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Abstract

We show that p-groups of order p5 are determined by their group algebras over the field of p elements.
Many cases have been dealt with in earlier work of ourselves and others. The only case whose details
remain to be given here is that of groups of nilpotency class 3 for p odd.
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The modular group algebra problem has come to mean the issue of whether, for a
finite p-group G and a field F of characteristic p, the algebra structure of the group
algebra FG contains enough information for the isomorphism type of the group G to
be deduced. This paper contributes the following positive result to the efforts at the
problem's resolution.

THEOREM 1. Let G be a group of order p5 for some prime p. Let F be the field of
p elements. Then G is determined up to isomorphism by the group algebra FG.

The problem is a long-standing one. Its history and progress is surveyed in [18,
§6]. The present result has been anticipated by L. G. Kovacs and M. F. Newman (see
[19]) who have not circulated their work. In any event the approach taken here seems
to be novel. In previous efforts at characterising groups of a given order from their
modular group algebras, the starting point has been a pre-existing list of the groups
in question. There is a list of the groups of order p5, p odd [5]. While used for
development and referred to as an aid to the reader, the logical necessity for James' or
any other list was wholly avoided in the thesis [15] on which this paper is based (albeit
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at the expense of reconstructing some of the arguments involved in the preparation
of such lists). Although no list is used here, to an extent we have availed ourselves
of lists in the papers [20, 17] which support this one in order to keep our exposition
within conventional bounds.

One treatment of the p5, p > 5, case which relied on a list was that of [10] in which
the dimension subgroups Dn — Dn(FG) were calculated (here Dn = G fl (1 + / " ) ,
where / = I(FG) is the augmentation ideal of FG). This data does not go far
in distinguishing these groups by means of their group algebras. The calculations
do facilitate the use in this case of a stronger invariant, the graded restricted Lie
algebra J£?(G) := 0 £>„/£„+, [18, 6.18]. For small p this has the potential for
differentiating some individual groups; an example for p = 3 is given in [15, §6.1.1].
As this Lie algebra determines the graded associative algebra 0 / " / / " + l (see [12,
§VIIL5]), information from the latter is already available from Jzf (G); the associative
algebra has been used in the isomorphism problem in the past, originally in [3, p. 166]
and also in [13, 2,21].

For p = 2, the theorem is already in the literature. The primary reference is the
thesis work of Makasikis [9] (but see [18, Note on 6.33]). An alternative treatment
can be found in [11] or gleaned from the work on the groups of order 26 in [21]. Some
of the hardest cases are metacyclic, for which there is now a simplified treatment in
[20]. Even the cohomology ring goes a long way in distinguishing the groups of order
32 [14].

We will assume henceforth that p is odd. Let G be a group of order p5. We have
already shown in [17] that, if G has maximal class, then G is determined by FG. We
may assume then that G4 = 1. By [19] we may also assume that G\Gi ^ 1. We
begin by establishing some properties of the remaining groups.

PROPOSITION 2. Let G be a p-group of order p5, p odd. Suppose that G4 = 1.
Then the Frattini subgroup of G is abelian.

PROOF. We may assume that |4>(G)| = p3. Let N be a normal subgroup of order/?2

contained in <t>(G). Since G/CG(N) is isomorphic to a subgroup of the automorphism
group of N, \G : CC(N)\ < p and hence G" < CC{N). Thus $ (G) < CG(N) and
N < f (<D(G)). As |* (G) : ? ( * ( G ) ) | < p, <J>(G) is abelian.

The fact that G2 is abelian, has the useful consequence that [x, yn] =
[x, y]"[x, y, y](v for any x, y e G, n > 1 (multiple commutators are left normed).
From this we may derive the following corollary.

COROLLARY 3. Let G be a p-group of order p5, p odd. Suppose that G4 = 1. Then
G\ is central and Gj = 1. Consequently, for all x, y € G, [x, y]p = [x, yp].
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PROOF. Let c e G2 and y e G. Then, as G4 = 1, [cp, y] = [c, y]p = [c, y"]. But
[G2, Gp] — 1 by the proposition so that the first points follow. The last point now
follows from the second.

