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LINEAR SYSTEMS WITH GAUSSIAN NOISE

JAMES HOOK,∗ University of Manchester

Abstract

The critical paths of a max-plus linear system with noise are random variables. In
this paper we introduce the edge criticalities which measure how often the critical
paths traverse each edge in the precedence graph. We also present the parallel path
approximation, a novel method for approximating these new statistics as well as the
previously studied max-plus exponent. We show that, for low amplitude noise, the critical
paths spend most of their time traversing the deterministic maximally weighted cycle and
that, as the noise amplitude is increased, the critical paths become more random and their
distribution over the edges in the precedence graph approaches a highly uniform measure
of maximal entropy.
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1. Introduction

Max-plus matrix multiplication corresponds to finding the weight of the maximally weighted
paths through a graph whose edge weights are determined by the matrices’ coefficients. (Max-
plus matrices are arrays of elements in R ∪ ∞. If A and B are N ×N max-plus matrices then
their product C = A⊗ B is the N ×N max-plus matrix defined by ci,j =⊕n

k=1 ai,k⊗bk,j =
maxnk=1 ai,k + bk,j .) ConsiderK(N) the complete graph onN vertices. We say that a sequence
of K(N)’s vertices, σ = [σ(k)]n+1

k=1, is a path of length n from σ(1) to σ(n+ 1) formed from
the n edges [σ(k + 1), σ (k)]nk=1.

Now let [A(k)]nk=1 be a sequence of N × N max-plus matrices, and let �n(i, j) be the set
of all paths from j to i of length n through K(N). Then

[A(n)⊗ A(n− 1)⊗ · · · ⊗ A(1)]i,j = max
σ∈�n(i,j)

n∑
k=1

W(σ),

where ‘⊗’ stands for max-plus matrix multiplication, and the weight function W is given by

W(σ) =
n∑
k=1

A(k)σ(k+1),σ (k).

Deterministic autonomous max-plus linear systems exhibit turnpike behaviour characterised
by Cuninghame-Green [3]. We say that an optimal path problem has the turnpike property if
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there is some globally optimal path, called the turnpike, such that, for any a, b and sufficiently
large t, the optimal path from a to b of length t will move from a to the turnpike as quickly as
possible then stay on it for as long as possible. The max-plus turnpike theorem says that, for
all i, j and sufficiently large n, the maximally weighted path of length n from j to i will spend
most of its steps traversing a critical cycle; so in the limit n → ∞ the maximally weighted path
spends almost all of its steps traversing the critical cycle and its weight divided by length will
equal the average weight of the critical cycle, which we call the critical cycle mean.

In this paper we examine max-plus linear systems with Gaussian noise from this path centric
viewpoint. The systems we consider consist of a fixed deterministic part plus a Gaussian-
distributed noise term which changes from one step to the next. This is a natural way to define
a random max-plus linear system and reflects the standard engineering approach of including
noise in an otherwise deterministic model. Under a standard irreducibility assumption, we show
that whilst there is no longer a predetermined critical cycle there is still turnpike-like behaviour
where, for all i, j and large n, the maximally weighted path of length n from j to i will spend
most of its steps traversing a critical path common to all (i, j) pairs. This common path is a
random variable which will typically not exhibit the periodic behaviour of the deterministic
system. In the deterministic setting it is possible for two critical paths to traverse the same
critical cycle out of phase so that they are never at the same vertex at the same step, but in these
stochastic systems we see that all the critical paths come together and coincide exactly for most
of their steps. Hence we call this conflux turnpike behaviour.

This behaviour makes it possible for us to prove the existence of a new set of critical
path statistics, the edge criticalities, which measure how often the critical paths traverse each
edge. These statistics are particularly interesting when viewed as a function of the noise
amplitude; we see a transition from deterministic turnpike behaviour where the edge criticalities
are concentrated on the critical cycle to a highly uniform distribution as the noise amplitude is
increased.

Another critical path statistic is the max-plus exponent, which is the average edge weight of
the critical path. This has been well studied and can be proved to exist for a very general class
of max-plus linear systems; see, for example, Heidergrott [6], Baccelli et al. [2], and Merlet [8],
who also discussed some interesting examples in which this limit does not exist. The max-plus
exponent is of particular importance as a performance indicator for queueing systems, where
it corresponds to the reciprocal of the throughput.

Analytic investigation of any of these statistics has only proved possible for very specially
structured systems; see, for example, [1]. One major problem is that since different paths share
edges which they traverse at the same step, their total weights are interdependent, which makes
statistical analysis difficult. Goverde et al. [5] described an efficient method for estimating
the max-plus exponent with an expectation expression. In this paper we introduce the parallel
path approximation, a new method for approximating both the max-plus exponent and the
edge criticalities. The idea is to simply ignore the complicated path weight interdependencies
when computing the weight of the maximally weighted path. This approximation provides an
accurate approximation of the edge criticalities and an upper bound on the max-plus exponent
which is accurate for large, highly interconnected systems.

