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Abstract. We present a new frame semantics for positive relevant and substructural
propositional logics. This frame semantics is both a generalisation of Routley–Meyer ternary
frames and a simplification of them. The key innovation of this semantics is the use of a single
accessibility relation to relate collections of points to points. Different logics are modeled by
varying the kinds of collections used: they can be sets, multisets, lists or trees. We show that
collection frames on trees are sound and complete for the basic positive distributive substructural
logicB+, that collection frames on multisets are sound and complete forRW+ (the relevant logic
R+, without contraction, or equivalently, positive multiplicative and additive linear logic with
distribution for the additive connectives), and that collection frames on sets are sound for the
positive relevant logic R+. The completeness of set frames for R+ is, currently, an open question.

§1. Ternary Relational Frames. The ternary relational semantics for relevant
logics is a triumph. The groundbreaking results of Routley and Meyer [45–47] have
significantly clarified our understanding of relevant logics.1 After 20 years of viewing
relevant logics with Hilbert-style axiomatisations, natural deduction systems and
algebraic semantics, we finally had a truth-conditional semantics which modelled
relevant logics in the same way that Kripke semantics provide models for normal
modal logics and intuitionistic and intermediate logics.2
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1 The ternary relational frame condition for conditionals was discovered independently both
by Larisa Maksimova in the late 1960s and by Dana Scott in the early 1970s. Maksimova’s
strikingly early contributions [30] are discussed by Katalin Bimbó and Mike Dunn [8, see p.
43]. Scott’s contributions are discussed by Brian Chellas, in a 1975 article [10, see p. 143 and
notes 17 and 18]. Thanks to Lloyd Humberstone for bringing this reference to our attention.

For recent discussions of Routley and Meyer’s early work on the ternary relational
semantics, see papers by Bimbó and Dunn [9] and Ferenz [19].

2 This is not to say that there weren’t other point-based semantics for relevant logics, before
the advent of the ternary relational semantics. The operational semantics, introduced by
Urquhart [53], should not be omitted from any survey of semantics for relevant logics. It
differs from the ternary relational semantics for R+ (and related logics) by using a binary
operation on points, rather than a ternary relation, to model the conditional. As a result,
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COLLECTION FRAMES FOR DISTRIBUTIVE SUBSTRUCTURAL LOGICS 1121

Propositions are modelled as sets of points, and connectives are interpreted as
operations on such sets, some (namely the modal operators, intuitionistic conditional
and negation, and in the case of relevant logics, relevant implication and the intensional
conjunction, fusion) using accessibility relations on the class of points. In the case of the
distinctively relevant conditional connective ‘→’, the two-place connective is naturally
interpreted by a three-place accessibility relation, the eponymous ternary relation of
the ternary relational semantics.

That a ternary relation should feature in a frame semantics for relevant logics should
not have surprised anyone. The pieces had been in place for quite some time. Jónsson
and Tarski’s papers, from the 1950s, on Boolean algebras with operators [26, 27],
showed how Boolean algebras with n-ary operators satisfying appropriate distributive
laws can be concretely modelled as power set algebras where each n-place operator is
interpreted using an (n + 1)-place relation. Generalising these results from Boolean
algebras to distributive lattices makes some of the details a little more complicated, but
the picture is mostly unchanged. The details for how to make that generalisation of
Jónsson and Tarski’s work to arbitrary distributive lattices with operators—including
relevant logics—were worked out by Dunn in his papers on gaggle theory in the
early 1990s [14–17].3 The picture is extremely natural and well motivated. The ternary
relational semantics for relevant and substructural logics is powerful, and it has resulted
in significant advances in our understandings of these logics.

Nonetheless, it cannot be said that the ternary relational semantics has met with
anything like the reception of the Kripke semantics for modal and constructive logics.
Some of the difference is no doubt due to the size of the respective audiences.
Substructural and relevant logic is a boutique interest when compared to the modal
industrial complex of the late twentieth and early twenty-first centuries. However, it

once disjunction is present in the language, this means that points cannot in general, be
prime (supporting a disjunction A ∨ B only when supporting one of its disjuncts, one of
A or B). To see why, take a point supporting p → (q ∨ r) and apply it (using the binary
application relation) to a point supporting p. By the interaction between the application
operation and the conditional, the resulting point will satisfy q ∨ r. For classical logic, this
would be no problem, since p → (q ∨ r) entails (p → q) ∨ (p → r). But this entailment fails
in R+ (and in intuitionistic logic). In the operational semantics for R+, points need not be
prime, and it turns out that points have much more of the flavour of arbitrary theories or
propositions, rather than special theories like worlds or situations. In the Kripke models
for intuitionist logic, and the ternary relational semantics for R+, points are prime, and to
evaluate a conditional like p → (q ∨ r), given a point where p holds we may need to consider
a range of points to evaluate q ∨ r. At some of these points, q may be true, and at others r
may be. In the Kripke semantics for intuitionist logic or the ternary relational semantics for
relevant logics, points generate prime theories, the completeness theorem is hard work, and
there is more we can learn from the distinctive structure of models.

Humberstone [23] shows that the operational semantics can be expanded to better model
disjunction, with the addition of a second operation on points. In Humberstone’s semantics,
a disjunction A ∨ B is taken to be true at a point x just when x = y + z where A is true
at y and B is true at z. We gain the simplicity of a binary operation for the conditional
(rather than a ternary relation) at the cost of a second binary operation for disjunction. See
Humberstone’s 2018 paper [25] for an extended discussion of this semantics. In the frame
semantics that is our focus, the distributive lattice operators are modelled as intersection and
union on sets of points, so using an operation for the conditional is out of the question.

3 Katalin Bimbó and J. Michael Dunn have written a comprehensive overview of gaggle theory,
the theory of Generalised Galois Logics [7]. [18, chap. 12] provides a short introduction to
gaggle theory.
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1122 GREG RESTALL AND SHAWN STANDEFER

seems to us that this does not explain all of the differences in the scale and quality of the
reception of the respective semantic frameworks. Some of the relative dissatisfaction
with the ternary relational semantics centres on philosophy and the question of the
intelligibility of the semantics [2, 11]. We think those questions have been well dealt
with in the literature, and that to a large degree the proof of this pudding is in the
eating, rather than adding to the already long discussion of pudding interpretation.
The ternary relational semantics is not problematic because it lacks interpretive power
or philosophical intelligibility. The problem with the ternary relational semantics is
that it is fiddly.

Consider Kripke semantics for modal logics. All you need to make a Kripke frame
is a non-empty set of points, and a binary relation on those points. Nothing more.
Propositions are modelled by sets of points. The Boolean operators correspond to the
set functions of union, intersection and complementation, and the modal operators
are simple universal or existential projections along the binary relation. This is simple,
it is robust, and once you see it, you find this pattern everywhere. Structures for modal
logics are ubiquitous.

Kripke semantics for intuitionistic logic is a little more complicated, but not by
much. We must have a partial order on our set of points (or possibly a preorder)
and propositions are sets of points closed upward along that order. Conjunction and
disjunction are unchanged from the modal case, as intersection and union preserve the
property of being upward closed. However, complementation, and the corresponding
operation to model the material conditional, do not preserve the property of being
closed, so they are replaced by operations that utilise the partial order and respect the
upward closure condition. Again, this is all very straightforward. When you have
an ordered collection of states, carrying information preserved along that order,
constructive logic is a natural tool, and Kripke models for intuitionistic logic are
correspondingly natural.

Now compare the general framework for substructural logics.4 One natural
presentation of the semantics takes this form: a frame is a 4-tuple 〈P,R,�, N 〉, where
P is a non-empty set of points, R is a ternary relation on P, � is a binary relation on
P, and N is a subset of P, where the following conditions are satisfied.

• � is a partial order.
• R is �-downward preserved in the first two positions, and �-upward preserved

in the third. That is, if Rxyz and x– � x, y– � y and z � z+ then Rx–y–z+.
• y � z if and only if there is some x where Nx and Rxyz.

Notice that these models have three distinct moving parts: the ternary relation R,
the partial order �, and the distinguished set N of points. Propositions are sets of
points closed upward under the partial order �. R is used to interpret the conditional
connective ‘→’ (and the intensional conjunction ‘◦’, if present), while the set N of
so-called normal, or regular, points is the set of points at which logical truths are
taken hold.5 The need for N is a distinctive feature of relevant logics, as logical truths

4 This presentation is taken from Restall’s Introduction to Substructural Logics [41, chap. 6],
but the choice of framework is irrelevant to the general point. No presentation of primitives
is particularly less fiddly than any other.

5 There are many names for the points in N. We are following [37] in using the term ‘normal’,
with its connections to modal logics. Along with ‘regular’, ‘base points’ and ‘logical points’
are used in the literature on relevant and substructural logics.
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(like, say, p → p) need not hold at all points. Since, for example, q → (p → p) is not
a theorem of R+, so some models feature have counterexamples to the conditional.
Those models have at least one point where q is supported but p → p is not. But p → p
is still a logical truth according to R+. Logical truths are guaranteed to hold at some
points (namely, those in N), but not necessarily at all points. So, our models have three
distinct moving parts: � for providing our closure conditions for propositions,6 R for
modelling ‘→’ and ‘◦’, and N for modelling the logical truths.

We challenge anyone to find this kind of formal semantics to be as straightforward
to apply as the Kripke semantics for modal and constructive logics. While it is relatively
easy to find preorders or binary relations on sets under every bush, it is rather harder
to see where ternary relations, partial orders and special sets of normal points are to
be found. Perhaps they are there somewhere, but they do not seem particularly easy
to spot. It is not for nothing that modal and constructive logics have been applied in
many domains where relevant and substructural logics have not.7

It is true that the choice of primitives in the ternary frame semantics is somewhat
arbitrary. We could take � to be defined in terms of N and R, but then the condition
that it is a partial order (or a preorder) and that R is preserved along that order become
even more complex and unnatural to state. In models for some of our logics (not all)
we could impose the condition that � is the identity relation (and hence, all algebras of
propositions arising out of such frames would be at least implicitly Boolean algebras,
so this works only for logics conservatively extended with Boolean negation) [38]. It
is possible, for some substructural logics, to trade in our set N for a single point g
(and restrict our attention to so-called reduced models), cutting down further on the
number of models generated, but the conceptual complexity remains [21, 48–51].

