements is.

The concept of one-sided subcommutativity frequently occurs in the ring theory
literature under different names. For example, Birkenmeier [B83, p. 569] defines an
idempotent e ∈ E to be left (right) semicentral if Re = eRe (eR = eRe). It is readily
seen that left semicentral is equivalent to our right subcommutative.

The importance of subcommutativity in the present context is that if α ∈ End(M)
is right subcommutative, then for all β ∈ End(M), βα(M)⊆ α(M), that is, α(M)
is fully invariant. Reid [R65, Section 3] gives an example of a noncommutative
left subcommutative endomorphism ring. However, we shall show in Section 3 that
subcommutative idempotents are actually central.

We show now that an idempotent e is left subcommutative if and only if eR has a
unique complement.

PROPOSITION 2.8. Let e ∈ E. The following are equivalent:

(1) e is left subcommutative;
(2) eRe = 0;
(3) e is right subcommutative;
(4) eR has a unique complement.

PROOF. (1)⇔ (2) For all r ∈ R, (1) implies that er ∈ Re, so eRe ⊆ Ree = 0.
Conversely, for all r ∈ R, r = re + re, so er = ere + ere = ere ∈ Re.
(2)⇔ (3) For all r ∈ R, r = er + er . Hence (2) implies that re = ere ∈ eR.

Conversely, for all r ∈ R, re ∈ eR, so ere ∈ eeR = 0.
(2)⇔ (4) This is Proposition 2.4. 2

A related commutativity condition on rings is that one-sided ideals are two-sided.
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DEFINITION 2.9. A ring is called right (left) duo if every right (left) ideal is two-
sided.

PROPOSITION 2.10. A ring is right (left) duo if and only if it is right (left) subcommu-
tative.

PROOF. (⇒) Let a ∈ R. Then a R is a right ideal, which by hypothesis must be also
left ideal. Since rings have identity, a ∈ a R and so Ra ⊆ a R.

(⇐) Let I be a right ideal of R. In order to check that I is also left ideal, we have to
show that for all a ∈ R, Ra ⊆ I . But this is immediate, since Ra ⊆ a R ⊆ I by right
subcommutativity of a. 2

3. Abelian rings

Recall that R is called abelian if E ⊆ Z(R). A nonempty subset of R is called
commutative if each pair of its elements commute. A surprising result noticed by
Lam [Lam95, Exercise 22.3A, with solution] is that R is abelian if and only if E
is commutative and, more generally, if and only if every e ∈ E commutes with the
idempotents f for which eR ∼= f R. Consequently, we have the following theorem.

THEOREM 3.1. Let R be ring with idempotent set E. The following statements are
equivalent.

(1) E is commutative.
(2) R is abelian.
(3) Every idempotent generated right ideal is uniquely complemented.
(4) E is subcommutative.

PROOF. (1)⇒ (2) By the remark in the previous paragraph, every idempotent is
central.
(2)⇒ (3) is an immediate consequence of Proposition 2.8.
(3)⇒ (4) is also an immediate consequence of Proposition 2.8.
(4)⇒ (1) By Proposition 2.8, for all e ∈ E, eRe = 0= eRe. Hence

f e = e f e + e f e = e f e = e f e + e f e = e f.

This concludes the proof. 2

EXAMPLE 3.2. For an example of a ring which is abelian but noncommutative, let
{Di : i ∈ I } be a set of nonisomorphic division rings indexed by an arbitrary set I , not
all of which are fields. Let R =

∏
i∈I Di and consider R as a right R-module. It is clear

that the only idempotents in R are the sequences (ai : i ∈ I ) where each ai is either the
identity or the zero of Di . Thus all right ideals of R are uniquely complemented, so R
is an abelian ring.

Abelian rings have many properties in common with commutative rings; for
example, we have seen that complements and idempotent generators of idempotent
generated ideals are unique. Another such property is the following proposition.
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PROPOSITION 3.3. If R is abelian then E is a Boolean algebra with respect to the
natural order e f ≤ e.

