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Abstract

A sequence of independent Bernoulli random variables with success probabilities a /(a +
b+k—1), k=1,2,3,...,is embedded in a marked Poisson process with intensity 1.
Using this, conditional Poisson limits follow for counts of failure strings.
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1. Introduction

Inspired by Huffer ez al. (2008) we construct in this note an embedding in a marked Poisson
process of a sequence of independent Bernoulli random variables with success probabilities
a/(a+b+k—1), k =1,2,3,.... Fromthe embedding, conditional Poisson limit distributions
follow for the number of d-strings, that is, subsequent successes interrupted by d — 1 failures
in the sequence. A special case is the Poisson limits for the number of small cycles in a random
permutation biased by the number of cycles.

Other methods have previously been used to obtain such limits; see Arratia et al. (2003),
Holst (2007), Holst (2008), Huffer et al. (2008), and the references therein. The embedding
technique gives much more concise and transparent derivations and a better understanding of
why the Poisson limits occur in such cases.

2. The embedding

Let P, Zy, Z;, Z3, . .. be independent random variables, where the Zs are exponential with
mean 1 and 0 < P < 1. The waiting time for a Z to exceed log(1/P) is

1
Lo = min{k: Zi > 10g<;> }

having the following conditional geometric distribution:
P(Lo=t|P=p =1-p)'p, =12

By the lack of memory property of the exponential distribution, the excess X1 = Z,—log(1/P)
is exponentially distributed with mean 1 and independent of (P, Lg). Set 71 = X.
For a > 0, the waiting time

1 T
L= min{k > Lo: Z > log<F) + ;1} — Lo
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has the conditional distribution
P(Li=¢|P=p, T =1)=(— pe /4t pet/a 0=1,2,....

The excess Xo = Z 41, — log(1/P) — T1/a is exponentially distributed with mean 1 and
independent of (P, Lo, L1, T1). Set T, = T1 + X».

Analogously, the waiting time L for the next Z to exceed log(1/P) + T>/a is geometric as
above and the excess X3 is exponential with mean 1 and independent of (P, Lo, L1, L2, T1, T»).
Set T3 =T, + X3.

In the same way, define the waiting times L3, L4, ..., the excesses X4, X5, ..., and the
random variables T4, Ts, .... The sequence of ‘records’, 71, T2, T3, . . ., is a Poisson process
with intensity 1. Conditionalon P = p, {(T;, L;), i = 1,2, 3, ...} is amarked Poisson process
with the marking distribution

P(Li=t|P=p, T =1)=(1— pe /41 pet/a e=1,2,....

To indicate the times for the records, we introduce the Bernoulli random variables I = 1 if
ke{Lyo,Lo+Li,Lo+Li+L»,...},otherwise Iy = 0. For P = 1 and a = 1, the Is indicate
ordinary records among the Zs. Rényi’s theorem shows that these indicators are independent
with P(Z,, = 1) = 1/n. The theorem below generalizes this well-known result.

We say that a random variable P with density

_T(a+b)

a—1 b—1
= 1-— , 0 1,
F(a)r(b)p (I=p) <p<

f(p)

is Beta(a, b), where @ > 0 and b > 0; Beta(a, 0) is interpreted as P = 1. Recall that

E(P (1 — Py by =27
PPy = s

We use the notation s = s(s + 1) --- (s +n — 1) for rising factorials.

Theorem 2.1. Let P be Beta(a,b), a > 0 and b > 0. Then the record indicators,
I, I, I3, ..., are independent random variables with P(I, = 1) = a/(a+b+n — 1).

Proof. We give a proof for the case in which b > 0. The proof is easily modified for b = 0,
that is, for P = 1.

Consider I, I», ..., I,,. We have

n

Py = =5 =0)=P(Lo>m =E(1 - P)') = -

and

abn—l

O = = = = = — n-1 = —
P(I = n-1=0,I, =1 =P(Lo=n)=E((1—-P)""P) PR
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Changing variables and integrating by parts we obtain, for 1 < ¢ < n,
fo(m,a,b,0) =P(Lo=¢, L1 >n—1¥)
o
- E<(1 — p)t! P/ (1 — pe*/@yn—te—x dx)
0

1
= E<(1 — P)HP/ 1 — Pu)" tau! du>
0

1
=E(1-P)"'P)+ (- E)E((l — P)HPZ/ (1= Pu)" 1y du>
0

ab"! N a n—Kf( Lat1.b0
= — n—1,da s U, .
(a+b)" a+ba+1 0

Induction proves that
ab®

Jo.a.b. O =Pllo =t Li>n=0= =)

Forl <{fy,...,¢;, Lo+ ---+£€; <n,set
fitn,a,b, Ly, ..., ;) =Py =1ifk € (o, Lo+ £1,..., L0+ -+ £;}, else I =0).
Changing variables we find that

fj(n’a7b7£07"'igj)
=P(L()=€(),...,Lj=€j, Lj+1 >n—€0—---—Kj)