Our next reduction is to the class of groups for which the commutator subgroup is
elementary abelian. Suppose that GP 7̂  1. Then there are elements x, y in G such
that [x, y]p ,£ 1. Since [x, y]p = [xp, y], xp & (yp, [x, y]p), a subgroup of CG(y)
of order at least p2. It follows that \G : Gp\ < p2, a fact which implies that G is
metacyclic [4, III. 11.4]. But metacyclic p-groups are known to be determined by
their modular group algebras (see [20], or [1] whose proof applies in the p = 3 case
as well).

All that remains is the case of p-groups of order p5, p odd, which are of class 3
and have elementary abelian commutator subgroups. Such groups have a restricted
subgroup lattice and many other properties, collected together in our next result, which
make it possible to identify them from their modular group algebras.

PROPOSITION 4. Let G be a p-group of order p5, p odd. Suppose that G3 > 1,
G4 = 1 and GP = 1. Then

(i) 1 < G2G
p < f(G);

(ii) CC(G2)'< G2 n£(G) = G3;
(iii) 4>(G) < &(G) = CC(G/G3) < CG(G2);
(iv) &CG) is abelian;

(v) <J>(G) <Q(G mod G2) := (x <= G : xp € G2);
(vi) for x,y e G, (xy)p = xpy" for p > 5 while, for p = 3, (xyf =

x3yi[y,x,x][y,x,y]~];
(vii) for each g e G the mapping x —>• [x, g] defines a homomorphism CG(G2) -^

G2 whose kernel is CG(G2)(^Cc(g); if\G2\ = p2 and CG(G2) is abelian and
g $ CG(G2), then the kernel is f (G).

PROOF, (i). That Gp is central follows from Corollary 3 and the fact that G\ = 1.
(ii). The first part follows from the Three Subgroups Lemma. The second part is easy,
as is (iii). (iv). G2t,(G) is central in £2(G) and of index at most p. That exp G/G2

divides p2 proves (v) while (vi) follows from the Hall-Petrescu formula [4, III.9.4]
for p > 5 and by direct calculation for p = 3. The last part of (vii) follows from the
fact that |G2| = p2 implies that \G : CG(G2)\ < p whence any element commuting
with g and CG(G2) is central.

It follows that p2 < \G2\ < p3 while p < |£(G)| < p2. Of the four possible
pairs of values for these parameters, one cannot occur: that in which \G2\ = p3 and

= p; in such a group, G2/G3 would be cyclic and so of order p2, contradicting
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the fact that G2 is elementary. For convenience of notation, often in what follows we
will denote CG(G2) by CG, and similarly £2(G mod G2) by LG.

We treat the groups remaining by dividing them into families according to the sizes
of the centre and of the commutator subgroup. These are invariants recognised by the
modular group algebra [18]. Groups in different subdivisions cannot have isomorphic
group algebras. Our task is then to show that different groups in the same family have
non-isomorphic group algebras. Any group G in one of our subdivisions admits a
power-commutator presentation [6] which is tightly specified. In each case we take
a group basis H for FG and a power-commutator presentation for it; we then use
properties of the small group algebra from [16] to obtain generators of G which satisfy
relations sufficiently close to those posited for H that it is not difficult to conclude
that G and H are isomorphic.

Relationships between the subgroups of G and H are obtained from [16]. The
normalised unit group of the small group algebra, denoted by S = S(FG), is defined
as V(FG)/(\ + I(G)I(G2)), where V(FG) is the normalised unit group of FG.
Recall that S is determined by FG and that G embeds in S. The bar notation will be
used to denote equivalence classes modulo 1 + /(G)/(G2).

PROPOSITION 5. Let G be a p-group of order p5, p odd. Suppose that G3 > 1,
G4 = 1 and G\ = 1. Let H be a normalised group basis of FG. Then, in the group
S,

(i) //„ - Gjjorn > 2;
(ii)

(iii)
(iv)
(v) (1 + 72)P = 1 ifGp < G2

Moreover, the orders of <1>(G), £2(G) and CC{G2) are determined by FG so that
whether or not any of these subgroups coincide is also determined by FG. Whether
or not Cc(G2) = Q(G mod G2) is determined by FG.