PROOF. For all e and f ∈ E, e f is an idempotent satisfying e f ≤ e and e f ≤ f .
Furthermore, if g ∈ E satisfies g ≤ e and g ≤ f , then g ≤ e f . Hence E contains
e f = inf{e, f }.

Next, e + f − e f is an idempotent satisfying e ≤ e + f − e f and f ≤ e + f − e f .
If g ∈ E satisfies e ≤ g and f ≤ g, then e + f − e f ≤ g. Hence E contains the
element e + f − e f = sup{e, f }.

Each e ∈ E has complement e ∈ E , and for e, f and g ∈ E, (e + f − e f )g =
eg + f g − eg f g while

e f + g − e f g = (e + g − eg)( f + g − f g),

so E is a distributive lattice. 2

The following corollary is immediate.

COROLLARY 3.4. Let R be an abelian ring and let L be the set of idempotent
generated right ideals of R, ordered by inclusion. Then L is a Boolean algebra and
the map e 7→ eR from E to L is a Boolean algebra isomorphism.

Other related properties are that abelian rings are Dedekind finite and products and
intersections of idempotent generated right ideals coincide. Recall that R is Dedekind
finite if for all a, b ∈ R, ab = 1 implies that ba = 1.

PROPOSITION 3.5. If R is abelian, the R is Dedekind finite. The converse is false.

PROOF. Let ab = 1. Then ba = b(ab)a = (ba)(ba) is an idempotent. Since R is
abelian, ba R(1− ba)= 0 so in particular, bab(1− ba)= 0. Hence

1− ba = (ab)2(1− ba)= 0,

so ba = 1.
To see that the converse is false, let R be the 2× 2 matrix ring over a feld. 2

PROPOSITION 3.6. Let R be an abelian ring and let e, f ∈ E. Then e f R = eR f R =
eR ∩ f R.

PROOF. Clearly e f R ≤ eR f R ≤ eR ∩ f R. Conversely, let x = er = f s ∈ eR ∩ f R.
Then x = e2r = e f s ∈ e f R. 2

Finally, we consider the semicommutativity of E . A subset X of a ring R is
called semicommutative [CN08, Definition 1.2] if for all a, b ∈ X, ab = 0 implies
that a Rb = 0.

PROPOSITION 3.7. E is semicommutative if and only if R is abelian.

PROOF. For all e ∈ E, ee = 0 so that eRe = 0. Hence by Proposition 2.4 eR is
uniquely complemented so e is central.

Conversely, if e is central and e f = 0, then obviously eR f = 0. 2
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4. Modules with abelian endomorphism rings

We now show how the results of the previous section apply to endomorphism rings
of modules. Throughout, R is a unital ring and all modules are unital right R-modules.
Homomorphisms are written on the left of their arguments. To avoid confusion,
we write E for E(End(M)), the set of idempotents in End(M). A module M is an
endabelian module if its endomorphism ring End(M) is abelian.

REMARK 4.1. Since left multiplications from R are in End(M), if M is an endabelian
module then R is an abelian ring.

For a direct decomposition J ⊕ K of M , the associated projections εJ and εK
are the uniquely determined idempotents in E for which J = im εJ = ker εK and
K = ker εJ = im εK . Thus εK = εJ . We show that summands of M are uniquely
determined by right ideals generated by idempotents and vice versa.

LEMMA 4.2. Let M = J ⊕ K . Then εJ End(M)= { f ∈ End(M) : f (M)⊆ J }.
Conversely, let ε ∈ E and let J = trace(ε End(M)), the submodule of M generated

by {ε f (M) : f ∈ End(M)}. Then M = J ⊕ K , εJ = ε and εK = ε.

PROOF. (1) Clearly for all f ∈ End(M), εJ f maps M into J . Also, if f ∈ End(M)
maps M into J , then f = εJ f ∈ εJ End(M).

(2) Let m ∈ M . Then m = εm + (m − εm) where εm ∈ trace(ε End(M)) and
m − εm ∈ ker ε = ε(M). 2

LEMMA 4.3. Let M = J ⊕ K . The following are equivalent:

(1) J is uniquely complemented in M;
(2) εJ End(M) is uniquely complemented in End(M), considered as a right End(M)

module;
(3) εJ End(M)εK = 0;
(4) K is fully invariant in M.

