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1. Introduction. The purpose of this paper is to exhibit various Q-algebras (quotients of
uniform algebras) which are Jacobson radical. We begin by noting easy examples of nilpotent
Q-algebras and Q-algebras with dense nil radical. Then we describe two ways of constructing
semiprime, Jacobson radical Q-algebras. The first is by directly constructing a uniform
algebra and an ideal. This produces a nasty Q-algebra as the quotient of a nice uniform
algebra (in the sense that it is a maximal ideal of R(X) for some X s C). The second way is
by using results of Craw and Varopoulos to show that certain weighted sequence algebras are
Q-algebras. In fact we show that a weighted sequence algebra is Q if the weights satisfy
(i) w(/j-t-l)/vv(n)J,0 and (ii) (w(n + l)/w(n))e/pfor some/? ^ 1, but may be non-Q if either (i)
or (ii) fails. This second method produces nice Q-algebras which are quotients of rather
horrid uniform algebras as constructed by Craw's Lemma.

We summarize the terminology to be used. If A' is a compact Hausdorff space, then C(X)
denotes the Banach algebra of all continuous complex-valued functions on X, with the sup
norm. A uniform algebra is a closed subalgebra of some C(X). A Q-algebra is a Banach
algebra A which is bicontinuously isomorphic with the quotient of a uniform algebra by a
closed ideal. If the isomorphism is isometric, then A is said to be an IQ-algebra. The complex
numbers are denoted by C, and A = { z e C : | z | ^ l } . The disc algebra A(A) is the subalgebra
of C(A) consisting of functions analytic on int(A). For any algebra A, we write A" for the
linear span of the products of length n in A, and we say that A is nilpotent if A" = {0} for some
positive integer n. An algebra A is semiprime if it has no non-zero nilpotent (two-sided) ideals.
An element xeA is nilpotent if x" = 0 for some n; A is nil if every element of A is nilpotent;
and the nil radical of an algebra A is the largest nil ideal of A.

If A is a Banach algebra, the nil radical of A is the sum of the nilpotent ideals of A, ([4]).
Thus, when we look for examples of non-nilpotent, Jacobson radical Q-algebras, the two
extreme cases to be considered are algebras with dense nil radical and semiprime algebras.

2. Nilpotent Q-algebras.

(2.1) REMARK. Let M= {feA(A):f(0) = 0}. Then M is a uniform algebra and, for
any integer n > 1, M" is a closed ideal of M. Thus A = M/M" is an IQ-algebra, with A" = {0}.

3. Q-algebras with dense nil radical. In view of (2.1), we can construct non-nilpotent
Q-algebras with dense nil radical by taking a type of direct sum of the algebras MjM" (n ^ 2).

(3.1) DEFINITION. Let {A,}ieI be a family of Banach algebras. By the co-direct sum
A = co-(BieIAi we shall mean the subalgebra of the (unrestricted) direct product H/e/^i
consisting of those families {fi}iel such that for every e > 0 the set {iel: | / j || > e} is finite.
The norm on A is the sup norm | {/J || = sup{ | / , | : iel}.
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(3.2) LEMMA. The co-direct sum of any family of IQ-algebras is an IQ-algebra.

Proof. Let {At}ieI, {Ui}iel, {/,}je/ be such that, for each iel, Jt is a closed ideal of the
uniform algebra Ut and At is isometrically isomorphic with C/,//j. Then co-@At is
isometrically isomorphic with C

(3.3) PROPOSITION. There exists a non-nilpotent Q-algebra with dense nil radical.

Proof. Take the algebra co-@^

Here, again, both the Q-algebra and its uniform algebra (in this case co-©"=2M) are
easily accessible objects. In the next two sections only one of these will be at all tractable.

4. Semiprime, Jacobson radical Q-algebras. First method. Our first construction for
semiprime, Jacobson radical Q-algebras exhibits such an algebra as a quotient of a maximal
ideal of R{X) for a certain plane set X.

(4.1) DEFINITION. If X is a compact plane set, then we denote by R0(X) the algebra of all
rational functions on X with poles off X, and by R(X) the closure of R0(X) in C{X).

(4.2) THEOREM. There is a Jacobson radical Q-algebra with no divisors of zero which may
be realized as the quotient of a maximal ideal of R{X),for some compact A"£ C.