This paper is organised as follows. In Section 2 we introduce the specific type of matrix
distribution we will be using, as well as some other important notation for the remainder of
the paper. In Section 3 we define the critical path statistics and the notion of conflux turnpike
behaviour, and we prove that these statistics are well defined and that this behaviour will always
be observed. In Section 4 we define the parallel path approximation and show how to compute its
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statistical properties in order to approximate those of the original max-plus system. Finally, we
present a suite of examples and pose a conjecture that states there is a class of systems for
which the parallel path approximated max-plus exponent is perfectly accurate in the limit of
large systems.

2. System specification

Although it is possible to treat a slightly more general setup we will, for the sake of simplicity,
restrict all results and examples to systems of the following formulation. Our approach is to
take a fixed max-plus matrix β (which could be used to model a deterministic system) and add
a time varying Gaussian noise term to it. The noise terms in each component of the matrix
and at each stage in the system are mutually independent. The amplitude of the noise in each
component of the matrix can be chosen arbitrarily through the choice of the matrix α.

Definition 1. Let β ∈ (R ∪ {−∞})N×N be the matrix of deterministic weights, let α ∈
RN×N+ be the matrix of noise amplitudes, and let [Z(k)]∞k=1 be an independent and identically
distributed (i.i.d.) sequence of N × N matrices whose components are mutually independent
(0, 1) Gaussians which we call the noise terms. Define the sequence of max-plus matrices
[A(k)]∞k=1 by their (i, j) components

A(k)i,j = βi,j + αi,j z(k)i,j .

Furthermore, define the sequence of product matrices [M(n)]∞n=1 by

M(n) =
n⊗
k=1

A(k) = A(n)⊗ A(n− 1)⊗ · · · ⊗ A(1),

where ‘⊗’ stands for max-plus multiplication.

Note that the randomness in this distribution affects only the exact value of the finite entries
in the matrix and not the position of the −∞ entries. We say that matrix distributions with this
property have fixed support.

Definition 2. Define the associated precedence graph G = 〈V,E〉 with vertex set V =
{1, 2, . . . , N} and an edge (i, j) ∈ E whenever βi,j 	= −∞. Now define the set of all paths
through G of length n from j to i as

�n(i, j) = {σ ∈ {1, 2, . . . , N}n+1 : σ(1) = j, σ (n+ 1) = i,

[σ(k + 1), σ (k)] ∈ E for k = 1, 2, . . . , n}.
For each edge, (i, j) ∈ E, associate a weight sequence [w(i, j)k]∞k=1 given by

w(i, j)k = A(k)i,j = βi,j + αi,j z(k)i,j ,

and define the weight of a path σ ∈ �n(i, j) by

W(σ) =
n∑
k=1

w[σ(k + 1), σ (k)]k.
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By assigning a sequence of weights to each edge we are able to express components of the
product matrices in terms of maximally weighted paths through the precedence graph just as
in the deterministic case:

M(n)i,j = max
σ∈�n(i,j)

W(σ).

Throughout this paper, we make the standard assumption that G has the following properties.

Definition 3. We say that a graph G = 〈V,E〉 is irreducible if, for all i, j ∈ V, there exists a
path through G from j to i. We say that G is aperiodic if the greatest common divider of the
lengths of the cycles in G is equal to 1.

3. Confluxes and critical path statistics

In this section we define exactly what we mean by a conflux turnpike; roughly, the idea is
that there is always a maximally weighted (critical) path between each pair of vertices and that
a conflux occurs when all of these paths come together and coincide exactly for at least one
step. The turnpike is then this subpath where they coincide.

We also define the new critical path statistic, the edge criticalities, which measure how often
the critical paths traverse each edge.

Theorem 1 states that systems of the sort outlined in Section 2 will almost surely exhibit
conflux turnpike behaviour and shows how this then enables us to factorise our sequence of
matrices in a useful way. Theorem 2 makes use of this factorisation to prove the existence of
the edge criticalities as an almost-sure limit independent of any initial conditions.

Definition 4. For a sequence of matrices [A(k)]nk=1, which define the weight function W , a
path σ ∈ �n(i, j) is (i, j)-critical if

W(σ) = max
σ∈�n(i,j)

W(σ),

and a path σ ∈ �n(i, j) is critical if

W(σ) = max
i′,j ′ max

σ∈�n(i′,j ′)
W(σ) = max

σ∈�n
W(σ),

where �n is the set of all paths of length n through G.

For systems of the sort outlined in Section 2 the probability of any two different paths having
the same weight is 0, so these maximums are attained uniquely and we are able to define the
following.

Definition 5. The (i, j)-critical path of length n, φi,jn , is the unique path of length n that is
(i, j)-critical. The critical path of length n, φn, is the unique path of length n that is critical.

Definition 6. The critical path statistics are then the max-plus exponent λ ∈ R and the edge
criticalities P ∈ RN×N defined by

λ = lim
n→∞

1

n
W(φn),

provided this limit exists, and

Pi,j = lim
n→∞

1

n
#[(i, j) ∈ φn],

provided this limit exists, where #[(i, j) ∈ φn] is the number of times that the path φn traverses
the edge (i, j).
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So a sequence of matrices [A(k)]nk=1 defines a critical path φn, which, as a function of the
noise terms [Z(k)]nk=1, is a random variable. The max-plus exponent measures the growth rate
of the critical paths weight, and the edge criticalities measure what proportion of the critical
path steps traverse each edge. Note that in general there is no guarantee that these limits will
exist. In Theorem 2 we will show that, for systems of the sort outlined in Section 2, the two
expressions converge almost surely to constants independent of any initial conditions, so the
max-plus exponent or edge criticalities of the (i, j)-critical paths are all the same and equal to
those of the critical path.