PROOF. (1)⇔ (2) By Lemma 4.2, for any submodule L of M, L is a complementary
summand for J if and only if εL End(M) is a complementary summand for
εJ End(M). Hence the uniqueness of K implies the uniqueness of εK End(M) and
vice versa.
(2)⇔ (3) By Proposition 2.4, εJ End(M) is uniquely complemented in End(M) if

and only if εJ End(M)εK = 0.
(3)⇔ (4) Since End(M)= Hom(J, J )⊕ Hom(J, K )⊕ Hom(K , J )Hom(K , K ),

K is fully invariant if and only if Hom(K , J )= 0. But since every f ∈ Hom(K , J )
satisfies f = εJ gεK for some g ∈ End(M), K is fully invariant if and only if
εJ End(M)εK = 0. 2

THEOREM 4.4. Let M be an R-module. The following are equivalent:

(1) all direct summands of M are uniquely complemented;
(2) M is an endabelian module;
(3) all direct summands of M are fully invariant.
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PROOF. In view of Lemma 4.3, it suffices to show that End(M) is abelian if and only
if for all ε ∈ E, ε End(M) is uniquely complemented. But this precisely the content
of Theorem 3.1. 2

In the theory of commutative endomorphism rings of mixed abelian groups, a major
role is played by groups G of the form⊕

p∈S

Gp ≤ G ≤
∏
p∈S

Gp

where S is an infinite set of primes, for all p ∈ S, Gp ∼= Z(pkp ) with kp a positive
integer or∞, and G is S-pure in

∏
p∈S Gp.

Such groups have endomorphism rings of the form⊕
p∈S

End(Gp)⊆ End(G)⊆
∏
p∈S

End(Gp)

where End(Gp)∼= Z(pkp ) if kp is finite and End(Gp)∼= Zp, the ring of p-adic integers,
if kp =∞.

In particular, End(G) is commutative. This result appears, for example, in [KMT03,
S73, SzSz51].

In the torsion-free context, a similar result is obtained by replacing the set S of
primes by a set T of incomparable idempotent types τ (that is, subrings of Q), the
groups Gp by the types τ ∈ T and the S-purity condition by

Hom
(

G

/⊕
τ∈T

τ, G

)
= 0.

In both cases, the commutativity of End(G) follows from the commutativity of
each End(Gp) and End(τ ), together with full invariance of the indecomposable
summands Gp and τ . However, the structure theorem can be generalized as follows
without any commutativity assumption on the endomorphism rings of the summands.

DEFINITION 4.5. A ring R with idempotent set E is called nearly commutative if:

(1) R is abelian;
(2) for every 0 6= a ∈ R, there is a primitive idempotent e ∈ E such that ea 6= 0.

REMARK 4.6.

(a) We say that a module M is an NC module if End(M) is nearly commutative.
(b) Condition (2) implies that every nonzero idempotent in E dominates a primitive

idempotent, that is, for all 0 6= e ∈ E there is a primitive idempotent f such that
f e = f = e f .

(c) The abelian group example above shows that (2) may hold even when the dcc on
idempotents does not.

(d) To see that the conditions are independent, note that the ring Z(p)2 satisfies (2)
but not (1), and the semigroup ring Z[S], where S is the semigroup {si : i ∈ Z}
with si s j = smin(i, j), satisfies (1) but not (2).
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The following theorem describes the structure of nearly commutative rings.

THEOREM 4.7. Let R be a nearly commutative ring, and let F be a maximal ortho-
gonal set of primitive idempotents in R. Then R is a subdirect product of {eR : e ∈ F}
containing

⊕
e∈F eR. That is to say,⊕

e∈F

eR ≤ R ≤
∏
e∈F

eR.

PROOF. First note that condition (2) of near commutativity implies that R has nonzero
primitive idempotents and Zorn’s lemma implies that maximal orthogonal sets of
primitive idempotents exist in R.