When you consider ternary relational models alongside point semantics for normal
modal logics and constructive logics, the contrast is plain for all to see. Ternary
relational models are significantly less elegant, and they have many different moving
parts than Kripke models for modal and constructive logics. It is not for nothing that
those of us working in the area have sought to simplify the semantics, but try as we
might, significant complexity remains after such all such efforts [38, 39].8

In this paper we introduce a new class of models for positive relevant and
substructural logics, which at the same time generalises and simplifies the ternary
relational semantics. Collection frames generalise ternary relational frames in the sense
that every ternary relational frame can be seen as a collection frame, but that there

6 Not all algebras of relevant logics are Boolean algebras (or more precisely, distributive
lattices in which each element has a unique Boolean complement, that is for each x there is
a y such that the meet of x and y is the bottom element of the lattice and the join of x and
y is the top. This can be so even if the algebra has no operator that sends an element to its
complement), so we wouldn’t expect all of our frames too allow every subset of points to
count as a proposition. However, these algebras are distributive lattices, so a partial order of
this form is very natural.

7 This is not to say that the only way a logic finds its application is that a class of models for that
logic is independently discovered in some domain. It is to say that this is one way that the tools
of the logic may be applied. This is also not to say that there are no well motivated independent
applications of the ternary frame semantics. Frames for the Lambek calculus, where the
ternary relation arises out of string concatenation, for example, are one obvious case, though
notice that in this case, the ternary relation collapses into a binary operation [12, 36].

8 Frames for some of the stronger logics seem to present particular challenges to simplification
[43].
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are also collection frames that do not arise as ternary relational frames. Collection
frames simplify ternary relational frames in the sense that there are significantly fewer
independent parts and conditions connecting different components of the semantics.
While the resulting models are not quite as simple as Kripke semantics for modal
logics—some complexity is inevitable, given that we are aiming to model an intensional
two-place connective—the gain in simplicity over the traditional presentation of the
ternary relational frame semantics for relevant logics is significant.

Simplifying the semantics is one motivation for our work. The second motivation for
an alternate approach to frames for these logics arises out of noticing the following fact:
When we work with particular substructural logics—such as R+, RW+, and TW+—it
is very natural to consider not only the ternary relation R but its generalisations to
more places: R2a(bc)d is defined as (∃x)(Rbcx ∧Raxd ), and R2(ab)cd is defined as
(∃x)(Rabx ∧Rxcd ). In R+ and RW+, R2a(bc)d holds if and only if R2(ab)cd holds,
so we can simplify our notation, and generalise further: for n > 0, we define Rn to be
the (n + 2)-ary relation on P, settingR1 = R, and settingRn+1a1a2a3 ··· an+3 to hold if
and only if (∃x)(Ra1a2x ∧Rnxa3 ··· an+3). This generalisation into an arbitrary n-ary
relation, where n ≥ 3 is extremely natural, and conditions onR2 and still higher orders
of R play a role in the specification of various substructural logics.9

Our attempt to understand the phenomenon of higher order accessibility relations—
and how they relate to each other—is the starting point for a new, simpler
characterisation of frame semantics for substructural logics. In the next section we
will start with one case, frames for the logics RW+ and R+. In later sections we will
then branch out to a wider class of substructural logics.

§2. Multiset Frames. A guiding idea in ternary relational semantics for relevant
logics is the notion of information application or combination. The ternary relation R
relates the triple of points x, y, z (that is,Rxyz) if and only if applying the information
in x to the information in y results in information that is in z. In the logics R+ and
RW+, information application is commutative (applying x to y results in the same
information as applying y to x), and associative (applying x to y and then applying
the results to z results in the same things as applying x to a result of applying y to
z). In models for R+, combination is also idempotent, to the effect that the result
of applying x to itself doesn’t take you outside x (so we have Rxxx). Associativity
and commutativity of application (or combination) means that we could simplify our
ternary relation R by thinking of it not so much as a ternary relation where all three
slots act independently, but rather, at least in the case of these logics, as a relation
between unordered pairs of points on the one hand, and points on the other. The fact
rendered as Rxyz in the ternary semantics could instead be represented as

[x, y]Rz

where we have the (unordered) pair of x and y on the one hand, and the z on the other.
The fact that this is an unordered pair, and not a set is important, because when we
consider Rxxz what we have is

[x, x]Rz,

9 Mares’ monograph Relevant Logic [31, p. 210] gives a definition of frames for R+ using this
generalisation of the ternary relation. This generalisation is also used by Meyer and Routley
[34, p. 184], which introduces a notation similar to the multiset and list frames below.
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where x is applied to itself. But as far as order of application goes, [x, y]Rz is the very
same fact as [y, x]Rz. When it comes to associativity, what we have in models for RW+,
traditionally presented, is the following complex fact:

(∃u)(Rxyu ∧Ruzw) iff (∃v)(Ryzv ∧Rxvw).

If we are willing to abuse notation a little more, what we have in this biconditional is
two different ways of representing the one single fact

[x, y, z]Rw

to the effect that x, y and z together, combined in any order, are related to w. Collection
frames arise from taking what was an abuse of notation literally. In collection frames,
an accessibility relation relates collections of points to points.

This shifted perspective on R comes with advantages. Not only will this relation
R do the job of the original ternary relation, in the case where the multiset has two
elements, and not only can it represent R2 and relations of higher arities with larger
multisets. It also has the capacity to represent the binary relation � in the case where
the collection being related is a singleton, and it also represents the predicate N, in the
case where the collection being related is the empty multiset. The translation manual is
straightforward:

(F1) Nx becomes [ ]Rx,
(F2) x � y becomes [x]Ry,
(F3) Rxyz becomes [x, y]Rz.

What was represented by three different fundamental concepts in traditional Routley–
Meyer frames becomes three different aspects of one underlying relation. The
conditions linking N, � and (ternary) R become corollaries of the fundamental
structure of the one multiset relation R.

To make things explicit, a collection frame for RW+ has a non-empty set P of points
and a single accessibility relation R on M (P) × P, where M (P) is the class of finite
multisets of elements of P. Since multisets are not in very wide use,10 we would do well
to be explicit about them and their properties.

Definition 1 (Finite multisets, ground). A multiset is a collection in which order is
irrelevant, but multiplicity of membership is relevant. There are various ways to formally
define the notion. One way is this: a finite multiset of objects taken from some class P can
be represented as a function m : P → � where m(x) = 0 for all but finitely many values
of x. If x is in P, then m(x) is the number of times x is a member of the multiset m.
The multisetsm1 andm2 from P are identical if they have the same members to the same
multiplicities: that is, m1 = m2 if and only if m1(x) = m2(x) for each x in P.

For any two multisets m1 and m2, their union is the multiset with function m1 +m2.
We also write ‘m1 ∪m2’ using the traditional notation for union. Note, however, that
m1 ∪m1 is now not (typically) the same multiset as m1.

We say that m1 ≤ m2 (a generalisation of the subset relation to multisets) if m1(a) ≤
m2(a) for all a in P.

10 The papers “Multisets and Relevant Implication I” and “II” by Meyer and McRobbie [32,
33] are accounts of multisets and their importance in the proof theory of relevant logics.
Grattan-Guinness has a helpful discussion of the history of accounts of multisets in late
Nineteenth and Twentieth Century mathematics [22].
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We use the familiar bracket notation for multisets: for example, [a, a, b] is the multiset
where m(a) = 2 and m(b) = 1 and m(x) = 0 for every other value of x. So, [a, b] ∪
[a, c, c] = [a, a, b, c, c].

As with sets, we will use the symbol ‘∈’ for multiset membership. Here, ‘x ∈ m’ will be
taken to mean thatm(x) > 0, that is, the object x is in the multiset m a non-zero number
of times.

For any multiset m on P, its ground g(m) is the subset of P consisting of all objects
x with non-zero multiplicity in m, that is, g(m) = {x ∈ P | m(x) > 0}.

Now we know enough about multisets for us to introduce the multiset semantics
for RW+ and for R+. As we have already indicated, a collection frame consists of a
set P of points (with at least one member), and a relation R on M (P) × P, which
relates multisets of points to points. Henceforth, we will call relations R onM (P) × P
multiset relations.

The intended application of R in a multiset frame is straightforward: XRy holds
when, and only when, the information in the points X taken together also holds in y.
There are aspects, in this reading, of the partial order from constructive logics, and
just like that case, there must be at least some condition on this relation for such an
interpretation to make sense. The relation R cannot be entirely arbitrary. In the case
of the semantics for constructive logic, there are two parts to the constraint on the
order relation. First, that it be reflexive, and second, that it is transitive.11 In the case
of multiset relations for frames for RW+, the condition has much the same form: a
transitivity component and a reflexivity component. The strictest and most natural
form of reflexivity would be we require that the information in the singleton multiset of
points [x] is indeed carried by the x itself. This says very little about combining points,
of course. For transitivity, we require that combination compose in a straightforward
manner: if XRy and [y] ∪ YRz then (X ∪ Y )Rz.12 However, we require something
stronger than just composition in this direction: we also require its converse. That is, if
(X ∪ Y )Rz then we can find some ‘value’ y whereXRy and ([y] ∪ Y )Rz. We call these
two conditions compositionality because we think of R as a generalised combination
relation, selecting for each collection of points the single points which are suitable to
represent it. The compositionality condition says that this relation can be composed
or decomposed piecewise. So, we have the following definition:

Definition 2 (Compositionality). A multiset relation R on M (P) × P is said to be
compositional if and only if for all multisets X and Y and for all points z,

(∃y)(XRy and ([y] ∪ Y )Rz) iff (X ∪ Y )Rz.

In addition, a compositional multiset relation is reflexive iff for all points x, we have

[x]Rx.

We break the compositionality condition into two parts, the left to right direction
we will call Transitivity, for obvious reasons. The right to left direction we will call

11 We could add the condition that it is anti-symmetric, though this is in no way essential for
the models to give us intuitionistic logic.

12 This is a generalised form of transitivity, much like those discussed for consequence relations
by Ripley [44].
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Transitivity

y

Splitting
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x x

X X

Fig. 1. The two directions of compositionality.

Splitting.13 These two parts of the condition play different roles in exploring the
properties of this semantics, so we will highlight these roles by mentioning at each
point whether Transitivity or Splitting is being appealed to.

The intuitions behind the two directions are represented in Figure 1. The intuition
behind Transitivity is that if one can combine the information in X to obtain x and
combine the information in Y together with x to obtain y, represented by the solid
lines, then one could have just as well have used the information in the combination of
X and Y to obtain y, represented by the broken lines. If we restrict our attention to the
case where X = [x] and Y = [ ] then we see that Transitivity gives us the transitivity
of the binary relation �x.�y.[x]Ry on points.