Definition 7. A sequence of max-plus matrices [A(k)]nk=1 is a conflux if the different (i, j)-
critical paths of length n all come together and coincide for one or more steps. Formally,
[A(k)]nk=1 is a conflux if there exists lT > 0 and kC such that, for all (i, j), (i′, j ′),

φ
i,j
n (k) = φ

i′,j ′
n (k)

for kC ≤ k ≤ kC + lT . The section ϕ for which they coincide is called the turnpike, which is a
path through G of length lT . We say that [A(k)]nk=1 is a minimal conflux if it is a conflux but
[A(k)]n−1

k=1 is not a conflux.

It is easy to show that if the sequence [A(k)]nk=1 is a conflux then the product M(n) =
A(n) ⊗ A(n − 1) ⊗ · · · ⊗ A(1) is a rank-1 matrix and that the sequence therefore has the
memory loss property used by Mairesse [7] to prove many statistical results for the max-plus
exponent. This characterisation of the condition in terms of critical paths will enable us to
prove some new statistical properties for these systems, in particular the existence of the edge
criticalities.

Example 1. Define the sequence of i.i.d. 2 × 2 max-plus matrices [A(n)]∞n=1 by

A(n) =
(

1 + aZ1(n) aZ2(n)

3 + aZ3(n) aZ4(n)

)
,

where a ∈ R is the single noise amplitude parameter. Clearly, this is of the form outlined in
Section 2 with G the complete graph on two vertices. Through Monte Carlo simulation we
sample the (i, j)-critical paths of length 6 for a = 0 and a = 1, and approximate the critical
path statistics. The results are displayed in Figure 1.

For a = 0, the system exhibits deterministic turnpike behaviour where all critical paths
spend most of their steps traversing the critical cycle 1 �→ 2 �→ 1. The edge criticalities are
concentrated on the critical cycle with P1,1 = P2,2 = 0 and P1,2 = P2,1 = 0.5. The max-plus
exponent is equal to the critical cycle mean λ = (3 + 0)�2.

For a = 1, the system exhibits stochastic conflux turnpike behaviour where all the critical
paths coincide between steps 3 and 5, so in the terms of Definition 7 we haveKC = 3, lT = 3,
and ϕ = (1, 1, 2, 1). Observe that unlike in the deterministic case the turnpike is random and all
paths coincide in phase. The edge criticalities are more uniform than in the deterministic case;
roughly, a convex combination of the deterministic a = 0 edge criticalities and the measure of
maximal entropy P1,1 = P1,2 = P2,1 = P2,2 = 0.25. The max-plus exponent is greater than
in the deterministic a = 0 case.

When the noise amplitude is increased further, the edge criticalities slowly converge to the
measure of maximal entropy on the graph P1,1 = P1,2 = P2,1 = P2,2 = 0.25.

The following theorem tells us that, for systems of the sort outlined in Section 2, we will
(with probability 1) observe conflux turnpike behaviour, and that as we look at longer and longer
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Figure 1: Top: critical path statistics verses noise amplitude—max-plus exponent (left) and edge
criticalities (right). Middle: (i, j)-critical paths of length 6 for a = 0. Bottom: (i, j)-critical paths
of length 6 for a = 1. Critical paths, as opposed to (i, j)-critical paths, are distinguished by filled circles.

sequences of matrices, the proportion of steps that each critical path spends on the turnpike
tends to 1.

Theorem 1. Let [A(k)]nk=1 be a sequence of max-plus matrices of the sort outlined in Section 2.
Provided G is irreducible and aperiodic,

lim
n→∞ P{[A(k)]nk=1 is a conflux} = 1.

Also, for all ε > 0,

lim
n→∞ P

{∣∣∣∣ lTn − 1

∣∣∣∣ ≤ ε

}
= 1,

where lT is the length of the turnpike.

Proof. The sequence [A(k)]nk=1 can be factorized into a sequence of minimal confluxes with
a nonconflux remainder

[A(k)]nk=1 = C1, C2, . . . , CnC ;A(tnC + 1), . . . , A(n),
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where each Cm is a minimal conflux of length |Cm| and

tm =
m∑
k=1

|Ck|.