:E((l — p)olp

o o0
x / . / (1 _ Pe—xl/a)el—l Pe—xl/a . (1 _ Pe—(x1+~-+x_,-)/a)£_,'—1
0 0

« Pe—(x1+~--+xj)/a(1 _ Pe—(X1+---+Xj+1)/a)n—fo—"-—fj

% e—(x1+...+Xj+l) dxy - dxj+1>
- E<(1 — p)lo—lpgit!
1 1
x/ / A= Pup) ' Pu;---(1 —Pu1~-~uj)e-f_1Pu1~~~uj
0 0
_ . I’lfe()fmfe,' a—1 a—ld d .
X(l Pul...u]+l) .ul u/+1 ujp--- Mj-‘rl
= E<(1 — P)o~lpgi
1 1 -
x/ / (1 — Pup)t =t Puf™™ (= Puy - )~ P
0 0

1
X (/(; (1— Pu,y ~--uj+1)"_£°_"'_£f'au?4__} duj+1) dug --- duj).
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Integration by parts gives

1
—lg—tl;  a—1
/0 (I —Puy---uj )"0 fauj+1duj+1

= (1= Puy---u;)" ===t
1
+(m—Ly—--—L))Pui---u, /0 (1= Puy--ujy )" 07757 4, dujg,
implying the recursion

fj(nsayb,g(),...,ej)

a /1 Ta+b+1)
o Ta+ DHI®)

T a+b

1 1
X (af/ /0 (A= pu) " pur - (1= pur - ujm) " puy - ujy
0

x (1 = puy--- uj)”_l_[()_”'_lfflu‘ll e u? duy--- duj

pi—pbTia = pbtp

1 1
Fo=to =0l [ [ ) (1= !
0 0

——fy—e—l;
XPMI"'uj(l_Pul"'lftj+1)n 0 -’M?"'M?+ldul"‘duj+1)dp

— —ajf(1+1be €i-1)
= - ficitn—1,a+1,b,80,...,4j_
atb\(@+Di’! 0 j-1
a’l
+(n—£o—..._ﬁj)mfj(n—l,a—l—l,éo,...,ﬁj))_
This is satisfied by
f/(nva,b,ﬁo,...,ﬁj)
:P(LO:EO,...,Lj:Ej,Lj_H>n—€0_..._gj)

aj+lbﬁ
@b b+ lo— DB+ Lo+l =D b+ LloF e+l — 1)

From this, it follows that Iy, I, I3, ... are independent Bernoulli random variables with
Py =1)=a/(a+b+k—1).

3. Poisson limits

Conditional on P = p, the marking theorem in Kingman (1993, Section 5.2) shows that the
sequences

{(I;,L;=0,i=12,...}, t=1,2,...,

are independent marked Poisson processes on the positive real line with intensities

re(r) = (1 — pe~H/4yt=1 pe=tia, 0=1,2,....
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Thus, the number of T's marked with £, Ny, is Poisson with mean

/oo he(t)dr = %(1 —(1-phH
0

and Np, N, ... are conditionally independent.

Let I, I, I3, ... be independent Bernoulli variables with success probabilities a/(a + b +
k—1), k =1,2,.... By the above theorem, such a sequence can be considered as a record
indicator in an embedding where P is Beta(a, b). Consider the number of d-strings, that is,

o
Mg =) (1= L) -+ (1= Teya—D Iktas
k=1

which, by the embedding, can be identified by N;. Hence, conditional on P = p, the random
variables M1, M>, ... are independent Poisson with means as above. This agrees with results
in Holst (2007) and Huffer et al. (2008).

Fora = 6 > 0 and b = 0, the Bernoulli variables above appear in connection with
0-biased random permutations; see Arratia et al. (2003, pp. 95, 96). The counts of different
failure strings in 115 - - - I,,1 correspond to the number of cycles Cl("), Cé”), ., C of sizes
1,2,...,nin a 6-biased random permutation of 1, 2, ..., n. The limit counts as n — oo for
the number of small cycles are given by independent Poisson random variables M1, M>, . ..
with E(My) = 6/d; cf. Arratia et al. (2003, Theorem 5.1).

Finally, consider a sequence of independent indicators, I} = 1, I, I3, ..., withP(Il; = 1) =
a/(a+b+k—-2), k =2,3,...,whereb > 1. With Z exponential with mean 1 and independent
of P, whichis Beta(a + 1, b — 1), we find that P’ = Pe~%/% is Beta(a, b). Using P’, we can
generate, by the embedding, a sequence I}, I3, ... with P(I; = 1) = a/(a + b+ k — 1). For
k=2,3,...,set I = 112—1 with P(l = 1) = a/(a + b + k — 2). Conditional on P = p, the
number of d-strings in 11513 . . . is a Poisson random variable M; with meana(1 — (1 — p)d)/d
and M1, M», ... are independent. This is in agreement with Huffer ez al. (2008). For b < 1,
the distribution of M, is not conditional Poisson; see Huffer et al. (2008).
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