Proof. This construction is based heavily on the example of a non-trivial, normal
uniform algebra due to McKissick [5], an account of which may also be found in [6, §27].
He proves the following lemma.

(4.3) LEMMA ([5] Lemma 2, [6] Lemma 27.6). Let D be an open disc in the complex plane.
For every e > 0, there exists a sequence {Ak} of open discs contained in D and a sequence {rn}
of rational functions such that:

2
(ii) the poles ofrn lie in [j {Ak: 1 ̂  k g n);

(iii) the sequence {/•„} converges uniformly on the complement of \J{Ak: 1 ^k < oo} to a
function which is identically zero outside D and is nowhere zero on D\\J{Ak: 1 ^ k < oo}.

Let {An} be a sequential arrangement of all open discs in the plane having centres at
points xm + iym (xm, ym rational, xm+iym # 0) and having rational radii pm < i | xm+iym \. We
can clearly arrange the numbering so that i | x m + i y m | >2~m (m = 1,2,3,...). Applying
Lemma (4.3), with D = Dm and e = m~m, we obtain a double sequence of discs Amk

(m, k = 1,2, 3,...) of radii pm> k, with JjL, 1 pm< k < m~m (m = 1,2,3, . . . ) . Let <7m, k be the
distance of the set Am_ k from zero. Then om> k ^ | xm+iym | — pm > 2 m, and so

l2NT<<x> (1)

for all JV ^ 1. Furthermore, we have, as in [5], that if

00z
m, fc=l

Pm, fc°m,
-JV

00

< £
m = 1
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then, for every non-zero xe X, there exists an feR(X) such that/vanishes on a neighbourhood
of zero, but/(x) # 0. We define measures nN (N = 1, 2, 3, ...) as follows (c.f. [6], proof of
Lemma 24.1). For n = 1, 2, 3, ..., let

Xn = {z:\z\Z

where 0 < e ̂  1. Let fiN „ be measures on dXn defined by

where dXn is the boundary of Xn taken in the positive direction. Then, by (1), the fiN „ are
norm-bounded, uniformly in n, for each N. Hence, we may find a sequence of integers
"i>w2>n3> ••• and measures^ on Zsuch that nWni converges weak* to/ijy as / -• oo, for each N.
The measures nN depend on e. However, by Cauchy's Theorem, nN(f) is independent of e for
feR0(X) and hence, by continuity, for all feR(X). Let

IN = {feR(X):nn(f) = 0 (1 g » g

The IN and / are closed subspaces of R(X). We shall show that they are ideals and that the
algebra IJI is a Jacobson radical algebra with no divisors of zero. First, let us note that, for
feR0(X), we have nN(f) = %,„,(/) for all sufficiently large i, (N = 1, 2, 3,...) and so
HN(f) =/(JV-1)(0), the (N- l)th derivative of/at 0. (In particular, we have ^(f) =/(0) for
&MfeR(X)f so Ix is just the maximal ideal associated with the point 0.) By Leibniz' theorem,

n - 1

for/, g G i?0W a n ^ hence, since the //; are continuous, for al l / 3 e R(X). From this we obtain:
first, that the IN and / are ideals; and, secondly, that if feln.^\ln, gslm.^\lm, then
fg^Im+n-i- Hence,/,//has no divisors of zero. Suppose/J/is not Jacobson radical. Then
R(X)jI has a maximal ideal other than / j / / . This ideal must be of the form M/7, where M is
a maximal ideal of R(X) containing / and associated with a point of X ( = Spec(i?(X))) other
than 0. This is impossible, since, for every non-zero xeX there is &nfeR(X) which vanishes
on a neighbourhood of 0, but which does not vanish at JC. This has nN{f) = 0 (N1= 1, 2, 3,...),
by taking e suitably small in the definition of fiN, and so/e/ . However,/(x) # 0 implies/^M.
Thus / J / i s a Jacobson radical Q-algebra with no divisors of zero.