So A(tm−1 + r) = Cm(r) for r = 1, 2, . . . , |Cm|. This factorisation can be performed
inductively so that

[A(k)]n+1
k=1 = C1, C2, . . . , CnC , CnC+1

if A(tnC + 1), . . . , A(n),A(n+ 1) = CnC+1 forms a conflux and

[A(k)]n+1
k=1 = C1, C2, . . . , CnC ;A(tnC + 1), . . . , A(n),A(n+ 1),

if not.
We will first show that the length of each of the minimal confluxes in this factorisation is

exponentially bounded. Without loss of generality, α1,2 	= 0 and β1,2 	= −∞, and irreducibility
and aperiodicity imply that there exist n1 and n2 such that, for all (i, j), there is a path of
length n1 from j to 2 and a path of length n2 from 1 to i. Now suppose that the noise terms
[Z(k)]n1+n2+1

k=1 satisfy

z(n1 + 1)1,2 ≥ 2(n1 + n2 + 1)+ 1 − β1,2

α1,2

and −βi,j
αi,j

≤ z(k)i,j ≤ 1 − βi,j

αi,j

for all (i, j, k) 	= (1, 2, n1 + 1). Any path not traversing the edge (1, 2) on the (n1 + 1)th step
will have weight less than or equal to n1 + n2 + 1, whereas any path traversing the edge (1, 2)
on the (n1 + 1)th step will have weight greater than or equal to (n1 + n2 + 1)+ 1. Therefore,
all the critical paths will come together and coincide on this edge at this step and the sequence
will be a conflux. Of course, this is only one possible way for a conflux to occur, but it gives
us the bound

P{|C| ≥ n} ≤ (1 − ρ1/(n1+n2+1))n−(n1+n2+1)

for all n ≥ n1 +n2 +1, where ρ is the (nonzero) probability associated with the condition on the
noise terms described above. So, given a sequence [A(k)]∞k=1, the finite sequences [A(k)]nk=1
can be factorized into sequences of minimal confluxes. As n increases, with probability 1,
the matrix sequences factorize into a longer and longer sequence of minimal confluxes which
themselves form an i.i.d. random sequence [Cm]nCm=1.

Now considerφi,jn , the (i, j)-critical path of lengthn for some sequence of matrices [A(k)]nk=1
which has a minimal conflux factorisation described by

[A(k)]nk=1 = C1, C2, . . . , CnC ;A(tnC + 1), . . . , A(n).

Since φi,jn (tm−1 + 1) = i′ and φi,jn (tm) = j ′ for some i′, j ′, the maximally weighted path from

j to i of length n which accumulates weight according to [A(k)]nk=1 contains a subpath γ i
′,j ′
m

of length |Cm| from j ′ to i′ which accumulates weight according to the minimal conflux

sequence Cm. Therefore, γ i
′,′j ′
m is the (i′, j ′)-critical path of length |Cm| for the matrix

sequence Cm, since otherwise there would be a more weighted such path and we could use it
to construct a new path of length n from j to i with greater weight than φi,jn which would be a
contradiction. Therefore, the factorisation of the matrix sequence gives rise to a factorisation
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of the (i, j)-critical paths

φ
i,j
n = γ

i′(1),j
1 , γ

i′(2),i′(1)
2 , . . . , γ i

′(nC),i′(nC−1)
nC

, ζ i,i
′(nC),

where the γ s are the subpaths corresponding to each minimal conflux sequence and ζ is a
remainder term to complete the path.

Now, since Cm is a conflux sequence and γ i,jm is (i, j)-critical for Cm, it follows that γ i,jm
traverses the turnpike ϕm of Cm. Therefore, γ i

′(m),i′(m−1)
m will traverse ϕm and γ i

′(m+1),i′(m)
m+1

will traverse ϕm+1, so φi,jn will contain a subpath from the beginning of ϕm to the beginning of
ϕm+1, call it ψm—intuitively, this is the second half of the subpath γm glued to the first half of
the subpath γm+1. As before, this path will be critical, but, most importantly, it is independent
of (i, j). We therefore have another path factorisation

φ
i,j
n = ηj , ψ1, ψ2, . . . , ψnC−1, θ i,

where ψm is the critical path linking the turnpike of Cm to that of Cm+1, and η and θ are
remainder terms to complete the path. Note that the only subpaths in this factorisation to depend
on the conditions (i, j) are the first and last terms. The ψ subpaths are common to all (i, j)
and, therefore, constitute the turnpike, as all the critical paths will coincide along this section.

Finally, given a sequence [A(k)]nk=1 factorized in this way, the total length of its turnpike
lT is equal to n minus the length of the two remainder terms η and θ . Each of these terms is
smaller than some minimal conflux sequence, whose length we have shown to be exponentially
bounded so that, for all ε,

lim
n→∞ P

{∣∣∣∣ lTn − 1

∣∣∣∣ ≤ ε

}
= 1.

The second theorem in this section uses the path factorisation introduced in the previous
proof to show that the definition of the edge criticalities in terms of a limit exist almost surely.

Theorem 2. Let [A(k)]∞k=1 be a sequence of max-plus matrices of the sort outlined in Section 2.
Provided G is irreducible and aperiodic, there exists P ∈ RN×N such that, for all (i, j) and
all ε > 0,

lim
n→∞ P

{∣∣∣∣#[(i′, j ′) ∈ φi,jn ]
n

− Pi′,j ′

∣∣∣∣ ≤ ε

}
= 1,

where #[(i′, j ′) ∈ φi,jn ] is the number of times that the (i, j)-critical path of length n traverses
the edge (i′, j ′).

Proof. We showed previously that the sequence of matrices [A(k)]nk=1 could be factorized
into a sequence of minimal conflux sequences

[A(k)]nk=1 = C1, C2, . . . , CnC ;A(tnC + 1), . . . , A(n),

where each Cm is a minimal conflux of length |Cm| and

tm =
m∑
k=1

|Ck|.