The intuition behind Splitting is that if one can obtain y from some information Z,
which can be split into components X and Y, then one could evaluate the X portion to
obtain something, x, which can be combined with the information in Y to obtain y.14

If we restrict our attention to the case where X = [x] and Y = [ ], then Splitting gives
us the density of the binary relation �x.�y.[x]Ry. That is, if [x]Rz then there is some y
where [x]Ry and [y]Rz. Notice that the density of this relation holds automatically in
the case where reflexivity holds, but this condition is strictly weaker than reflexivity.15

Since this binary relation �x.�y.[x]Ry is so important in our frames, we will reserve
special notation for it. In ternary frames the usual notation is ‘�’. Since our frames
will not require reflexivity (but we will allow it), let us write ‘�’ for this binary relation
induced by the multiset relation R. We have seen proved the following lemma.

Lemma 3. If R is a compositional multiset relation then the induced binary relation �
(given by setting x � y iff [x]Ry) is transitive and dense.

Before we continue spelling out the semantics, we would do well to pause to consider
some examples of simple multiset relations, and their properties.

13 We thank an anonymous referee for suggesting this name.
14 The similarity with the rules of Identity and Cut in a single conclusion sequent calculus

(A � A, and from Γ � A and A,Γ′
� B to infer Γ,Γ′

� B) should not be surprising. Like
Cut, the second component of the compositionality condition is the appropriate kind of
transitivity condition on the relation R.

15 The relation < on Q or R is dense, but not reflexive, as one obvious example.
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Example 4 (Compositional multiset relations on �). Here are some examples of
compositional multiset relations on the set � of natural numbers.

[The Product] XRy if and only if y is the product of all the members of X.16

(This is genuinely and distinctively a multiset relation, which distinguishes repeated
elements in the multiset. For this relation, [2, 2]R4 holds, but [2]R4 does not.) This
is compositional, which fact is left to the reader.
[Some Product] XRy if and only if y is some product of the members of X,
using each instance in X at most once. (Unlike the product, this relation is not
functional.
[The Sum, and Some Sum] In the same way, the relation R given by setting XRy
iff ΣX = y is compositional (given that we set Σ[ ] = 0), as is the relation given
by setting XRy iff ΣX ′ = y for some X ′ ≤ X . As with the product relations, one
is functional, and the other is not. Each of the relations discussed so far makes
essential use of the multiset structure. The multiset [2, 2] is related to different
numbers in each case, than the singleton multiset [2]. In the next example, the
multiplicity of members makes no difference at all.
[Maximum-or-zero-if-empty] In this case, XRy if and only if y is the largest
member of X, and is 0 if X is empty. This satisfies the reflexivity condition, as well
as Transitivity and Splitting.
[The Empty Relation] Another multiset relation, trivially compositional, is the
empty multiset relation. It is straightforward to verify that this relation satisfies
both the Transitivity and the Splitting conditions. Of course, this relation fails to
be reflexive, unlike the other relations we have considered so far.

That is a range of compositional multiset relations on�. Not every multiset relation,
however, is compositional.

Example 5 (Non-compositional multiset relations on �). These relations fail to be
compositional in different ways.

[Larger than the product of]XRy holds if and only if y > ΠX . Clearly this is
not reflexive. While Splitting holds, the Transitivity direction of compositionality
fails.
[Largest two] XRy if and only if y is one of the largest two elements of X. This
relation fails transitivity.
[Membership] XRy if and only if y ∈ X . This relation enjoys Transitivity but not
Splitting.

Although membership is not a compositional multiset relation on M (P) × P,
it is compositional if we restrict our attention to inhabited17 multisets. (We will
discuss this restricted form of compositionality below.)
[Between] XRy iff y occurs between the smallest and the largest members of X,
inclusive. So [2, 4] is related to 2 and to 4 and to 3 but to no other number. This, like

16 What is the product of all the members of [ ]? A moment’s reflection shows that the natural
answer is to declare Π[ ] to be 1. Then, for any two multisets X and Y, Π(X ∪ Y ) =
ΠX × ΠY .

17 A multiset is inhabited iff it has at least one member at multiplicity at least one. It is (at
least if we ignore constructivist distinctions) the positive synonym for the negatively defined
‘non-empty’.
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membership, is compositional on the inhabited multisets but not the full collection
of multisets.

We will end this series of examples with two more compositional relations, this time,
on the rational numbers Q and the reals, R, rather than on �, so we have scope for
examples of non-reflexive but dense order relations.

Example 6 (Non-reflexive multiset relations). These examples of multiset relations
make use of the density of the underlying order < on Q and on R.

[larger than] XRy if and only if y > x for each x ∈ X . So, [ ]Ry for every y (in
this case, the condition is vacuously satisfied ). This relation satisfies Transitivity
and Splitting but not reflexivity.

In this case, the relation makes no distinction between multisets with the same
ground. [2, 2] is related to all the numbers greater than 2, as is [2] and [2, 2, 2].
[larger than the sum of] Here, XRy if and only if y is larger than the sum of all
the members of X (counting their multiplicities, as in the case of the sum relation
given previously). As before, we set Σ[ ] = 0. While this fails to be reflexive, it is
compositional.

This flock of examples was longer than it strictly needed to be, if not for one thing.
A complaint about the ternary relational semantics is that examples are hard to come
by, hard to construct and above all, hard to picture. That there is such a list of naturally
occurring examples of compositional multiset relations, both reflexive and irreflexive,
and which exhibit significantly different behaviours, but are straightforward both to
reason with and to understand, goes quite some way towards answering that complaint.

It is disappointing, however, that membership and betweenness failed to count as
compositional relations. In fact, as we noted, those multiset relations are compositional
if we restrict our attention to the classM ′(P) of inhabited multisets of points. We can
make this notion precise in a definition.

Definition 7 (Compositional inhabited-multiset relations). A relation R onM ′(P) ×
P is said to be compositional if and only if for all multisets X and Y where X = [ ], and
for all points z,

(∃y)(XRy and ([y] ∪ Y )Rz) iff (X ∪ Y )Rz.

This is the appropriate definition of compositionality for a relation on inhabited
multisets. You may wonder why, in this definition, X inhabited, but Y is allowed
to be empty. Isn’t that outside the spirit of restricting our attention to inhabited
multisets? This is a natural restriction of compositionality to this setting, because
it is the smallest modification to the condition that ensures that the left relatum of any
R-fact is nonempty. (Since we require that X be inhabited, for XRy to make sense in
this context, this is enough to guarantee that X ∪ Y is also inhabited, and [y] ∪ Y is
inhabited by design.) A satisfying upshot of this result is the fact under this condition
(allowing for Y to be empty), the proof of Lemma 15 works in the case of inhabited-
multiset relations, too. That special case of transitivity, spelled out, is this: XRy and
[y]Rz impliesXRz. We have also appealed to this condition in the proof Lemma 3. We
will also see below, when we turn to more general structures, like lists and trees, that
the general form of compositionality involves trading in a single item in a structure
(here, a member of a multiset) for another structure. In the case of a multiset, any
multiset with a member y can be written in the form X ∪ [y]. For this representation
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to work, in general, we need to allow the case where X is empty, even if our attention
is fixed on inhabited multisets, for we may wish to trade in the y in a singleton multiset
[y] for some other multiset.

Example 8 (Compositional inhabited-multiset relations). With this expanded
definition, we can enlarge our class of models even further. We have already seen that
membership and between give us compositional relations on inhabited multisets. So are
these:

[maximum, and minimum] maximum-or-zero-if-empty is a compositional multi-
set relation on �. Without the need to have a maximum for [ ], we can remove
the “or-zero-if-empty” dodge, and restrict our attention to the largest member
of the multiset. Or the smallest, if we choose, and the result is a compositional
inhabited-multiset relation.
[the sum, and some sum on subsets of �] If we no longer have the requirement
that the empty multiset [ ] have a sum, then given any subset S of �, closed
under addition (so if x, y ∈ S, then so is x + y) we can define a compositional
inhabited-multiset relations R andR′ on S, settingXRy iff y = ΣX , andXR′y iff
y = ΣX ′ where X ′ is an inhabited multiset where X ′ ≤ X . For example, we can
let S = {1, 2, 3, ...} = �\{0} to provide a very different kind of model, once 0 is
left out of the domain.
[the product, and some product on subsets of �] In exactly the same way,
we can generate models defining R on subsets of � closed under product, without
having to include 1 as the product of the empty multiset.

In what follows, we will consider both compositional multiset relations and, at times,
compositional inhabited-multiset relations. For any compositional multiset relation, its
restriction to inhabited multisets is, of course, also compositional. For the converse, we
have the following lemma, which shows that there is a way to extend a compositional
inhabited multiset relation R on M ′(P) × P to a compositional multiset relation on
M (P ∪ {∞}) × (P ∪ {∞}), where we add a new ‘point at infinity’ to our point set.

Lemma 9. If R is a compositional inhabited-multiset relation on M ′(P) × P, and
∞ ∈ P, then the multiset relationR× onM (P ∪ {∞}) × (P ∪ {∞}), defined as follows,
is compositional.

XR×z iff

{
z = ∞, if X\∞ = [ ],
(X\∞)Rz, if X\∞ = [ ].

Furthermore, if R is reflexive, then so is R×.

(In the definition of R× we use the notation ‘X\y’ for the multiset formed by
removing all instances of y from X. So, for example, [a, b, b, c, c]\c = [a, b, b]. We
reserve ‘X\Y ’ for the multiset formed by removing the number of occurrences in Y
from X, so [a, b, b, c, c]\[c] = [a, b, b, c].)

Proof. Let’s suppose that (X ∪ Y )R×z, in order to find some y where YR×y
and (X ∪ [y])R×z. By definition (X ∪ Y )R×z holds if and only if z = ∞ (if
(X ∪ Y )\∞ = [ ]) or ((X ∪ Y )\∞))Rz (otherwise). Let’s take these cases in turn.
If (X ∪ Y )\∞ = [ ] then clearly X\[ ] and Y\[ ], so in this case, both YR×∞
and (X ∪ [∞])R×∞, as desired. So, now consider the second case: we have
((X ∪ Y )\∞))Rz and (X ∪ Y )\∞ = [ ]. We aim to find some y where YR×y and
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(X ∪ [y])R×z. If Y\∞ = [ ], then we choose ∞ for y. We have, then, YR×∞ and
since ((X ∪ Y )\∞))Rz, we have (X\∞)Rz, so we have (X ∪ {∞})R×z as desired.
On the other hand, if Y has some element other than ∞, since ((X ∪ Y )\∞))Rz,
we have ((X\∞) ∪ (Y\∞))Rz, and since R is compositional, there is some y where
(Y\∞)Ry and ((X\∞) ∪ [y])Rz, which gives usYR×y and (X ∪ [y])R×z as desired.

