VOL. 12 (1975), 179-182.

Constructions for amicable

orthogonal designs

Jennifer Seberry Wallis

Infinite families of amicable orthogonal designs are constructed with
(i) both of type ($1, q$) in order $q+1$ when $q \equiv 3(\bmod 4)$ is a prime power,
(ii) both of type $(1, q)$ in order $2(q+1)$ where $q \equiv 1(\bmod 4)$ is a prime power or $q+1$ is the order of a conference matrix,
(iii) both of type $(2,2 q)$ in order $2(q+1)$ when $q \equiv 1(\bmod 4)$ is a prime power or $q+1$ is the order of a conference matrix.

Introduction

The concept of an orthogonal design was first introduced in [1]. An $n \times n$ matrix, X, is an orthogonal design of type $\left(u_{1}, u_{2}, \ldots, u_{s}\right)$ on the variables $x_{1}, x_{2}, \ldots, x_{s}$ in order n if X has entries from the set $\left\{0, \pm x_{1}, \ldots, \pm x_{s}\right\}$ and

$$
X X^{T}=\left(u_{1} x_{1}^{2}+u_{2} x_{2}^{2}+\ldots+u_{s} x_{s}^{2}\right) I_{n}
$$

where I_{n} denotes the identity matrix of order n. It was shown in [1] that if there is a pair of orthogonal designs, X, Y, which satisfy the equation $X Y^{T}=Y X^{T}$, then these designs became a powerful tool in the Received 12 November 1974.
construction of new orthogonal designs (for example, see Construction 22 of [1]).

The existence of such designs has been studied further in [3] and limits are given on the number of variables possible in each design. We define

DEFINITION. Two orthogonal designs, X, Y, of the same order, satisfying

$$
X Y^{T}=Y X^{T}
$$

will be called amicable orthogonal designs.
In this note we construct infinite families of amicable orthogonal designs.

The constructions

Let $q=p^{n}$ be a prime power. Then with $a_{0}, a_{1}, \ldots, a_{q-1}$ the elements of $G F(q)$ numbered so that

$$
a_{0}=0, \quad a_{q-i}=-a_{i}, \quad i=1, \ldots, q-1,
$$

define $Q=\left(x_{i j}\right)$ by

$$
x_{i j}=x\left(a_{j}-a_{i}\right)
$$

where X is the character defined on $G F(q)$ by

$$
X(x)= \begin{cases}0, & x=0, \\ 1, & x=y^{2} \\ -1, & \text { for sor some } y \in G F(q)\end{cases}
$$

Then Q is a type 1 matrix (see [2; p. 285-291]) with the properties that
(1) $\left\{\begin{array}{l}Q Q^{T}=q I-J, \\ Q J=J Q=0, \\ Q^{T}=\left\{\begin{aligned} Q & \text { for } q \equiv 1(\bmod 4), \\ -Q & \text { for } q \equiv 3(\bmod 4),\end{aligned}\right.\end{array}\right.$
where I is the identity matrix and J the matrix of all ones.

Now let $U=c I+d Q$ where c, d are commuting variables. Define $R=\left(r_{i j}\right)$ by

$$
r_{i, j}= \begin{cases}1, & a_{i}+a_{j}=0 \\ 0, & \text { otherwise. }\end{cases}
$$

Then, as in [2, p. 289] $U R$ is a symmetric type 2 matrix.
We now consider the matrices

$$
A=\left[\begin{array}{cc}
a & b \ldots b \\
-b & \\
\vdots & a I+b Q \\
-b &
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
-c & d \ldots d \\
d & \\
\vdots & (c I+d Q) R \\
d &
\end{array}\right]
$$

of order $q+1$, where a, b, c, d are commuting variables.
We claim that for $q \equiv 3(\bmod 4)$,
(i) A and B are orthogonal designs, and
(ii) $A B^{T}=B A^{T}$ (this follows since $a I+b Q$ is type I and $(c I+d Q) R$ is type 2).

Hence we have
THEOREM 1. Let $q \equiv 3(\bmod 4)$ be a prime power. Then there exists a pair of amicable orthogonal designs of order $q+1$ and both of type ($1, q$).

Further we note that for $q \equiv I(\bmod 4)$ choosing

$$
N=\left[\begin{array}{ccc}
0 & 1 & \ldots 1 \\
1 & & \\
\vdots & Q \\
1 &
\end{array}\right]
$$

gives a $(0,1,-1)$ matrix N satisfying

$$
N^{T}=N, \quad N N^{T}=q I_{q+1}
$$

Such matrices have been called symmetric conference matrices (see [2, 293, 452]) and we have

THEOREM 2. Let $n+1 \equiv 2(\bmod 4)$ be the order of a symmetric conference matrix. Then there exist pairs of amicable orthogonal designs of order $2(n+1)$ and both of the pair of type
(i) $(2,2 n)$,
(ii) ($1, n$).

Proof. Let N be a symmetric conference matrix and a, b, c, d be commuting variables. Then for (i) the required designs are

$$
\left[\begin{array}{cc}
a I+b N & a I-b N \\
a I-b N & -a I-b N
\end{array}\right] \text { and }\left[\begin{array}{cc}
c I+d N & c I-d N \\
-c I+c N & c I+d N
\end{array}\right] \text {, }
$$

while for (ii) they are

$$
\left[\begin{array}{cc}
a I & b N \\
b N & -a I
\end{array}\right] \text { and }\left[\begin{array}{cc}
c I & d N \\
-d N & c I
\end{array}\right]
$$

COROLLARY. Let $q \equiv 1(\bmod 4)$ be a prime power. Then there exist pairs of amicable Hadamard designs of order $2(q+1)$ where both of the pair are of type $(2,2 q)$ or of type $(1, q)$.

References

[1] Anthony V. Geramita, Joan Murphy Geramita, Jennifer Seberry Wallis, "Orthogonal designs", J. Lin. Multilin. Algebra (to appear).
[2] Jennifer Seberry Wallis, "Hadamard matrices", Combinatorics: Room squares, sum-free sets, Hadamard matrices, 273-489 (Lecture Notes in Mathematics, 292. Springer-Verlag, Berlin, Heidelberg, New York, 1972).
[3] Warren W. Wolfe, "Clifford algebras and amicable orthogonal designs", Queen's Mathematical Preprint No. 1974-22.

Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra, ACT.