PROOF. The numbered items are specialisations of results in [16] to the situation
here. That FG determines |O(G)| was one of the first facts discovered [18]. That
FG determines |f2(G)| and|CG(G2)| under the present hypotheses on G follows from
(ii), (iii) and Proposition 4(iii) as <I>(G) = G n 1 + I2. The final point derives from
Proposition 4(v) and was discussed in [16, 2.7].

In each case we will adapt the following notation. Let H = {hu h2, h^, h4, h5),
where the first 2 or 3 generators form a minimal generating set for H and the remainder
are defined in terms of them as commutators or pth powers. For each of the 'minimal

https://doi.org/10.1017/S1446788700000215 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000215


[5] The modular group algebra problem for groups of order p5 233

generators' hh an element g, e G is obtained by writing h, = g,-(l + <*.) where
a, € I2 (recall that V(FG) — G{\ + I2)). The remainder of the g, are defined as
commutators or pth powers by the formulae analogous to those used in the definition
of the corresponding A,-. Information about the relations between these elements
may be derived from the small group algebra according to the results established in
[16]. For example, as G4 = 1,(1 + I2) is abelian and centralises G2 [16, 1.7]; it
follows that, if h = g{\ + a) and h! = g'(l + «') where a, a' e I2, then [h, h'] =
[g< g'][g', (1 + <*)][(! + «')> g] in the unit group of the small group algebra of G
over F; thus [h, h'] = [g, g'] modulo G3. There is also a relationship in the case
of pth powers. Again take h = g(l + a), a <= /2 . By the Hall-Petrescu formula,
hp = gP{\+a)"ufuf •••up, for some «,- e yj((g, 1 + a)) for 2 < y < p . By [16,
1.8], y;((g, l + o ; ) ) < Gj+l; as G^ = 1 and G4 = 1, uf = 1 for 2 < ; < p. Thus
/ip = g p ( T T ^ ) , where fi e / ( G p ) 2 by Proposition 5(iv); further, if exp(G/G2) = p,
then, by Proposition 5(v), hp = gp in S.

FAMILY 1. \G2\ = p2 and |£(G)| = p .

This is the isoclinism family <t>7 of [5]. Let H be a group basis of FG. As noted,
H is a group in this same family. As such it has some further properties of use:

H2 = <D(//); H3 = £ ( / / ) ; H > CH(H2) > £2(//) > $ ( / / ) ; CH(H2) is non-abelian.

The first two of these are immediate. That \H : CH(H2)\ = p follows from the fact
that \H2\ = p1. The last then follows from Proposition 4(vii) since, if CC(G2) is
abelian, then |£(G)| = p2. Now CH(H2) > i;2(H) is clear from Proposition 4(iv).
That £2(H) > <J>(//) can be seen from an argument in the next paragraph.

We will choose minimal generators h\,h2,h3 for H so as to reflect the above
properties and to achieve some simplification in calculations. First take ht e H \ C,
where C = CH{H2). As the homomorphism in Proposition 4(vii) defined by h\ is
onto, \Cc(h\)\ = p2 so that this subgroup contains an element h not in H2. But then
[h, H] = [h, C] < £ ( / / ) so that h e £>(#)• Choose^ e C \ £,(//) and put/J3 = h so
that h3 e £>(#) \ * ( / / ) • Define /J4 = [h2, hx] and h5 = [hA, h{\. By the hypotheses,
[h3, hi] and all commutators [hj, ht], for j = 5 or for j = 4, i' ̂  1, vanish, while,
by Proposition 4(ii), [/J3, h2] = h\ for some a, 0 < a < p — 1. As //2 is elementary,
the only pth power relations remaining to be specified are those for the minimal
generating set; by Proposition 4(i), there are integers £,m,n,0 < £,m,n < p — 1,
such that hp = he