5. Semiprime, Jacobson radical Q-algebras. Second method: weighted sequence algebras.
One large and highly accessible class of semiprime, Jacobson radical algebras are the weighted
sequence algebras W(w), defined below, with rapidly decreasing weight functions w. In this
section, we show that the results of Varopoulos [7] give a simple sufficient condition on w for
W(w) to be a Q-algebra. Unfortunately, although these Q-algebras are of fairly simple
structure, the uniform algebras of which they are quotients appear only through the
complicated construction in the proof of Craw's Lemma ([3], Lemma (3.1); [1], §50
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Proposition 5). It would be interesting to know if they are expressible as quotients of simpler
uniform algebras; e.g., uniform algebras on plane sets.

(5.1) DEFINITION. A weight function is a real-valued function w on Z+ = {1, 2, 3, ...}
satisfying (i) w(x) > 0 and (ii) w(x+y) S w(x)w(y), for all x, yeZ+. Such a weight function is
said to be rapidly decreasing if w(ri)1/n -> 0 as n -* oo. The weighted sequence algebra W(w) is
defined to be the convolution algebra of complex-valued functions/on Z+ such that

| | / | | = Zw(n) | / (n ) |<oo .

This algebra has no divisors of zero and is Jacobson radical if and only if w is rapidly
decreasing.

(5.2) DEFINITION. A Banach algebra A is said to be injective if the map of the algebraic
tensor product A® A into A induced by the multiplication on A is continuous when A® A is
given the injective tensor product norm (i.e. the least crossnorm).

Varopoulos ([7, Theorem 1]) shows that every commutative injective algebra is a Q-
algebra. (The converse is false: /" with pointwise multiplication is Q for 1 ̂ p ^ oo, but
injective only for p = 1 and p = oo.) Our main theorem is a sufficient condition for the
injectivity of W(w).

(5.3) THEOREM. If w is a weight function such that

and

00 £ n,^ ) < °°> for some

()then W(w) is injective.
Note that w(«+l)/w(«)J,0 implies that w is rapidly decreasing, so W{w) is Jacobson

radical.

Proof. The methods used in [7] to establish conclusion (ii) of the lemma on p. 6 apply
here to show that W{w) is injective if

SUP

Suppose w satisfies (i) and (ii). For « ^ N = [p/2] +1, we have

w(m + n) w(m+N) " w(m + r)w(r—1)
w(m)w(n) w(m)w(N) r JN+1 w(m + r -1) w(r)

= vv(m)w(N) y W
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1 w(m + l)w(m + 2) w(m + N)

w(N) w(m) w(m + l ) " w(m + N—l

1 (w(\

w(N) \ w(m) J

< 1 /w(m + l)Y/2

Then

^\W(m)w(n)J =w(N)2
m^

But
" (w(m + n)\2

00.

so (1) holds and so W{w) is injective.
We conclude this paper with two examples to show that neither (i) nor (ii) is, by itself,

sufficient to make W{w) a Q-algebra. Notice that, by Corollary 3 of [2], both these examples
produce Arens regular, non-Q algebras W(w).

(5.4) EXAMPLE. There is a weight function w with w(n + l)/w(ri)lO such that W(w) is not
a Q-algebra.

Proof. We define w by induction. More precisely, we define an increasing sequence of
integers {rN} and the values w(l), ..., w(rN — 1), by induction on iV. First, rt = 2 and w(l) = 1.
Now suppose w(l), ..., w(rN — \) have been defined so that

w(s+t) ^ w(s)w(t) (l^s,t,s+t< rN) (1)
and

^ ^ (lSSS«r»). (2)
w(s) w(<)

We define

K ^ ) = ^w(r J V - l ) 2 , (3)

and, temporarily, we define

w(rN+k) = w(rN)k+i ( l £ k < oo) .
With this definition of a weight function w, the algebra W(w) is not Arens regular, by [2,
Theorem 1], and so not a Q-algebra (c.f. [2], [3]). Therefore by [7, p. 1], W(w) has the
property (^N): there exists a positive integer p ^ 1, elements xt, ..., xp of norm ^ 1 and a
homogeneous polynomial P of positive degree in p variables such that

where | P | | „ = s u p ^ P ^ , . . . , ZP)\:ZJGC, \Z,\ <, 1, (1 £j£

https://doi.org/10.1017/S0017089500002834 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500002834


124 P. G. D1XON

We approximate each of the x3 by an x'j such that | x'j || ^ 1 and x'j(n) = 0 for all
sufficiently large n, and we make this approximation so close that we still have