Now for the second half of the compositionality condition for R×, suppose that
there is some y where YR×y and (X ∪ [y])R×z. We aim to show that (X ∪ Y )R×z.
If YR×y then either y = ∞ and Y contains at most ∞, or otherwise (Y\∞)Ry.
In the first case, (X ∪ [y])R×z tells us that (X ∪ [∞])R×z, which means either that
(X\∞)Rz, or X also contains at most ∞ and then z = ∞. In the either of these
cases, we have (X ∪ Y )R×z, as desired. So, let’s suppose y = ∞. In that case we have
(Y\∞)Ry, and then, since (X ∪ [y]))R×z, we have ((X ∪ [y])\∞)Rz, and by the
compositionality of R, ((X ∪ Y )\∞)Rz, which gives (X ∪ Y )R×z, as desired.

Finally, R× is reflexive follows immediately from the reflexivity of R and the fact
that [∞]R×∞.

With this result, it is possible for us to use examples like membership and betweenness
as compositional multiset relations, with the full complement of logical resources,
including the set of normal points, identified as those related to the empty multiset [ ].

Now we are in a position to define multiset frames and models. We will begin with
the more standard ternary relational frames for RW+.

Definition 10 (Ternary relational RW+ frames, models). A ternary relational frame
for RW+ is a quadruple 〈P,R,�, N 〉 obeying the following conditions.

1. � is a partial order.
2. If x � w, y � u, v � z, and Rwuv, then Rxyz.
3. y � z iff ∃x ∈ N , Rxyz.
4. If x ∈ N and x � y, then y ∈ N .
5. Rxyz only if Ryxz.
6. Rwxyz only if Rw(xy)z.

To get a ternary relational frame for R+, one adds the condition that if Rxyz, then
Rxyyz.

A ternary relational model is a quintuple 〈P,R,�, N,�〉where the first four components
make up a frame and the final component is a binary relation between P and the set of
atoms such that if x � p and x � y, then y � p. This is extended to the whole language
according to the following clauses.

• x � A ∧ B iff x � A and x � B .
• x � A ∨ B iff x � A or x � B .
• x � A→ B iff for each y, z where Rxyz, if y � A then z � B .
• x � A ◦ B iff for some y, z where Rxyz, both y � A and z � B .
• x � t iff x ∈ N .
• x � ⊥ never.

Next, we define multiset frames.

Definition 11 (Multiset frame). A multiset frame 〈P,R〉 is an inhabited set P of points
together with a compositional multiset relation R on P.

This definition is, in one sense, starkly simpler than the traditional frame semantics
for RW+, in that the three elements N, � and the ternary relation R are subsumed into
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one fundamental relation, the compositional multiset relation. They are also more
general, because we consider not only models in which � is reflexive (as it is in ternary
relational frames), but the more general class of frames allowing for the underlying
order relation � to be non-reflexive, or even irreflexive. In fact, we allow as a frame the
case where R is the empty relation. So, this is a wider class of frames. The multiset frames
subsume the traditional ternary relational frames for RW+, following the conditions
(F1), (F2), and (F3) from Section 2. The one relation in a multiset frame encodes the
three different moving parts of a ternary frame. We have the following fact:

Lemma 12. Each ternary frame 〈P,R,�, N 〉 for RW+ determines a reflexive multiset
frame 〈P,R′〉, defined by setting:

• [ ]R′x iff x ∈ N ,
• [x]R′y iff x � y,
• [x, y]R′z iff Rxyz,
• If Y is a multiset of size two or more, ([x] ∪ Y )R′z iff for some y, YR′y and

[x, y]R′z.

Proof. We first need to show that the definition isR′ coherent: that the third clause, to
the effect that [x, y]R′z iffRxyz, that the last clause, according to which ([x] ∪ Y )R′z
iff for some y, YR′y and [x, y]R′z, could both hold. For the third clause, we need
to be sure that Rxyz holds iff Ryxz holds, since [x, y] = [y, x], lest the clause give
inconsistent guidance as about [x, y]R′z. But in any ternary frame 〈P,R,�, N 〉 for
RW+, we have Rxyz iff Ryxz, so this clause is coherent.

For the last clause, if [x] ∪ Y is the same multiset as [x′] ∪ Y ′, we need to show that

(∃y)(YR′y ∧ [x, y]R′z) if and only if (∃y′)(Y ′R′y′ ∧ [x′, y′]R′z)

in order to ensure that this clause also gives consistent guidance concerning R′. We
prove this by induction on the size of [x] ∪ Y . When Y has size 2, this reduces to the
case (∃y)([x2, x3]R′y ∧ [x1, y]R′z iff (∃y′)([x1, x3]R′y′ ∧ [x2, y

′]R′z), but given the
definition of R′ on two-element multisets in terms of the ternary R, this reduces to
the biconditional (∃y)(Rx2x3y ∧Rx1yz) iff (∃y)(Rx1x3y

′ ∧Rx2y
′z), but this is the

biconditional betweenR2x1(x2x3)z andR2x2(x1x3)z, which indeed holds in our RW+

frame.
Suppose the equivalence has been proved for all multisets of size n (where n > 2) and

we have a multiset [x1] ∪ Y = [x2] ∪ Y ′ of size n + 1. Let Z be such that Z ∪ [x2] = Y
and Z ∪ [x1] = Y ′. Note that we may assume x1 = x2, as otherwise the case is trivial.
We wish to show that

(∃y)(([x2] ∪ Z)R′y ∧ [x1, y]R′z) iff (∃y′)(([x1] ∪ Z)R′y′ ∧ [x2, y
′]R′z).

By the inductive hypothesis, (∃y)(([x2] ∪ Z)R′y ∧ [x1, y]R′z) is equivalent to

(∃y)(∃w)(ZR′w ∧ [w, x2]R′y ∧ [x1, y]R′z).

From the definition of R′, the latter two conjuncts suffice for Rx1(x2w)z, which is
equivalent to Rx2(x1w)z, as in the base case. Therefore,

(∃y′)(∃w)(ZR′w ∧ [w, x1]R′y′ ∧ [x2, y
′]R′z),
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which in turn is equivalent, by the inductive hypothesis, to

(∃y′)(([x1] ∪ Z)R′y′ ∧ [x2, y
′]R′z).

So, we have shown by induction that the definition is coherent.
Now, it suffices to show thatR′, so defined, is reflexive and compositional. Reflexivity

follows from the reflexivity of �, and Transitivity follows straightforwardly from the
definition ofR′ itself, albeit with many cases to check. It remains to show that Splitting
holds.

We want to show that if (X ∪ Y )R′z, then there is some y where XR′y and ([y] ∪
Y )R′z. Given the definitions, we need to consider the cases where X ∪ Y has zero,
one, two, or more elements. In the case where X ∪ Y is empty, then we have []R′z. So,
then we have []R′z and [z]R′z, as desired.

If X ∪ Y has size 1, then there are two subcases. Subcase: X is [x]. By assumption
we have [x]R′z, so we then have [x]R′x, by Reflexivity, and [x]R′z, satisfying Splitting.
Subcase: X is empty and Y is [x]. Since [x]R′z, x � z, so there is some y ∈ N such
that Ryxz. We then have []R′y and [y, x]R′z, satisfying Splitting.

Suppose X ∪ Y has size 2. Subcase: X is empty. We need a y such that []R′y and
[y, y1, y2]R′z. Since y1 � y1, there is a u ∈ N such that Ruy1y1. By assumption we
haveRy1y2z, so it follows thatRuy1y2z, which is [uy1y2]R′z, as desired. Subcase: X is
[x] and Y is [y1]. In this subcase we have [x, y1]R′z. Since [x]R′x, it follows that there
is a y such that [x]R′y and [y, y1]R′z, namely x. Subcase: X is [x1, x2] and Y is empty.
By assumption we have [x1, x2]R′z and we need a y such that [x1, x2]R′y and [y]R′z.
Since [z]R′z, we can simply take z as y.

SupposeX ∪ Y has size 3 or greater. Subcase: X is empty. The argument is similar to
the subcase of the previous case where X is empty. Subcase: Y is empty. The argument
is similar to the subcase of the previous case where Y is empty. Subcase: X and Y
are inhabited, so X = [x] ∪ X ′ and Y = [y1, ... , yn] and ([x] ∪ X ′ ∪ [y1, ... , yn)R′z.
From the definition of R′, it follows that for some z1, ([x] ∪ X ′ ∪ [y2, ... , yn])R′z1 and
[y1, z1]R′z. Repeated use of the definition results in z2, ... , zn such that [y1, z1]R′z,
[y2, z2]R′z1, ..., [yn, zn]R′zn–1, and ([x] ∪ X ′)R′zn. Repeated use of Transitivity then
yields [y1, ... , yn, zn]R′z, so we can let zn be the desired y.

All of the cases have been covered, so we conclude that R′ obeys Splitting.
So, the lemma is proved.

Now let us turn to consider what it is for a formula to hold at a point in a multiset
frame. Given our understanding of the relation R, if [x]Ry then the information in x
also holds in y. So, if a formula holds at x, it is given by the multiset consisting of [x]
alone. But then, it should also hold at y, since the information given by [x] is (perforce,
according to R at least) also true at y, and there is nothing else in [x] to take together
with x. So, an appropriate heredity condition for truth-at-a-point in a multiset frame is
given by the multiset relation R:

Definition 13 (Heredity). A relation � between points and formulas is hereditary

along R for some class F of formulas if and only if whenever [x]Ry (that is, when x � y)
and x � A then y � A, for each formula A in F .

Given a hereditary relation � for all atomic formulas on a multiset frame, we can
extend it to a hereditary relation on all formulas in the language of RW+ as follows:
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Definition 14 (Truth-at-a-point in a multiset model). For any multiset frame 〈P,R〉
and a hereditary relation � defined on atomic formulas in our language, we extend the
relation � to the whole vocabulary, defining x � A recursively as follows:

• x � A ∧ B iff x � A and x � B .
• x � A ∨ B iff x � A or x � B .
• x � A→ B iff for each y, z where [x, y]Rz, if y � A then z � B .
• x � A ◦ B iff for some y, z where [y, z]Rx, both y � A and z � B .
• x � t iff [ ]Rx.
• x � ⊥ never.

Lemma 15. In any multiset frame 〈P,R〉, the evaluation relation � defined above,
between points and arbitrary formulas is hereditary along R.