We also showed how this factorisation gave us a factorisation of the (i, j)-critical paths

φ
i,j
n = ηj , ψ1, ψ2, . . . , ψnC−1, θ i,

where ψm is the critical path from the beginning of Cm’s turnpike to the beginning of Cm+1’s
turnpike.
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This factorisation can be used in the transition counting function

#[(i′, j ′) ∈ φi,jn ] = #[(i′, j ′) ∈ ηj ] +
nC−1∑
m=1

#[(i′, j ′) ∈ ψm] + #[(i′, j ′) ∈ θi],

where #[(i′, j ′) ∈ ηj ] is the number of times that the path ηj traverses the edge (i, j) and so on.
Since the length of the remainder terms η and θ are exponentially bounded, their contribution
to this sum is also bounded. With probability 1 we have

lim
n→∞

#[(i′, j ′) ∈ φi,jn ]
n

= lim
n→∞

∑nC−1
m=1 #[(i′, j ′) ∈ ψm]

n
.

From the proof of the previous theorem we know that

lim
n→∞

nC

n
= l

exists and is nonzero, so

lim
n→∞

#[(i′, j ′) ∈ φi,jn ]
n

= lim
nC→∞

l

nC

nC−1∑
m=1

#[(i′, j ′) ∈ ψm].

Clearly, each ψm has the same distribution and, therefore, this sample average is taken over
identically distributed variables, but we need to be a little careful as they are not independent.

The sequence of i.i.d. matrices [A(k)]nk=1 gives a sequence of i.i.d. minimal conflux
sequences [Cm]nCm=1 and the ψ subpaths are functions of successive pairs of these matrix
sequences so that

ψm = F(Cm,Cm+1)

for some function F . The sequence of subpaths [ψm]nC−1
m=1 and their transition counts are

therefore the output of a hidden Markov model. The underlying Markov chain is a sequence of
successive pairs of i.i.d. variables

X(m) = (Cm,Cm+1) �→ X(m+ 1) = (Cm+1, Cm+2),

where [Cm]∞m=1 is an i.i.d. sequence.
From any state in this Markov chain, it is possible to move to any other state in two moves

by
(A,B) �→ (B,C) �→ (C,D).

It is also possible to start at one state and return to it in three moves by

(A,B) �→ (B,C) �→ (C,A) �→ (A,B).

The chain is therefore ergodic (irreducible and aperiodic). Finally, since the length of each
subpath ψm is bounded by the sum of the lengths of Cm and Cm+1, which are themselves
exponentially bounded, the expectation of the edge counts of a subpath ψm are also bounded
so that

Pi′,j ′ = lE#[(i′, j ′) ∈ ψm]
exists and, for all ε > 0,

lim
n→∞ P

{∣∣∣∣#[(i′, j ′) ∈ φi,jn ]
n

− Pi′,j ′

∣∣∣∣ ≤ ε

}
= 1.
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4. Parallel path approximation

In this section we introduce the parallel path approximation which is a simplification of the
max-plus systems outlined in Definition 1. Theorem 3 below gives an exact formula for the
statistical properties of the approximated system in the form of a convex optimisation problem.
Lemma 1 below is a technical result that supports the second part of Theorem 3 which states that
the parallel path approximated max-plus exponent is greater than or equal to the true max-plus
exponent; the parallel path approximated exponent therefore provides a performance guarantee
for queueing systems as its reciprocal gives a lower bound on the throughput.

Definition 8. For a max-plus linear system

M(n)i,j = max
σ∈�n(i,j)

W(σ),

define the parallel path approximation (PPA) by

M̂(n)i,j = max
σ∈�n(i,j)

Ŵ (σ ),

where the modified path weight function Ŵ is given by

Ŵ (σ ) =
n∑
k=1

βσ(k+1),σ (k) + tσ

√√√√ n∑
k=1

α2
σ(k+1),σ (k),

with {tσ : σ ∈ �n, n ∈ N} a set of i.i.d. (0, 1)Gaussians, one for each and every path throughG.

The idea is that since different paths throughG share edges which they traverse on the same
step, their weights have very complicated interdependencies and this makes further analytic
analysis extremely difficult. However, the individual path weights are fairly simple:

W(σ) =
n∑
k=1

βσ(k+1),σ (k) + ασ(k+1),σ (k)z(k)σ(k+1),σ (k).

The modified path weights are identically distributed to the original path weights but are
mutually independent, the exact form of the PPA weight function is simply derived from the
original weight function and basic properties of the Gaussian distribution.

Each modified path weight is a function of a unique independent Gaussian, so the modified
weights are independent, which greatly simplifies the analysis. One interpretation is that no
two paths between the same pair of vertices ever share an edge, and are, hence, parallel.