5, h
P = h^ and hP = h\. Note that, if n ^ 0 , we may replace /z,

by h\h\ln, where nn' = 1 modulo p, with consequent alterations to h4 and h5; using
Proposition 4(vi), we obtain a set of relations identical to the original set but in which
I = 0; that is, we may assume that t = 0 or n = 0.
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We now turn to the original group basis G. By Proposition 5(ii, iii), the minimal
generators gu g2, g3 for G satisfy: g{ e G \ CG(G2), g2 e CG(G2) \ £>(G), g3 e
£2(G) \ <£>(G). Note that the g,- were defined only modulo <t>(G); if necessary, we
can redefine g3 so as to achieve the relation [g3, gi] = 1. Define g4 = [g2, gt] and
8s = [g4, gi] so that G2 = * ( G ) = <g4, g5) and G3 = f (G) = (g5). As seen earlier,
g4 = h4 modulo G3 while g5 = h5 by a similar argument. This last point and the fact
that exp(G/G2) = p show that the pth power relations among the g, are the same
as those among the h,. All the commutator relations match those in H save possibly
that for [gi, g2]. As seen from the general setting, this lies in G3 and is not 1. Let
[#3, £2] = £57 0 < b < p — 1, and let b' be such that bb' = a modulo p. If n = 0,
replacing g3 by g*' will result in relations identical with those in H. If I = 0, replacing
82 by g2 and g3 by g* will have the same effect. We conclude that H % G.

FAMILY 2. |G2| = p 3 and |f (G)| = /?2.

This is the isoclinism family O6 of [5]. Let H be a group basis of FG, whence
H is a group in this same family. To deal with this case it suffices to observe that
H2 = <!>(//) and //3 = £ ( / / ) . Choose minimal generators h\,h2 for H and define
/*3 = [h2, hi], h4 = [/z3, h\] and /z5 = [/z3, h2]. As //3 is central, all commutators
[hj, hj] for j = 4 or 5 vanish. As H2 is elementary, the only pth power relations
to be specified are those for the minimal generating set; there are integers k, I, m, n,
0 < k, £, m, n < p - 1, such that h\ = h\h\ and hp

2 = h"h"5.

We now turn to G. This time the minimal generators for G are g\ and g2. Define
gi = [gi, g\], g4 = [g3, gi] and g5 = [g3, g2] so that G2 = O(G) = (g3, gA, g5) and
G3 = ^(G) = (g4, g5). As before, g3 = h3 modulo G3 while g4 = h4 and g5 = h5.
Again, as exp(G/G2) = p, the pth power relations among the g, are the same as those
among the h, while, in this case, the commutator relations are as well. We conclude
that H % G.

FAMILY 3. \G2\ = p2 and |f (G)| = p2.

This is the isoclinism family <I>3 of [5]. We have found it necessary to separate this
case into three subcases depending on the minimal number of generators of G and
on whether or not CG = CG(G2) and Lc = £2(G mod G2) coincide; both of these
features are determined by FG, the latter because of Proposition 5. Let H be a group
basis of FG, a group in this family. As £2(//) = H2t;{H) and so is central in CH, the
subgroup CH is an abelian maximal subgroup of H.

CASE 1. d(G) = 3: Choose minimal generators h\, h2, h3 for H as follows. Take
as before h\ e H \ CH and h2 € CH \ &(H). Lastly it is possible to choose
h3 e £( / / ) \ <t>(//). Define h4 = [h2, hx] and h5 = [h4, /?,]. By the hypotheses
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and the properties noted, [h4, h2], [h4, h3] and all commutators [hj, ht] for j = 3 or 5
vanish. As H2 is elementary, the only pth power relations remaining to be specified are
those for the minimal generating set; by Proposition 4(ii), there are integers £,m,n,
0 < I, m, n < p - 1, such that hp = h\, hP = h™ and hP = h\.