Let F be a maximal orthogonal set of primitive idempotents in R, and define
θ : R→

∏
e∈F eR by x 7→ (ex). It is clear that:

(1) θ is a module homomorphism;
(2) θ preserves multiplication;
(3) the image of θ contains all eR, e ∈ F and hence

⊕
e∈F eR.

Let K = ker(θ) and let x ∈ K . By condition (2), if x 6= 0, then there is a primitive
idempotent 0 6= f ∈ R such that f x 6= 0 and hence f 6∈ F . But for all e ∈ F , either
f e = e = f or f e = 0. Thus f e = 0 for all e ∈ F . Therefore F ∪ { f } is an orthogonal
set of primitive idempotents strictly containing F , a contradiction.

Hence K = 0 so that θ is an embedding. 2

COROLLARY 4.8. If R is a nearly commutative ring, then R is a unique subdirect
product of indecomposable ideals. 2

REMARK 4.9.

(1) It is easy to find countable reduced torsion-free rings satisfying the hypotheses
of Theorem 4.7. For example, take any countable poset P satisfying the
descending chain condition, let S be the semigroup on the set P with operation
xy =min{x, y} and let R be the semigroup ring Z[S]. Then R satisfies
Theorem 4.7, and by Corner’s theorem there is a torsion-free abelian group G
with End(G)∼= R.

(2) The abelian condition may be weakened to primitive idempotents being central.

Recall that a family M of modules is rigid if for all L , N ∈M, Hom(L , N )= 0.
Our main structure theorem is the following.

THEOREM 4.10. Let M be an R-module. M is NC if and only if there is a rigid family
M of indecomposable R-modules such that⊕

N∈M
N ≤ M ≤

∏
N∈M

N and Hom
(

M

/(⊕
N∈M

N

)
, M

)
= 0.

PROOF. (⇒) Since End(M) is a subdirect product of indecomposable ideals generated
by primitive idempotents, M contains a unique rigid maximal family M of fully
invariant indecomposable summands and hence their direct sum

⊕
N∈M N .
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The projections of M onto its summands N induce a homomorphism of M into∏
N∈M N . Since this homomorphism has kernel zero, Hom(M/(⊕N ), M)= 0.
(⇐) Since each N is fully invariant in M , each End(N ) is an ideal

summand in End(M) and their sum is direct. The homomorphism 2 : End(M)→∏
N∈M N defined by f 7→ (εN f ) has kernel { f ∈ End(M) : f (⊕N )= 0}. But since

HomR(M/(⊕N ), M)= 0 this kernel is 0, so 2 is injective. 2

5. Fully invariant submodules of M

We are concerned with properties of End(M) which imply that certain classes of
submodules of M are fully invariant. For example, we have seen that direct summands
are fully invariant if and only if M is an endabelian module, which implies that R is an
abelian ring. With this in mind, we define M to be stable if all endomorphic images
are fully invariant, and substable if all kernels of endomorphisms are fully invariant.
We noted in the paragraph following Definition 2.7 that if α ∈ End(M) is right
subcommutative, then α(M) is fully invariant, so if End(M) is right subcommutative,
then M is stable.

It is clear that if End(M) is commutative then M is stable and substable. It has long
been known that the converse is false, even for abelian groups, but in order to find
a counterexample one must construct a torsion-free countable reduced ring which is
subcommutative but not commutative and then invoke Corner’s theorem to show that
it is an endomorphism ring. This was done independently by Orsatti and Reid in 1965
[KMT03, p. 123]. Other examples have been constructed since, but they all rely on
the same principle.

Our aim here is to elucidate the relations between (sub)stability of M and
subcommutativity of End(M).

PROPOSITION 5.1. Let α ∈ End(M).

(1) If α is left subcommutative then ker α is fully invariant.
(2) If im α is a summand of M and ker α is fully invariant, then α is left

subcommutative.

PROOF. (1) Let β ∈ End(M). There exists γ ∈ End(M) such that αβ = γα. Let
a ∈ ker α, so αβ(a)= γα(a)= 0. Hence βa ∈ ker α.