Definition 9. In analogy to Definition 4 define the PPA critical path of length n, φ̂n ∈ �n, by

W̃ (φ̂n) = max
σ∈�n

Ŵ (σ ),

where�n is the set of all paths of length n throughG. The PPA critical path statistics are then
the PPA max-plus exponent λ̂ ∈ R defined by

λ̂ = lim
n→∞

1

n
Ŵ(φ̂n),
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and the PPA edge criticalities P̂ ∈ RN×N are defined by

P̂i,j = lim
n→∞

1

n
#[(i, j) ∈ φ̂n],

where #[(i, j) ∈ φ̂n] is the number of times that the path φ̂n traverses the edge (i, j).

Lemma 1. A sequence of real random variables [ak]nk=1 is said to be associated if the
covariance

cov[f (a1, . . . , an), g(a1, . . . , an)] ≥ 0

for all f and g : Rn → R is nondecreasing in each component [10].
Let [ak]nk=1 be a sequence of associated real random variables, and let [bk]nk=1 be a sequence

of independent real random variables such that ak is identically distributed to bk for each k.
We have

E
[

n
max
k=1

ak

]
≤ E

[
n

max
k=1

bk

]
.

Proof. For any i ∈ {1, 2, . . . , n} J ⊂ {1, 2, . . . , n}, with i not in J and for t ∈ R, define
the nondecreasing functions

f (a) =
{

−1 if ai < t ,

0 otherwise,
g(a) =

{
−1 if maxj∈J aj < t ,

0 otherwise.

Substitution into the definition of associativity gives

P{ai < t | aj < t for all j ∈ J } ≥ P{ai < t}.
Now

P
{

n
max
i=1

ai < t
}

=
n∏
i=1

P{ai < t | aj < t, j = 1, 2, . . . , i − 1},

so repeated application of the above result using J = {1, 2, . . . , i − 1} gives

P
{

n
max
i=1

ai < t
}

≥
n∏
i=1

P{ai < t} = P
{

n
max
i=1

bi < t
}
.

Hence,

E
[

n
max
i=1

ai < t
]

=
∫ ∞

0
1−P

{
n

max
i=1

ai < t
}

dt <
∫ ∞

0
1−P

{
n

max
i=1

bi < t
}

dt = E
[

n
max
i=1

bi < t
]
.

Before stating our man result we need a few more definitions.

Definition 10. The simplex of G admissible edge criticalities is the simplex

�G =
{
x ∈ RN×N :

∑
i,j

xi,j = 1,
∑
j

xi,j =
∑
j

xj,i

}
.

For x ∈ �G, define y ∈ RN by yi =∑j xi,j . Then the edge partition entropy and vertex
partition entropy are given by

H e(x) = −
∑
e∈E

xe log xe, H v(x) = −
∑
i∈V

yi log yi,

respectively.
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Theorem 3. For a max-plus system of the sort outlined in Section 2, the PPA max-plus exponent
and edge criticalities defined in Definition 9 are given by

λ̂ = max
x∈�G

〈β, x〉 +
√

2〈α2, x〉[H e(x)−H v(x)],

P̂ = arg max
x∈�G

〈β, x〉 +
√

2〈α2, x〉[H e(x)−H v(x)],

whereα2 ∈ RN×N is the componentwise square of α. Furthermore, the PPA max-plus exponent
is greater than or equal to the max-plus exponent:

λ̂ ≥ λ.

Proof. For a path of length n, σ ∈ �n, we define X(σ) ∈ RN×N by X(σ)i,j =
n−1#[(i, j) ∈ σ ], where #[(i, j) ∈ σ ] is the number of times that the path σ traverses the
edge (i, j).

For an open cover �G =⋃γ∈C Uγ ,

λ̂ = max
γ∈C lim

n→∞ max{σ∈�n : X(σ)∈Uγ }
1

n
Ŵ(σ)︸ ︷︷ ︸,

where the underbraced term is greater than or equal to

min
x∈Uγ

〈β, x〉 +
√

min
x∈Uγ

〈α2, x〉
[

lim
n→∞ max{σ∈�n : X(σ)∈Uγ }

tσ√
n

]

and less than or equal to

max
x∈Uγ

〈β, x〉 +
√

max
x∈Uγ

〈α2, x〉
[

lim
n→∞ max{σ∈�n : X(σ)∈Uγ }

tσ√
n

]
.

We now apply an extreme value result from [9]. Let [t (n)]∞n=1 be a sequence of i.i.d. (0, 1)
Gaussians. For a measure-1 set of such sequences,

lim
n→∞

maxnk=1 t (k)√
2 log n

= 1.

Therefore,

lim
n→∞ max

{σ∈�nG : X(σ)∈Uγ }
tσ√
n

=
√

2

(
lim
n→∞

1

n
log #n[σ ∈ Uγ ]

)
,

where #n[σ ∈ Uγ ] is the number of paths σ ∈ �n withX(σ) ∈ Uγ . This limit can be calculated
using the large deviation principal from [4, pp. 272–278]:

lim
n→∞

1

n
log #n[σ ∈ Uγ ] = max

x∈�G∩Uγ
H e(x)−H v(x).

Finally, taking the limit maxγ∈C ‖Uγ ‖ → 0 gives

λ̂ = max
x∈�G

〈β, x〉 +
√

2〈α2, x〉[H e(x)−H v(x)].
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The performance guarantee inequality follows from Lemma 1. Since the weight of each
path is itself a nondecreasing function of the independent noise terms, it follows that the path
weights are associated. Also, by construction, the approximated path weights are independent
with W(σ) and Ŵ (σ ) identically distributed for each σ, so

E
[

max
σ∈�n

W(σ)
]

≤ E
[

max
σ∈�n

Ŵ (σ )
]
.