II P(x'. x'}\\ > NdesP II PII (4)

We choose an integer rN+l so large that x'j(n) — 0, P(x\, ..., x'p)(ri) = 0 (1 ^j £p,n^rN+1)
Now, we can redefine w(ri) (n ̂  r,y+1) and still have (4) true, and so (JPN). We make our
temporary definition of w(rN), ..., w(rN+l — 1) permanent, and this completes the induction
step in the definition of w, the inequalities (1) and (2) being easily verified. The resulting,
inductively defined, function w is a weight function such that W(w) has the property (2PN) for
all N. Hence, by [7, p. 1], W(w) is not a Q-algebra, but w(« + l)/w(«)|0, by (2) and (3).

(5.5) EXAMPLE. There is a rapidly decreasing weight function w with

£ w(n

?
such that W{w) is not a Q-algebra.

This follows immediately from the following result.

(5.6) THEOREM. For every positive function g on Z + , there exists a rapidly decreasing
weight function w with w(n+ l)/w(n) ^ g(n)for all n, such that W(w) is not a Q-algebra.

The proof of this theorem will be based on the following sufficient condition for W(w)
to be non-Q.

(5.7) THEOREM. Let w be a weight function such that, for every integer R ^ 1, there exists
qel+ with w(rq) = w(qY (r = 1, 2, ... R). Then W(w) is not a Q-algebra.

The proof of (5.7) is based on two lemmas.

(5.8) LEMMA. Let Abe a Q-algebra. Then there is a constant C > 0 such that, for allfe A
with | | /1 ^ 1 and all polynomials P{z) = X™=ia«z"> we nave

Proof. By putting C = 1, a = 0, e = 1/3 in Theorem 3 of [7].

(5.9) LEMMA. For every C > 0 there exists a polynomial PJiz) = £*= t anz" such that

n = l (. n = l

Proof Let an = (l/«) ein '•«"• Then £»= , \ an | = oo, but, by [8, V (4.2)],

:| z\ g l , N e Z + } < oo.

/Voo/ of Theorem (5.7). Suppose W(w) is a Q-algebra. Apply (5.8) to A = JF(w),
obtaining a constant C, and then (5.9), with this same C, obtaining a polynomial Pc of
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degree N(C). By the hypothesis on w, there exists q such that w(nq) = w{q)n (1 ^ n ^ N(C)).
Now if/e ^(w) is defined by/(s) = 0 (s ¥= q),f(q) = IKq), then fl/fl = 1 and

\\Pc(J)\\ = £ |
n = l

n = l

Consequently, the conclusion of (5.8) for this/and P = Pc contradicts the conclusion of (5.9).
Therefore W(w) cannot be a Q-algebra.

Proof of Theorem (5.6). We may assume that g(n) -* 0 as n -* oo. We define the weight
function w inductively by blocks, as in (5.4). Let rt = 2, w(l) = 1. Suppose w(l), ..., w(rN — 1)
have been defined with

w(x+y) g w(x)w(y) (1 ^ x, y, x+y < rN), w(x+ l)lw(x) ^ g(x) (\ ^x<rN-]),

and such that

(*) there exists q with w(rq) = w(q)r (1 ^r^R),

holds for all R< N. We put rN+, = #/>,, +1 and define w(rN),..., w(rN+1 -1) so that (*) holds
for R = N, with # = rN.

Let us write rA = a, and let J; = min{#(«): 1 ̂  n < rN+l}. Then define

w(a) = min{w(x)w(y)ti": 1 ̂  x, y < a}.

(The main point of this construction is that w(a) may be chosen very small compared with all
previous w(x).) For I ^s < N, 0 ^ t <a and s = N, t = 0 define

= w(a)sw(t)n'

where w(0) = 1, formally. It is straightforward to check that

w(x+y) ^ w(x)w(y) (1 ^ ^, J, x+y ^

and w(x+ l)/w(x) ^ ^(x) (1 ^ x < rN+, — 1). This completes the induction step. The resulting
function w is a weight function with w(n + \)lw(ri) $, g(n) for all «, and, since g(n)->0, it
follows that w is rapidly decreasing. Further, w satisfies (*) for all R and so, by (5.7), W(w) is
not a Q-algebra.
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