(2) Let α, β ∈ End(M). Suppose that im α is a summand of M . Define γ ∈ End(G)
by γ (αa)= αβa on im α and γ = 0 on a complement. γ is well defined since if
αa = αb then a − b ∈ ker α so βa − βb ∈ ker α and hence αβa = αβb.

It follows that αβ = γβ as required. 2

COROLLARY 5.2. If α ∈ End(M) is idempotent or an epimorphism, then α is left
subcommutative if and only if ker α is fully invariant.

On the other hand, we have the following proposition.

PROPOSITION 5.3. Let α ∈ End(M).

(1) If α is right subcommutative then im α is fully invariant.
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(2) If α is a monomorphism and im α is fully invariant, then α is right
subcommutative.

PROOF. (1) Let β ∈ End(M). There exists γ ∈ End(M) such that βα = αγ . Let
a ∈ im α, say a = αb. Then βa = βαb = αγ (a) ∈ im α.

(2) Suppose α is monic. Since im α is fully invariant, for every a ∈ M , there is a
unique b in the preimage α−1(βα(a)) 6=∅. Let γ be defined by γ (a)= b. It follows
that γ ∈ End(M) and βα = αγ as required. 2

COROLLARY 5.4. If α ∈ End(M) is idempotent or a monomorphism, then α is right
subcommutative if and only if im α is fully invariant.

COROLLARY 5.5. Let M be an R-module.

(1) If End(M) is right subcommutative then M is stable. The converse holds if every
endomorphism is monic.

(2) If End(M) is left subcommutative then M is substable. The converse holds if
every endomorphism is epic.

We have seen that if ε ∈ End(M) is a central idempotent, then M = im ε ⊕ ker ε
where each summand is fully invariant in M and hence uniquely complemented.
We now address the converse of this result, that is, if M is the direct sum of two
fully invariant submodules, are they the image and kernel of a central idempotent in
End(M)? More generally, if H is a fully invariant submodule of M , when is H a
summand with a fully invariant complement?

We first consider the relationship between fully invariant submodules of M and
(two-sided) ideals of End(M). Let H be the set of fully invariant submodules of M
and I the set of ideals of End(M). It is routine to check that H and I are complete
lattices under inclusion. Denote by Hop the opposite lattice of H.

For all H ∈H, let

H ′ = Ann(H)= {α ∈ End(M) : α(H)= 0}

and
H∗ = Ann(M/H)= {α ∈ End(M) : α(M)⊆ H}.

It is routine to check that H ′ and H∗ ∈ I . Similarly, for all I ∈ I , let I ′ = {a ∈ M :
I a = 0} and let I ∗ = IM , the submodule of M generated by {α(a) : α ∈ I and a ∈ M},
so that I ′ and I ∗ ∈H.

It was shown in [AS04] that the mappings 2′ :H→ I defined by H 7→ H ′ and
2∗ :Hop

→ I defined by H 7→ H∗ are Galois correspondences, with inverses defined
by I 7→ I ′ and I 7→ I ∗ respectively. In particular, for all H ∈H, H ≤ H ′′ and
H∗∗ ≤ H and, for all I ∈ I, I ≤ I ′′ and I ≤ I ∗∗.

An H ∈H is called ′-closed if H = H ′′ and ∗-closed if H = H∗∗. Similarly, I ∈ I
is ′-closed if I = I ′′ and ∗-closed if I = I ∗∗. It follows that H is ′-closed if and only
if H = I ′ for some ideal I ∈ I, I ∈ I is ′-closed if and only if I = H ′ for some
H ∈H, H is ∗-closed if and only if H = I ∗ for some I ∈ I , and I is ∗-closed if
and only if I = H∗ for some H ∈H.
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We have seen that if I ∈ I is a summand of End(M) then it is generated by a central
idempotent and is uniquely complemented, while it is clear that if H ∈H is a summand
of M , then it is the image of a central idempotent and is uniquely complemented.

We now describe conditions on I ∈ I and on H ∈H which ensure that they are
summands.