Again we turn to G. By Proposition 5(ii, iii), the minimal generators gu gi, g3 for
G satisfy: g{ e G \ CG, g2 e CG\£>(G), gi e £(G) \ O(G) (in this case the content
of Proposition 5(ii) is that £ ( / / ) ( l + I2) = £(G)(1 + I2)). Define g4 = [g2, g j and
gs = [g4, gi] so that G2 = 4>(G) = <g4, g5) and £(G) = {g3, g5). As usual, g4 = h4

modulo G3 and g5 = h5. Thus, as Gp < G2, the pth power relations among the g,
are the same as those among the hh The commutator relations match those in H. We
conclude that H % G.

In the final cases the minimal number of generators of a group basis is 2 so that
H2 < <&(H) = ${H)H2 = £2(//) and, because of the structure of H/H2, L := LH is
a maximal subgroup. The two cases are divided on the grounds of whether or not L
and C := CH coincide. Since H2 < L, this is the same issue as whether or not L is
abelian.

CASE 2. d{G) = 2, LG abelian: Choose minimal generators hu h2 for H by taking
hx e H\Candh2 e C \ O ( / / ) . Define^ = hp

l,h4 = [h2, /z,]and/j5 = [h4,h{]. Note
that hj, e £( / / ) \ H2. By the hypotheses, [h4, h2], [h4, h3] and all commutators [hj, /?,]
for j = 3 or 5 vanish. As //2 is elementary, the only pth power relations remaining to
be specified are those for h2 and h3; there are integers m,n,0 < m,n < p — 1, such
that/^ = /j;?and/^ = h"5.

In the original group basis G, by Proposition 5(iii), the minimal generators gu gi
for G satisfy: g, e G \ CG, g2 € CG \ 4>(G). Define g3 = gP, g* = [gi, g\\ and
gs = [g*, gi] so that O(G) - (g3, g4, g5), G2 = {g4, g5) and ?(G) = (g3, g5). Again,
g4 = h4 modulo G3 so that g5 = h5.

While the commutator relations in G match those in H, the pth power relations
among the g, need not be the same as those among the hi in this case. By Proposition
5(iv), (1 + I2)"2 - 1 so that hP = hf = gf(T+Ti)p2 = gf_=_g[. Thus only
gp

2 remains to be settled: hP = g2( l + ct2)
p is in G3 so that (1 + ct2)

p e Gpl by
Proposition 5(vi). As Gpl = (gj>, we are done if n = 0. If n ^ 0 and g2 = g%,
replace g2 by g2g3" ~k where nri = 1 modulo p; now gp = g™ but none of the other
generators or relations has been changed. We can once more conclude that H % G.

CASE 3. d(G) = 2, Lc non-abelian: Choose minimal generators h{,h2 for H
by taking hx e C \ L and h2 e L \ $ ( / / ) . Define h3 = hp, h4 = [h2, hi] and
h5 — [h4, h2]. Again h3 e %(H) \ H2. By the hypotheses, [h4, hx], [h4, h3] and all
commutators [hj, h,] for j = 3 or 5 vanish. As H2 is elementary, the only pth power
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relations remaining to be specified are those for h2 and hy, there are integers m, n,
0 < m, n < p - 1, such that h2 = h™ and h\ = h"5.

Turning to G, we see that, by Proposition 5(iii) and by the fact that FGI(LH) =
FGI(LG) (cf. [16, 2.7]), the minimal generators gx, g2 for G satisfy: g, e CG \ Lc,
g2 € LG\ O(G). Define g3 = g\°, g4 = [g2, gi] and g5 = [g4, g2] so that $ (G) =
{g3,g4,g5), G2 = (g4,g5) and £(G) = (gi,g5). Again, g4 = h4 modulo G3 and
again g5 = h5. The commutator relations in G match those in H, and the pth power
relations among the gi can be made the same as those among the /i, by altering the
value of g2 as in the previous case. For the last time we conclude that H % G.

A close look at the proofs above shows that slightly more than was claimed is true.
The groups H in them need not have been group bases for FG; it is sufficient that
such an H satisfy only: H < S,\H\ — p5 and H covers 1 + I2. Once it is established
that d{H) = d(G) and |£ ( / / ) | = |£(G)|, the arguments here remain valid; what is
important for Proposition 5 is that H covers 1 + I2.
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