Proof. We aim to show that whenever [x]Ry and x � A then y � A. This is an
easy induction on the structure of the formula A. The result holds by fiat for atomic
formulas, and the induction step is trivial for conjunctions and disjunctions.

For conditionals, suppose [x]Ry and x � A→ B . We wish to show that y � A→
B too. Take u, v where [y, u]Rv. We wish to show that if u � A then v � B . By
compositionality, since [x]Ry and [y, u]Rv, we have [x, u]Rv. Since x � A→ B , if
u � A then v � B as desired.

Similarly, if [x]Ry and x � A ◦ B , we wish to show that y � A ◦ B . So, we wish
to find u, v where [u, v]Ry, u � A and v � B . Since x � A ◦ B , we have u, v where
[u, v]Rx, u � A and v � B . By compositionality, [u, v]Rx and ([x] ∪ [ ])Ry gives us
([u, v] ∪ [ ])Ry, i.e., [u, v]Ry as desired.

Finally, if [x]Ry and x � t, then we have [ ]Rx. Notice that compositionality ensures
that [ ]Rx and ([x] ∪ [ ])Ry give ([ ] ∪ [ ])Ry, i.e., from [ ]Rx and [x]Ry, we have [ ]Ry,
so if t holds at x and [x]Ry, then t holds at y too.

So, evaluation relations on frames allow us to interpret formulas from the language of
RW+ orR+ at points. Note that in the case for fusion, we needed to consider the multiset
[x] ∪ [ ], which is the special case highlighted in the definition of compositionality
for inhabited-multiset relations. We call the combination of a frame 〈P,R〉 and an
evaluation relation � on that frame a model, and we abuse notation slightly to think of
the triple 〈P,R,�〉 as a model.

Another way to represent how formulas are evaluated at points in frames is, for each
formula A, to collect together the points that support A. We use the notation �A� for
the set {x ∈ P : x � A}, the extension of the formula A in the model. The results of
this section show that the set �A� is upwardly closed along the relation �, and the
evaluation conditions for atomic formulas are simply that for each atomic formula p,
its extension �p� is an upwardly closed set.

We pause to note that the evaluation conditions on ternary frames agree with those
on multiset frames. In other words we have the following lemma:

Lemma 16 (Model equivalence). If 〈P,R,�, N,�〉 is a ternary relational model for
RW+ (or R+), then 〈P,R′,�〉 is a multiset model defined on the multiset frame 〈P,R′〉.

The proof is immediate, given that [x, y]R′z iff Rxyz, and [ ]R′x iff x ∈ N .
So, we have shown that reflexive multiset frames correspond tightly to ternary

relational frames. We have also seen that compositional inhabited-multiset relations
arise naturally as structures in the same general family as compositional multiset
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relation. A frame 〈P,R〉 which is furnished with an inhabited-multiset relation R can
also be used to model our propositional vocabulary. Given an inhabited-multiset frame
〈P,R〉 and a hereditary evaluation relation � on atomic formulas, we can extend � to
the propositional language except for the Ackermann constant t, in the manner given in
Definition 14. The proof that � so defined is heredity follows in exactly the same way.
The only point at which the condition that R relate only inhabited multisets is violated
in that proof is at the clause for t. The rest of the proof goes through as expected.

With multiset frames, we can model the relevant logic RW+. To make this precise, we
introduce the logic RW+ by way of a sequent calculus. The calculus utilises sequents of
the form Γ � A, where A is a formula and Γ is a structure, generated by the following
grammar:

Γ := A | � | (Γ,Γ) | (Γ; Γ).

In other words, a structure is a formula A, the empty structure �, the extensional
combination (Γ,Γ′) of two structures, or the intensional combination (Γ; Γ′) of two
structures. When presenting structures, we often omit the outer layer of parentheses (so
A,B is a structure, as is A; (B,C )), but we do not omit interior parentheses: A, (B,C )
differs from (A,B), C in the order of combination, even though they will end up having
the same logical force, due to the structural rules of the proof calculus.18 We will also
treat binary structural connectives as binding less tightly than any formula connectives,
so A→ B ;C will be (A→ B);C .

When specifying rules of inference, we use parentheses in another way: Γ(A) is a
structure with a particular subformula A singled out. Given Γ(A), the structure Γ(Γ′)
is found by substituting that instance of A by Γ′. The same goes for other structures.
So, Γ(Γ′,Γ′′) is a structure in which the structure Γ′,Γ′′ is found somewhere as a
constituent, and the structure Γ(Γ′′,Γ′) is found by reversing the order of Γ′ and Γ′′

inside that structure. For future reference, we will call the part of the structure Γ(A)
around the instance A the context of A in Γ(A), and we will use the notation ‘Γ(–)’ to
refer to that context.

A derivation in this sequent calculus is a tree of sequents, of which every leaf is an
axiom, where each transition is an inference rule. The fundamental rules in the sequent
calculus are the axioms of Identity and the inference rule, Cut.19

18 The technique, of allowing two forms of premise combination in sequents, is due to Dunn
[13], details of which can be found in Entailment volume 1 [1, sec. 28.5] and one development
of which is provided by Belnap, Dunn and Gupta [4]. For an extended introduction to sequent
calculi of this form, consult Restall’s An Introduction to Substructural Logics, Chapter 6 [41].
Bimbó [5] provides an introduction to these sorts of sequent systems in the specific context
of relevant logics.

19 Id and Cut are fundamental in the sense that they apply invariably to every formula, and to
each structure without any discrimination. They appeal to no distinctive properties of any
connectives or formulas (unlike the specific rules for each connective), or of any particular
form of structural combination (unlike the structural rules). They appeal to formulas as
such, and structures as such. Of course, a fundamental theorem of proof theory for sequent
systems is that the rule of Cut can be eliminated, in the sense that any derivation using Cut
can be transformed into a derivation in which Cut is not used. Appeals to Id for complex
formulas can also be traded in for appeals only to atomic formulas. These matters, though
important for the analysis of proof, are not central to our concerns here.
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A � A Id
Γ � A Γ′(A) � B

Cut.
Γ′(Γ) � B

The next series of rules are structural rules, governing extensional and intensional
structure combination respectively. Extensional combination allows for commutativity
and associativity (at arbitrary depth inside a structure), as well as contraction
and weakening, while intensional combination allows for only commutativity and
associativity. In addition, � acts as an identity for intensional combination.

Γ(Γ′,Γ′′) � B
EC

Γ(Γ′′,Γ′) � B

Γ(Γ′, (Γ′′,Γ′′′)) � B
EB

Γ((Γ′,Γ′′),Γ′′′) � B

Γ(Γ′,Γ′) � B
EW

Γ(Γ′) � B

Γ(Γ′) � B
EK

Γ(Γ′,Γ′′) � B

Γ(Γ′; Γ′′) � B
IC

Γ(Γ′′; Γ′) � B

Γ(Γ′; (Γ′′; Γ′′′)) � B
IB

Γ((Γ′; Γ′′); Γ′′′) � B

Γ(Γ′) � B
�I

Γ(�; Γ′) � B

Γ(�; Γ′) � B
�E.

Γ(Γ′) � B

The remaining rules are left and right rules for each connective. These are totally
modular, in the sense that we can choose to include a connective or to leave it out. No
rule for one connective requires the presence of any other connective in the vocabulary.

Γ(A,B) � C
∧L

Γ(A ∧ B) � C

Γ � A Γ′ � B
∧R

Γ,Γ′ � A ∧ B

Γ(A) � C Γ(B) � C
∨L

Γ(A ∨ B) � C

Γ � A
∨R

Γ � A ∨ B
Γ � B

∨R
Γ � A ∨ B

Γ � A Γ′(B) � C
→L

Γ′(A→ B ; Γ) � C

Γ;A � B
→R

Γ � A→ B
⊥R

⊥ � C

Γ(A;B) � C
◦L

Γ(A ◦ B) � C

Γ � A Γ′ � B
◦R

Γ; Γ′ � A ◦ B
Γ(�) � C

tL
Γ(t) � C

tR.
� � t

For R+, we add one more rule: contraction for intensional combination.

Γ(Γ′; Γ′) � B
IW .

Γ(Γ′) � B

With IW, we can derive new sequents, which could not be derived without it. For
example, we can derive � � (A ∧ (A→ B)) → B .
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A � A B � B
→L

A→ B ;A � B
EK

A→ B ; (A,A→ B) � B
EK

(A,A→ B); (A,A→ B) � B
IW

A,A→ B � B
∧L

A ∧ (A→ B) � B
�I

�;A ∧ (A→ B) � B
→R.

� � A ∧ (A→ B) → B

The proof theory for logics like RW+ and R+ is well known, and so is the ternary
relational semantics. Given our perspective on collection frames, it is worth taking the
time to reconsider the relationship between proofs and models. Consider the proof
given above, of the sequent � � (A ∧ (A→ B)) → B . What does this say about R+

models? It does not tell us that (A ∧ (A→ B)) → B holds at every point in those
models, only that it holds at normal points, those points x where [ ]Rx. In other words,
the sequent � � (A ∧ (A→ B)) → B should tell us that

For every point x, if [ ]Rx then x � (A ∧ (A→ B)) → B .

Scanning back to our derivation to its second line, we have A→ B ;A � B . This does
not tell us that if A→ B is true at a point and that A is true at that point, then B is
true there too (if that were all the sequent said, the conditional would be irrelevant).
The appropriate way to understand the ‘cash value’ of the derivation of this sequent
according to our frames is that

For all x, y and z, if x � A→ B and y � A, if [x, y]Rz then z � B .

In the first of these cases, we have involved the R relation on empty multiset. In the
second of these cases, we have used the R relation on a two-element multiset. The
natural thing to consider when it comes to the sequent (A ∧ (A→ B)) � B , then,
would be to understand the sequent as telling us this:

For all x and y, if x � A ∧ (A→ B) and [x]Ry then y � B .

This is how we will understand validity of sequents on our frames. A single-premise
single-conclusion sequent A � B is valid on a frame if and only if:

For all x and y, if x � A and [x]Ry then y � B .