PROPOSITION 5.6. Let I ∈ I . The following conditions are equivalent:

(1) I is a summand of End(M);
(2) I is ′-closed, I ∩ (I ′)∗ = 0 and every endomorphism of I ′ extends to an

endomorphism of M;
(3) I is ∗-closed, I ∩ (I ∗)′ = 0 and every endomorphism of M/I ∗ lifts to an

endomorphism of M.

If these conditions are satisfied, then M = I ′ ⊕ I ∗.

PROOF. (1)⇔ (2) Suppose that I is a summand of End(M), say

End(M)= ε End(M)⊕ ε End(M) where I = ε End(M)

for some central idempotent ε. Then I ′ = ε(M)= H , say, and H ′ = I , so I = I ′′.
Hence H = ker ε = I ′ is a summand of M so that I ∩ (I ′)∗ = 0 and every endo-
morphism of H extends to End(M).

Conversely, [AS04, Proposition 2.4] implies that if I ∈ I with I ∩ (I ′)∗ = 0, then
there is a short exact sequence

I ′′� End(M)
η
� End(M)H

where the latter ring is the set of endomorphisms of H which extend to endomorphisms
of M , η being the restriction map. If every such endomorphism extends, then the
sequence splits so

End(M)∼= I ⊕ End(H)

as a direct sum of ideals.
(1)⇔ (3) The proof is similar, so only sketched. If I is a summand of End(M), with

central idempotent generator ε, let H = ε(M)= I ∗. Then I = H∗ and M = H ⊕ I ′,
so that I = I ∗∗ and I ∩ (I ∗)′ = 0. Since H is a summand of M , every endomorphism
of M/H = I ′ lifts to End(M).

Conversely, [AS04, Proposition 2.4] implies that the hypotheses force End(M)=
H ′ ⊕ H∗ = (I ∗)′ ⊕ I . 2

PROPOSITION 5.7. Let H ∈H. The following conditions are equivalent:

(1) H is a summand of M;
(2) H is ′-closed, H ′ ∩ H∗ = 0 and every endomorphism of H extends to an

endomorphism of M;
(3) H is ∗-closed, H∗ ∩ H ′ = 0 and every endomorphism of M/H lifts to an

endomorphism of M.

If these conditions are satisfied, then End(M)= H ′ ⊕ H∗.

https://doi.org/10.1017/S0004972710000213 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710000213


[13] Modules with abelian endomorphism rings 111

PROOF. (1)⇔ (2) Suppose that M = H ⊕ K , and let ε be the corresponding
projection onto K . Since H is fully invariant, ε and its complement ε are central
idempotents in End(M). Let I = ε End(M) and L = ε End(M). Then H = I ′ is
′-closed and L = H∗ so that H ′ ∩ H∗ = 0. Clearly every endomorphism of H extends
to an endomorphism of M .

Conversely, the hypotheses and [AS04, Proposition 2.4] imply that

End(M)= H ′ ⊕ H∗

with central idempotent generators ε and ε so that H = ker ε is a summand with
complement im ε.
(1)⇔ (3) The proof in both directions is similar. 2

The criteria of Propositions 5.6 and 5.7 simplify if End(M) is abelian since in that
case, by Theorem 4.4, all direct summands are fully invariant. The following theorem
is immediate.

THEOREM 5.8. Let R be a ring and M an endabelian R-module. Let H be a
submodule of M and I an ideal of End(M).

(1) The following are equivalent:

(a) H is a direct summand of M;
(b) H is fully invariant and ′-closed, H ′ ∩ H∗ = 0 and every endomorphism

of H extends to an endomorphism of M;
(c) H is fully invariant and ∗-closed, H∗ ∩ H ′ = 0 and every endomorphism

of M/H lifts to an endomorphism of M.

In that case, End(M)= H ′ ⊕ H∗.
(2) The following are equivalent:

(a) I is a direct summand of End(M);
(b) I is ′-closed, I ∩ (I ′)∗ = 0 and every endomorphism of I ′ extends to an

endomorphism of M;
(c) I is ∗-closed, I ∩ (I ∗)′ = 0 and every endomorphism of M/I ∗ lifts to an

endomorphism of M.

In that case, M = I ′ ⊕ I ∗.
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