Finally, since the limits λ and λ̂ exist with probability 1, they are equal to their expectations
and

λ = lim
n→∞

1

n
E
[

max
σ∈�n

W(σ)
]

≤ lim
n→∞

1

n
E
[

max
σ∈�n

Ŵ (σ )
]

= λ̂.

The formula for the PPA critical statistics gives some insight into the factors determining
the maximally weighted path in the original max-plus linear system. Each path’s weight has a
deterministic and random part and the critical path is the path that maximizes the sum of these
parts. Consider paths σ with X(σ) in a small ball containing X(c∗), where c∗ is the critical
cycle in the deterministic system. These path weights will have large deterministic parts, but
there will be relatively few of them and they will be unable to freely explore the whole graph
in order to have a large random part. On the other hand, paths with X(σ) in a small ball in the
center of �G will not have large deterministic parts, but there will be many of them and they
will be able to freely explore the whole graph so that there will be some paths in this ball with
large random parts. It is this balance that determines the critical statistics of the true max-plus
system as well as the PPA system.

Example 2. Taking the max-plus linear system from Example 1 we represent X(σ) ∈ R2×2

by x ∈ R4 with
x = [X(σ)1,1, X(σ)1,2, X(σ)2,1, X(σ)2,2].

Then�G is the triangle with vertices (1, 0, 0, 0), (0, 1
2 ,

1
2 , 0), and (0, 0, 0, 1). The PPA statistics

are given by

λ̂ = max
x∈�G

〈 ⎛
⎜⎜⎝

1
0
3
0

⎞
⎟⎟⎠ , x

〉
+ a
√

2[H e(x)−H v(x)],

with P̂ the arg max of the above, where

H e(x) = −x1 log x1 − x2 log x2 − x3 log x3 − x4 log x4

and
H v(x) = −(x1 + x2) log(x1 + x2)− (x3 + x4) log(x3 + x4).

We solve this optimisation problem to obtain λ̂ and P̂ using gradient ascent. The results are
displayed in Figure 2.

Example 3. For an irreducible aperiodic graph G, define the homogeneous noise max-plus
linear system on G by setting βi,j = 0 if (i, j) is an edge in G and −∞ otherwise, and setting
αi,j = 1 for all (i, j).

The PPA statistics of these systems are determined by

λ̂ = max
x∈�G

√
2[H e(x)−H v(x)],

https://doi.org/10.1239/jap/1378401228 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1378401228


Critical path statistics of max-plus linear systems with Gaussian noise 667

M
ax

-p
lu

s 
ex

po
ne

nt
,
λ

Noise amplitude, a Noise amplitude, a

E
dg

e 
cr

iti
ca

lit
ie

s,
P

0.0 0.4 0.5 0.60.30.20.1 0.7 0.8 0.9 1.0
0.00
0.05

0.15
0.10

0.20
0.25
0.30
0.35
0.40
0.45
0.50

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.3

2.4

2.2

0 2 4 6 8 10 12 14

=P1,2 P2,2

P1,1

P2,2

P̂

ˆ
λ

λ

Figure 2: Critical path statistics and PPA versus noise amplitude—max-plus exponent (left) and edge
criticalities (right).

which is equal to
√

2 log ρ, where ρ is the classical Perron root of G’s adjacency matrix A.
The maximum is attained by the measure of maximal entropy P ∗, defined by

P ∗
i,j = Ai,j

uivj

ρ
,

where u is defined by uA = ρu with ‖u‖l1 = 1, and v by Av = ρv with ‖v‖l1 = 1.
Defineχn, the greedy path of lengthn, by settingχn(1) = 1 and then choosing the maximally

weighted edge at each step inductively so that

aχn(k+1),χn(k)(k) = max
i
ai,χn(k)(k)

for k = 2, . . . , n. Since φn is the maximally weighted path of length n, we have

lim
n→∞

1

n
W(χn) = λ̃ ≤ λ ≤ λ̂.

Now consider the homogeneous noise max-plus linear system onK(N), the complete graph
on N vertices. The PPA statistics are given by λ̂ = √

2 logN and Pi,j = N−2 for all (i, j).
The greedy path’s max-plus exponent is

λ̃ = lim
n→∞

1

n
W(χn) = ENk=1t (k),

where [t (k)]∞k=1 is a sequence of i.i.d. (0, 1)Gaussians. Applying the same extreme value result
we used in the proof of Theorem 3 gives

lim
N→∞

λ̃N

λ̂N
= lim
N→∞

λN

λ̂N
= 1.

So the proportional error in the approximation λ ≈ λ̂ goes to 0 in the limit of a large, highly
interconnected system.

In Figure 3 we illustrate the convergence of the ratio of the true exponent (which we
approximate through simulation) to the PPA exponent for Gaussian noise systems on K(N).
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homogeneous noise systems on complete graphs with different noise terms. Right: counterexample

graph for N = 2 and m = 4.