This agrees with the traditional understanding of validity of a sequentA � B on a frame
(that for each point x, if x � A then x � B too) when that frame is reflexive. (Take any
reflexive frame. If a sequent has a counterexample according to the old definition, that
provides a counterexample in the new definition too, by the reflexivity of the frame.
Conversely, if we had points x and y where [x]Ry and A holds at x but B fails at y,
then by heredity on our frame, B must also fail at x, since [x]Ry, and so we have a
counterexample according to the traditional definition). This understanding of validity
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diverges only in cases where the frame is not reflexive.20 Since non-reflexive frames are
a proper generalisation of ternary relational frames, the question of how to interpret
sequents on them is open. We have argued here that invoking R, and evaluating the
lhs of our sequent at one point and the rhs at another is in keeping with how we
have always interpreted zero-premise and multiple-premise sequents on ternary frames.
It is also in keeping with the interpretation of conditionals in these frames. It would
be surprising if the conditional-like notion of entailment in a relevant logic did not
share in the features that the semantics ascribes to the conditional in that logic. So, we
proceed with this new understanding of what it is for a sequent to be valid in a model.21

So, when is a sequent Γ � A valid in some model 〈P,R,�〉? We have considered
sequents of the form � � A, those of the form A � B and those of the form A;B � C .
What about those involving the extensional combiner, the comma? When is the sequent
A,B � C valid in our frame? One candidate (generalising the case of the single formula
on the left) is to say that whenever x � A and x � B then when [x]Ry, we have y � C .
However, an equivalent way of formulating this claim will be more natural in our
setting. Instead, we can say that A,B � C is valid on a frame if and only if

For all x, y and z, if x � A and y � B , if [x]Rz and [y]Rz, then
z � C .

The parallel with the case for the semicolon is clear. We look for points where the lhs

formulas are true, and we combine them, using R to locate where to check the rhs

formula. Here we check C at all common descendants of x and of y, rather than those
points found by combining x and y together. This choice allows us to give a particularly
straightforward interpretation of the validity of sequents in our models. We start with
the notion of the shadow cast by a structure in a model.

Definition 17 (The shadow cast by a structure). For a structure Γ its shadow {{Γ}} in
the model 〈P,R,�〉 is a set of points, defined recursively as follows:

• {{�}} = {x ∈ P : [ ]Rx},
• {{A}} = {x ∈ P : (∃y ∈ �A�)[y]Rx},
• {{Γ,Γ′}} = {x ∈ P : (∃y ∈ {{Γ}})(∃z ∈ {{Γ′}})([y]Rx ∧ [z]Rx)},
• {{Γ; Γ′}} = {x ∈ P : (∃y ∈ {{Γ}})(∃z ∈ {{Γ′}})[y, z]Rx}.

When a structure is a single formula A, then {{A}}, the shadow it casts is not the
formula’s extension, �A�, but rather, it is the set of points upward from some point in
the extension. If R is reflexive, then {{A}} = �A�, so where R is reflexive, the distinction
between shadows and extensions makes no significant difference. In any model, whether
reflexive or not, {{A}} ⊆ �A�.

It is worth pausing to understand the behaviour of shadows in a specific non-reflexive
frame. Consider the multiset frame 〈R, <〉 with the multiset relation given by taking a
multiset X of reals to relate to all and only those reals larger than each member of X.

20 The idea of dropping reflexivity as a condition of Kripke frames has been studied in
connection with relatives of intuitionistic logic [40, 54].

21 You may wonder: What happens to the traditional understanding of validity on our frames?
Isn’t that notion of validity worth respecting, even on non-reflexive frames? Here we take
succour in the fact that we can be pluralists about validity [3], even relevant validity. The fact
that a frame provides more than one natural candidate for a notion of validity is, for us, a
feature, not a bug.
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Here, the underlying order � is the order < on R. So, the extension �A� of a formula
must be upwardly closed on R. So, an extension must have one of the forms (– ∞,∞),
[r,∞), or (r,∞) for some real r, or be empty. A shadow, on the other hand, cannot
have the form [r,∞). If �A� = [r,∞), then {{A}} = (r,∞), and if �A� = (r,∞) then
{{A}} = (r,∞) too. The possible values of shadows are (– ∞,∞), and (r,∞) for each
real r, and the empty set of reals.

It is also worth pausing to note that the notion of a shadow can be applied equally
well in inhabited-multiset frames, provided that our structures do not contain the
marker ‘�’ for the empty structure. So, for the rest of this section, we will consider two
kinds of models: those on multiset frames, and those on inhabited-multiset frames.
The first kind will be models of the whole calculus, while inhabited-multiset frames
can be used as models for the fragment of the proof calculus in which � is absent: that
is, the calculus without the rules �I, �E, tL and tR. We will call the calculi for RW+

and R+ without �, RW+
–� and R+

–� respectively, to make explicit the absence of sequents
with �.

We have seen that the shadow {{A}} of a formula A is related to its extension �A� in
a natural way. x ∈ {{A}} iff there is some y ∈ �A� where [y]Rx (that is, y � x). This
transition from extension to shadow is an operation on sets of points, and it is worth
singling out with some notation.

Definition 18 (� on sets of points). X� is defined as {x ∈ P : (∃y ∈ X )y � x}.

So, this lemma is immediate:

Lemma 19 (From extensions to shadows). {{A}} = �A��.

This operation satisfies two useful conditions.

Lemma 20 (� is monotone and idempotent). For any sets X and Y, if X ⊆ Y then
X� ⊆ Y�. Furthermore, X� = X��.

Proof. For monotony, if z ∈ X� then there is somex ∈ X where [x]Rz. Sincex ∈ Y ,
z ∈ Y� too. For idempotence, we appeal to the density and transitivity of �. If z ∈ X�
then since there is some x ∈ X where [x]Rz then by density there is some y where
[x]Ry (so y ∈ X�) and [y]Rz, ensuring that x ∈ X��. Conversely, if z ∈ X�� then
there is some y ∈ X� where [y]Rz and some x ∈ X where [x]Ry. By transitivity,
[x]Rz, ensuring that z ∈ X�.

The shadow of a formula A is the set of points above that formula’s extension, �A�. A
shadow of a structure is not defined by taking the points above the extension of some
formula, but nonetheless, it too is a fixed point for the operation �.

Lemma 21 (Shadows and order). For each shadow {{Γ}}, we have {{Γ}} = {{Γ}}�.

To prove this, it is simplest to characterise the sets fixed under � in general terms.
We first prove a more general lemma, for which Lemma 21 is a corollary. For this, we
need one more definition:

Definition 22 (Closed upwards and open downwards). A set X is closed upwards
along � if whenever x ∈ X and x � x′ then x′ ∈ X too. A set X is open downwards
along � if whenever x ∈ X , there is some x′ � x where x′ ∈ X too.

In the multiset frame 〈R, <〉 discussed above, the intervals [r,∞) are closed upwards
but not open downwards, while the intervals (r,∞) are both closed upwards and

https://doi.org/10.1017/S1755020322000272 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020322000272


1140 GREG RESTALL AND SHAWN STANDEFER

open downwards along the order<. The properties of being closed upwards and open
downwards are related to the operation � as follows:

Lemma 23 (Open and closed sets). If the relation � is transitive, then if X is closed
upwards, then X� ⊆ X . If � is dense, then if X is open downwards, then X ⊆ X�.

The proof is a simple matter of unpacking the definitions:

Proof. Suppose � is transitive and that X is closed upwards. Take x ∈ X�. So there
is some x′ ∈ X where x′ � x. Since X is closed upwards, we have x ∈ X . Suppose �
is dense and X is open downwards. Take x ∈ X . Since X is open downwards we have
some x′ ∈ X where x′ � x. It follows that x ∈ X�.

So, the sets X that are closed upwards and open downwards are fixed points for
the operation �. Since on any collection frame, � is transitive and dense, the shadow
{{Γ}} of any structure Γ is both closed upwards and open downwards, and is a fixed
point for the operation �.

Now we can return to the proof of Lemma 21.

Proof. Consider each kind of shadow, as given in Definition 17. A quick inspection
of each clause shows that if R satisfies Transitivity and Splitting, then the shadow is
closed upward and open downward. For one example, for {{�}}, ifx ∈ {{�}}, for upward
closure, assume that x � x′. Since [ ]Rx and x � x′ we have [ ]Rx′ by transitivity, and
x′ ∈ {{�}}. For downward openness, since [ ]Rx, by Splitting we have some x′ where
[ ]Rx′ (so x′ ∈ {{�}}) and x′ � x, as desired.

For the intensional composition case, if x ∈ {{Γ; Γ′}}, for upward closure, assume
that x � x′. Since we have y ∈ {{Γ}} and z ∈ {{Γ′}} where [y, z]Rx, and since x �
x′, by transitivity we have [y, z]Rx′, and x′ ∈ {{Γ; Γ′}} as desired. For downward
openness, since [y, z]Rx, by Splitting we have some x′ where [y, z]Rx′ and [x′]Rx (so
x′ ∈ {{Γ; Γ′}}) and x′ � x, as desired.

The other two cases follow in the same way, so we can declare this lemma proved.

With this behaviour of shadows proved, we can see that the definition of the
shadow of an extensional structure can be simplified. Since {{Γ,Γ′}} = {x ∈ P : (∃y ∈
{{Γ}})[y]Rx} ∩ {x ∈ P : (∃y ∈ {{Γ′}})[z]Rx} = {{Γ}}� ∩ {{Γ′}}�, we have the fol-
lowing consequence:

Corollary 24. {{Γ,Γ′}} = {{Γ}} ∩ {{Γ′}}.

With the definition of a structure’s shadow, the statement the condition for validity
on a model is straightforward.

Definition 25 (Model validity). A sequent Γ � A is valid in the model 〈P,R,�〉 if and
only if {{Γ}} ⊆ �A�. That is, the shadow cast by the structure Γ is restricted to the
extension of the formula A.

So, we are in a position to state our soundness theorem:

Theorem 26 (RW+ is sound for multiset frames). Any RW+ derivable sequent Γ � A
holds in each model 〈P,R,�〉 on a multiset frame. Furthermore, any RW+

–� derivable
sequent holds in each model on an inhabited-multiset frame.

To prove the soundness theorem, it helps to establish the following facts about
shadows and contexts.
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Lemma 27 (Contexts preserve order, and are prime). If {{Γ}} ⊆ �A�, then for any
context Γ′(–), we have {{Γ′(Γ)}} ⊆ {{Γ′(A)}}. In this sense, contexts are order preserving
over valid sequents. Furthermore, {{Γ′(A ∨ B)}} = {{Γ′(A)}} ∪ {{Γ′(B)}}, so contexts
are prime, and {{Γ′(⊥)}} = {{⊥}} = ∅.

Proof. Both facts follow from an easy induction on the construction of the context
Γ′(–). An atomic context Γ′(–) the hole ‘–’ itself. In this case, primeness is trivial,
and order preservation follows from the monotony and idempotence (Lemma 20).
If {{A}} ⊆ �B�, then by monotony, {{A}}� ⊆ �B��, but �B�� = {{B}}, so {{A}}� ⊆
{{B}}, and since idempotence gives {{A}} = {{A}}�, we have {{A}} ⊆ {{B}} as desired.

For the induction steps, Γ′(–) either has the form Γ′′(–),Γ′′′, or Γ′′′,Γ′′(–), or
Γ′′(–); Γ′′′, or Γ′′′; Γ′′(–), in which case preservation and primeness follow immediately
from the properties holding for the simpler context Γ′′(–).

For example, if {{Γ′′(Γ)}} ⊆ {{Γ′′(A)}}, then {{Γ′; Γ′′(Γ)}} = {x ∈ P : (∃y ∈
{{Γ′}})(∃z ∈ {{Γ′′(Γ)}})[y, z]Rx}, but since {{Γ′′(Γ)}} ⊆ {{Γ′′(A)}}, it follows that
this set is a subset of {x ∈ P : (∃y ∈ {{Γ′}})(∃z ∈ {{Γ′′(A)}})[y, z]Rx}, which is
{{Γ′; Γ′′(A)}}, as desired. Similarly, given that {{Γ′′(A ∨ B)}} = {{Γ′′(A) ∪ Γ′′(B)}},
then {{Γ′; Γ′′(A ∨ B)}} = {x ∈ P : (∃y ∈ {{Γ′}})(∃z ∈ {{Γ′′(A ∨ B)}})[y, z]Rx},
which is equal to {x ∈ P : (∃y ∈ {{Γ′}})(∃z ∈ {{Γ′′(A)}} ∪ {{Γ′′(B)}})[y, z]Rx},
which is {x ∈ P : (∃y ∈ {{Γ′}})(∃z ∈ {{Γ′′(A)}})[y, z]Rx} ∪ {x ∈ P : (∃y ∈ {{Γ′}})
(∃z ∈ {{Γ′′(B)}})[y, z]Rx}, which is in turn {{Γ′; Γ′′(A)}} ∪ {{Γ′; Γ′′(B)}}. Finally,
given that {{Γ′′(⊥)}} = ∅, clearly {{Γ′; Γ′′(⊥)}} = {x ∈ P : (∃y ∈ {{Γ′}})(∃z ∈
{{Γ′′(⊥)}})[y, z]Rx} = {x ∈ P : (∃y ∈ {{Γ′}})(∃z ∈ ∅)[y, z]Rx} = ∅, as desired.

Now we can return to our proof of the soundness theorem. As is usual, it is a
straightforward induction on the length of a derivation. The technique is standard,
and there are no surprises, despite the idiosyncratic interpretation of sequents to allow
for the non-reflexive frames.22

Proof. We prove soundness by induction on the length of a derivation for the
sequent Γ � A. The axiomatic sequent A � A holds in every multiset frame and in
every inhabited-multiset frame since {{A}} ⊆ �A�. The sequent � � t holds in every
multiset frame, since in these frames we have {{�}} ⊆ �t�.

For the Cut rule, suppose we have {{Γ}} ⊆ �A� and {{Γ′(A)}} ⊆ �B�. We wish to
show that {{Γ′(Γ)}} ⊆ �B�. Here we appeal to the fact that the context Γ′ preserves
order. Since {{Γ}} ⊆ �A�, we have {{Γ′(Γ)}} ⊆ {{Γ′(A)}}, and since {{Γ′(A)}} ⊆ �B�,
we have {{Γ′(Γ)}} ⊆ �B� as desired.

That the extensional structural rules preserve validity on frames is an immediate
consequence of the fact that the outer context Γ(–) preserves order, and the extensional
structure is modelled by intersection of shadows. For example, for the weakening rule
EK, since {{Γ′,Γ′′}} = {{Γ′}} ∩ {{Γ′′}} ⊆ {{Γ′}}, and since Γ(–) preserves order, we
know that if {{Γ(Γ′)}} ⊆ �B� then we also have {{Γ(Γ′,Γ′′)}} ⊆ �B�. In the same way,
associativity, commutativity and contraction are assured.

Most of the intensional structural rules follow in the same way from the properties
of multisets. For example, the associativity rule IB follows appeals to the composition-
ality of R. {{(Γ′; Γ′′); Γ′′′}} = {x ∈ P : (∃y ∈ {{(Γ′; Γ′′)}})(∃z ∈ {{Γ′′′}})[y, z]Rx}
unpacking the definition of {{Γ′; Γ′′}} this set is identical to {x ∈ P : (∃y ∈ P)(∃u ∈

22 The soundness proof shows that although the frames may be non-reflexive, the resulting
logic is, nonetheless, reflexive, in the sense discussed by French [20].
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{{Γ′}})(∃v ∈ {{Γ′′}})([u, v]Ry ∧ [y, z]Rx)}. Applying compositionality, we see that
(∃y ∈ P)([u, v]Ry ∧ [y, z]Rx) is equivalent to [u, v, z]Rx, using Transitivity in one
direction and Splitting in the other. Thus, the set {{(Γ′; Γ′′); Γ′′′}} simplifies (as
expected) to {x ∈ P : (∃u ∈ {{Γ′}})(∃v ∈ {{Γ′′}})(∃z ∈ {{Γ′′′}})[u, v, z]Rx} where
the left-associated structure (Γ′; Γ′′); Γ′′′ unwraps into the unassociated multiset
[u, v, z]. A moment’s reflection shows that the right-associated structure Γ′; (Γ′′; Γ′′′)
unwraps to exactly the same set, so {{(Γ′; Γ′′); Γ′′′}} = {{Γ′; (Γ′′; Γ′′′)}}, showing that
the associativity structural rule IB is valid on frames. It is simpler to show that IC holds,
since {{Γ′; Γ′′}} = {{Γ′′; Γ′}} straightforwardly, given that [y, z] = [z, y] for each y
and z.

The �I and �E rules hold in models on multiset frames (but not in models
on inhabited-multiset frames). Here, we have {{�; Γ′}} = {{Γ′}} since {{�}} = {x ∈
P : [ ]Rx} and so {{�; Γ′}} = {x ∈ P : ∃y([ ]Ry ∧ ∃z ∈ {{Γ′}}[y, z]Rx)}. However,
if [ ]Ry and [y, z]Rx then by transitivity, [ ] ∪ [z]Rx, i.e., [z]Rx. And conversely,
by Splitting, if [z]Rx then [ ] ∪ [z]Rx and so, there is some y where [ ]Ry and
[y, z]Rx. So, our set {x ∈ P : ∃y([ ]Ry ∧ ∃z ∈ {{Γ′}}[y, z]Rx)} is the set {x ∈ P :
∃z ∈ {{Γ′}}[z]Rx}, which is {{Γ′}} itself, by Lemma 21.

It remains to verify the validity of each of the connective rules. The validity
of the left rules for conjunction, disjunction, and fusion follow immediately from
the truth conditions for these connectives and the fact that the context Γ(–)
preserves order. For example, for ◦L, if we know that {{Γ(A;B)}} ⊆ �C � holds in
the model, then since {{A ◦ B}} = {x ∈ P : (∃y ∈ �A ◦ B�)[y]Rx} = {x ∈ P : (∃w ∈
{{A}})(∃v ∈ {{B}})[w, v]Rx} = {{A;B}}, and the context Γ(–) preserves order, it
follows that {{Γ(A ◦ B)}} ⊆ �C � too. The reasoning for the left rules for conjunction
is similar, and so is the left rule for t when our attention is restricted to multiset frames.

The reasoning for the left rule for disjunction follows immediately from the primeness
of the context Γ(–). If {{Γ(A)}} ⊆ �C � and {{Γ(B)}} ⊆ �C � then indeed {{Γ(A ∨
B)}} = {{Γ(A)}} ∪ {{Γ(B)}} ⊆ �C �. The left rule for ⊥ is trivial, given that {{⊥}} = ∅.

For the last left rule, for the conditional, to show that {{Γ}} ⊆ �A� and {{Γ′(B)}} ⊆
�C � ensures that {{Γ′(A→ B ; Γ)}} ⊆ �C �, we appeal to the fact that Γ′(–) preserves
order. Using this fact, it suffices to show that {{A→ B ; Γ}} ⊆ �B�, for then we
indeed have {{Γ′(A→ B ; Γ)}} ⊆ {{Γ′(B)}} ⊆ �C � as desired. That {{A→ B ; Γ}} ⊆
�B� follows from {{Γ}} ⊆ �A� by the definition of shadows for intensional combination.
If x ∈ {{A→ B ; Γ}} then there are y and z where y ∈ {{A→ B}} and z ∈ {{Γ}}
such that [y, z]Rx. Since {{Γ}} ⊆ �A� we have z � A. Since y ∈ {{A→ B}} we have
y � A→ B . It follows from [y, z]Rx that x � B , i.e., x ∈ �B�, as desired.

That completes the verification of the left connective rules. The right rules∨R and∧R
follow immediately from the truth conditions for the connectives, and we have already
dealt with tR as an axiom. For →R and ◦R the verification is also straightforward. For
◦R, if {{Γ}} ⊆ �A� and {{Γ′}} ⊆ �B�, we wish to show that {{Γ; Γ′}} ⊆ �A ◦ B�. If x ∈
{{Γ; Γ′}} then there are y, z where [y, z]Rx, y ∈ {{Γ}} and z ∈ {{Γ′}}. So, we also have
y ∈ �A� and z ∈ �B�, so x ∈ �A ◦ B� as desired. For →R, suppose {{Γ;A}} ⊆ �B�. To
show that {{Γ}} ⊆ �A→ B�, suppose we have x ∈ {{Γ}}. To show that x ∈ �A→ B�,
suppose we have a y where y � A and [x, y]Rz. By Splitting, we have some y′ where
[y]Ry′ and [x, y′]Rz. Sincey ∈ �A� and [y]Ry′ we havey ∈ {{A}}, and sincex ∈ {{Γ}}
and [x, y′]Rz we have z ∈ {{Γ;A}}, so z ∈ �B�, as desired.

This completes the proof. Each rule of the sequent calculus is sound on multiset
frames. So, if a sequent Γ � A can be derived in RW+, on any multiset frame (whether
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reflexive or not) we have {{Γ}} ⊆ �A�. Furthermore, if that sequent can be derived in
RW+

–� , it also holds on any inhabited-multiset frame.