We also include plots for systems with uniformly distributed noise terms and exponentially
distributed noise terms. The PPA exponents for the uniform case are given by

λ̂N = 1 − 1

eN
,

where e = 2.718…, and, for the exponential case, the PPA exponents satisfy

λ̂N = logN + log(1 + eλ̂N ),

and we can find them by iterating the right-hand side as it is a contraction mapping.

Example 4. To demonstrate this phenomenon in a more robust setting, we generate a family
of randomly configured homogeneous noise max-plus linear systems on Erdős–Rényi graphs
over a range of parameters and compare their PPA max-plus exponent to a Monte Carlo
approximation of their true max-plus exponent. The results are displayed in Figure 4. Observe
that the true max-plus exponent also appears to be a function of the Perron root and that the
proportional error decreases with the size of the root.

Example 5. Since the Perron root of the adjacency matrix is roughly the average degree of a
vertex in the graph, we might hope that having a large Perron root would guarantee the accuracy
of the PPA exponent, as a large Perron root would mean we had a large, highly interconnected
system. However, this is not always the case as we have the following counterexample.

For some m,N ∈ N, let G = 〈V,E〉 be a graph with V = V1 ∪ V2 ∪ · · · ∪ Vm, where, for
i = 1, 3, 4, . . . , m, Vi = {v(i)} contains a single vertex and

V2 = {v(2, j), j = 1, 2, . . . , Nm}
contains Nm vertices. Let E = E1 ∪ E2 ∪ · · · ∪ Em, where

E1 = {[v(2, j), v(1)], j = 1, 2, . . . , Nm}
contains an edge from vertex v(1) to every vertex in V2,

E2 = {[v(3), v(2, j)], j = 1, 2, . . . , Nm}
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and 64 clustered left to right. Right: max-plus exponent versus the noise amplitude for the proportional

noise system with PPA (dashed line).

contains an edge from every vertex in V2 to vertex v(3), and Ei = {(v(i + 1), v(i)} contains
an edge from v(i) to v(i + 1) for i = 3, 4, . . . , m, where we identify v(m+ 1) with v(m). See
Figure 3.
G’s adjacency matrix has Perron root ρ = N . Every path through G is quasiperiodic,

visiting V1, V2, . . . , Vm, V1, . . . , and the only possible choice in how to move through G is
which of the Nm routes from v(1) to v(3) to pick in each cycle. The average weight of the
maximally weighted path, the max-plus exponent, is therefore

λ = 1

m

(
E
[
Nm

max
j=1

tj

]
+ E[t ′]

)
,

where the tj are i.i.d. (0,
√

2) Gaussians and t ′ is a (0,
√
m− 2) Gaussian, so

λ =
√

2
√

2 logNm + 0

m
= 2

√
logN

m
.

Thus, for fixedN and largem,we have a graph with Perron rootN but arbitrarily small max-plus
exponent.

Conjecture 1. There is a class of graphs (e.g. Erdős–Rényi graphs with parameters in some
range) for which the PPA exponent is an accurate approximation of the true max-plus exponent.
The relative error between the two exponents converges to 0 as we consider large graphs in
this class.

Furthermore, if we consider homogeneous noise max-plus linear systems on this same class
of graphs but with different noise term distributions (e.g. uniform, exponential), then the above
statement still holds and the accuracy of the PPA will be superior for distributions with lighter
tails.

Example 6. We generate a further randomly configured proportional noise max-plus linear
system by constructing an Erdős–Rényi graph with N = 10 and p = 0.5, and then assign each
edge (i, j) an edge weighting parameter δi,j which is itself an independent mean-1 exponential.
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The edge’s weight sequence is then defined byw[(i, j), k] = δi,j (1+aZi,j [k]),where a ∈ R is
the single noise parameter and [Zi,j (k)]nk=1 is an independent sequence of i.i.d. (0, 1)Gaussians.

Through Monte Carlo simulation we approximate the max-plus exponent λ of this system
and compare it to the PPA exponent λ̂ computed using gradient ascent. The results are displayed
in Figure 4.

5. Conclusion

In this paper we introduced the notion of conflux turnpike behaviour, the edge criticalities,
and the parallel path approximation (PPA). Theorems 1, 2, and 3 apply only to systems with
Gaussian noise, as outlined in Section 2. Can these results be extended to a broader class of
stochastic max-plus linear system?

The max-plus exponent has received considerable attention as it is equal to the reciprocal
of the throughput of a queueing system. Are there useful practical interpretations of the edge
criticalities? For instance, should edges with high criticality be prioritised to have their weight
reduced somehow in order to reduce the exponent? Can the PPA critical statistics be used to
analytically optimise the constrained design of a queueing system?

We have shown that the PPA is accurate for homogeneous systems on large complete graphs
and large Erdős–Renyi graphs. These homogeneous systems (introduced in Example 3) should
be of theoretical interest as they are the simplest class of stochastic max-plus linear systems with
interesting graph topology. Answering Conjecture 1 would give us a subclass of systems where
the max-plus exponent depends only on the Perron root of the associated adjacency matrix,
adding to the existing links between max-plus matrix algebra and classical Perron Frobenius
theory.
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