It is worth remarking on the role of the Transitivity portion of compositionality in
the proof of the soundness of the Cut rule. That case is handled by appeal to Lemma 27,
the fact that contexts preserve order. Inspection of the proof of Lemma 27 reveals that it
hinges on the monotony and idempotency of the � operator, Lemma 20. Showing that
� is idempotent, in particular, appeals to the density and transitivity of �. That appeal
does not use the full Transitivity principle, but rather a restricted form involving only
singletons on the left, much as density is a restricted form of the full Splitting principle.
These observations suggest that collection frames that adopt only the restricted forms
of Transitivity and Splitting may be of interest for the study of weaker logics.23

Before proceeding with further results, let’s put this soundness proof to work,
by showing how to use some of the frames we have constructed can provide
counterexamples to sequents.

Example 28 (Refuting p ∧ (p → q) � q and s � r → s). Start with 〈R, R〉, where
XRy iffy > ΣX . This is a non-reflexive frame onR, in which the underlying order on points
is<. So, extensions of formulas are the intervals [r,∞) or (r,∞) closed or open at the left,
together with R as a whole and the empty set. If we take �p� = [1,∞) and �q� = [2,∞),
then we have x � p → q iff for each y, if y � p (that is, if y ≥ 1) and x + y < z, we
have z � q (that is, z ≥ 2). It is easy to see that this obtains when x ≥ 1, but if x < 1, we
can find some value of y, (e.g., 1) and a value of z (e.g., 1 + x) such that x + y < z and
z ≥ 2. So, �p → q� = [1,∞). So, in particular, 1 � p ∧ (p → q), and so, for example,
1 1

2 ∈ {{p ∧ (p → q)}} and 1 1
2 ∈ �q�. So this model provides a counterexample to the

sequent p ∧ (p → q) � q. As we would expect in at least some frames for RW+, we have
a violation of contraction.

This frame also provides a counterexample to sequents involving failures of relevance,
such as s � r → s . If we set �r� = [– 3,∞) and �s� = [0,∞) then it is easy to see that
1 ∈ {{s}}, while 1 ∈ �r → s�, since – 3 � r and [– 3, 1]R – 1 (since –3 + 1 = –2 < –1)
and – 1 � s . These simple numerical frames provide the leeway to explore a number of
the distinctive features of the substructural logic RW+.

Another result that follows immediately is the fact that RW+ is a non-conservative
extension of RW+

–� . The sequent (A→ A) → B � B is derivable in RW+ as follows:

A � A
�I

�;A � A
→R

� � A→ A B � B
→L

(A→ A) → B ; � � B
IC

�; (A→ A) → B � B
�E.

(A→ A) → B � B

23 We would like to thank Dave Ripley for pushing us for clarify the issues discussed in this
paragraph.
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This derivation makes use of �. It might be asked whether any RW+ derivation of this
sequent must go through � in this way. Inhabited-multiset frames give us an answer.
This sequent is not derivable in RW+

–� .
24

Example 29 (RW+ is not conservative over RW+
–�). Consider 〈P,R〉 whereP is the set

{1, 2, 3, ...} of positive natural numbers, and for inhabited multisets X, XRy iff y = ΣX .
R, defined in this way, is both compositional and reflexive. This is an inhabited-multiset
frame. The underlying order� is identity, so any set of points may be used as the extension
of a formula. Define � by setting �p� = P (so p is true everywhere) and �q� = P\{1} (so
q holds everywhere other than 1). In this model �p → p� = P, trivially. It follows that
(p → p) → q is true at every number n ≥ 1, too, since for any such n, and for anym ≥ 1
wherem � p → p (i.e., for anym ≥ 1) then n +m � q, since clearly, n +m ≥ 2. So, we
have a counterexample to our sequent (p → p) → q � q on our model. In particular, we
have 1 ∈ {{(p → p) → q}} while 1 ∈ �q�.

If we wish to model the stronger logic R+, we must restrict our attention to a
smaller class of multiset frames. In ternary relational semantics, the traditional frame
condition to impose on RW+ models to validate contraction is Rxxx. Its analogue
in multiset frames is straightforward: [x, x]Rx. Once we have non-reflexive frames in
view, however, we can see that this frame condition is not general enough. A more
general form of contraction on ternary frames is this condition:

Rxyz ⇒ R2(xy)xz

corresponding to the validity of the sequent A→ (A→ B) � A→ B . If we choose a
normal point for y, then the condition becomes

x � z ⇒ Rxxz
which, in the presence of reflexivity gives us Rxxx for every x. In the absence of
reflexivity, no such consequence need follow. In the multiset frame on R where we set
XRy iff y is greater than every member of X, it is clear that whenever x � z (that is,
x < z) we have Rxxz (that is, x < z). However, we never have Rxxx on this frame.

The appropriate understanding of contraction on arbitrary multiset frames, whether
reflexive or not, is simple. A multiset rendering of the condition goes like this:

[x]Rz ⇒ [x, x]Rz.

The relation R is preserved when the multiset expands from one repetition of x to two.
If R is compositional, this condition will continue to hold in a more general form,
using the ground function g from Definition 1:

Lemma 30 (Preservation for contracting relations). Whenever R is compositional
multiset relation where [x]Rz ⇒ [x, x]Rz for every x and z then if XRy and X ′ is
another multiset where X ≤ X ′ and g(X ) = g(X ′), then X ′Ry too.

24 In Humberstone’s terms [24, sec. 1.2], logical frameworks apart from fmla need to be
considered for inhabited collection frames.

See Shay Logan’s “Deep Fried Logic” [29] for more on RW+
–� .
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Proof. Recall that X ≤ X ′ iff any object that is an element of X i times is a member
of X ′ at least that many times. The constraint that g(X ′) = g(X ) means that the only
elements with non-zero multiplicity in X ′ have non-zero multiplicity in X too. So, X ′

differs from X only by allowing elements that were already in X to be inX ′ more times.
Since X and X ′ are finite multisets, if we prove that XRy implies ([x] ∪ X )Ry, when
x ∈ X , we can repeat this process until we have builtX ′ from X in a series of additions
of single elements.

Now, if XRy and x ∈ X , then we have ([x] ∪ (X\x))Ry. By Splitting there is
some z where [x]Rz and ([z] ∪ (X\x))Ry. Since [x]Rz we have [x, x]Rz, and so,
by transitivity, ([x, x] ∪ (X\x))Ry, i.e., ([x] ∪ X )Ry, as desired. Applying this process
repeatedly, for each additional element inX ′, we see thatX ′Ry, and we have completed
the proof.

To show that R+ is indeed sound for contracting multiset frames, we need to verify
that on each model on such a frame {{Γ}} ⊆ {{Γ; Γ}}. But this is immediate: let’s
suppose that x ∈ {{Γ}}. Then by Lemma 21, there is some [y]Rx where y ∈ {{Γ}}
too. Now, since [y]Rx, we have [y, y]Rx and so, we have that x ∈ {{Γ; Γ}}. With this
reasoning, the soundness result for R+ on contracting multiset frames is proved.

Theorem 31 (R+ is sound for contracting multiset frames). Any sequent Γ � A derivable
in R+ also holds in each model 〈P,R,�〉 on a contracting multiset frame.

For completeness, we need to show that if a sequent holds in all multiset frames then
it is derivable inRW+, and that if a sequent holds in all contracting multiset frames, then
it is derivable in R+. As is usual, the most straightforward way to prove completeness is
to prove the contrapositive, by showing that for any underivable sequent, one can find a
counterexample in some frame. In the case of the ternary relational semantics, as with
Kripke models for normal modal logics and intuitionistic logics, this is achieved by
constructing the canonical frame [41, 45–47], whose points are prime theories,25 and
where the normal points are those theories containing all logical truths, where � is the
subset relation, and where R is defined syntactically: Rα�� iff for each A→ B ∈ α, if
A ∈ � then B ∈ �. It is a standard result that membership is an evaluation relation on
the canonical frame, defining α � A iff A ∈ α, which gives us a relation satisfying the
expected truth conditions, and that that any underivable sequent has a counterexample
in the resulting canonical model. In addition, the RW+ canonical frame satisfies the
RW+ conditions on the ternary relation, and the R+ canonical frame satisfies the
contraction condition. So, we can appeal to Lemma 16, to show that the canonical
ternary relational model for RW+ (or for R+) will also provide a multiset model (or
contracting multiset model), which gives exactly the same truth conditions on points,
and so, counterexamples to the same sequents. So, we have completeness for free:

Theorem 32 (Completeness for multiset frames). Each sequent that holds on every
reflexive multiset frame is derivable in RW+. Furthermore, each sequent that holds on
every contracting, reflexive multiset frame is derivable in R+.

25 A set of formulas is a theory iff it is closed under conjunction introduction and provable
implication, and a theory is prime iff it contains a disjunction only if it contains at least one
disjunct.
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So, multiset frames provide an elegant, simple class of models for RW+, unifying the
parts of the ternary relational frames. The compositionality condition on the multiset
relation R is a natural generalisation of the condition that inclusion (�) be a preorder,
to the general setting that we relate a collection of points to a point. The generalisation
goes so far as to include models in which the underlying order is not even reflexive.

However, not all collections are multisets. In the rest of this paper, we will show that
we can generalise these results to other kinds of collections in a natural way. We will
start by considering sets.

§3. Set frames. Once you understand multiset frames, it is straightforward to define
set frames. We start with the definition of compositionality for relations onP∗(P) × P,
where P∗(P) is the set of finite subsets of P.

Definition 33 (Compositionality for set relations). A relation R on P∗(P) × P is said
to be compositional if and only if for all sets X,Y and all points x and z,

if XRx and ({x} ∪ Y )Rz then (X ∪ Y )Rz.

Such a set relation R is reflexive iff for all points x ∈ P, we have

{x}Rx.

We have replaced talk of multisets of elements of P with finite subsets of P. The
compositional multiset relations discussed in Example 4 can be all reframed as set
relations. Membership, Maximum, The Product, Some Product of and Between can all
be defined as set relations on �, and each is set relation so defined is compositional.

The novelty with set relations, as opposed to multiset relations, is that they are,
by construction, contracting. There is no difference at all between {x, x}Ry and
{x}Ry, and since by reflexivity, we have {x}Rx, it follows that {x, x}Rx holds in
every compositional set relation R. Once we define the notion of a set frame, and the
corresponding notion of a set model, it will follow immediately that R+ is sound for
set models.

Definition 34 (Set frames and set models). If P is an inhabited set and R is a
compositional set relation on P, then 〈P,R〉 is said to be a set frame. If � is a relation
between the set P and the set of atomic formulas, which is hereditary along R (so if x � p
and {x}Ry then y � p too), then 〈P,R,�〉 is said to be a set model, where � evaluates
all formulas in the language of R+ as follows:

• x � A ∧ B iff x � A and x � B .
• x � A ∨ B iff x � A or x � B .
• x � A→ B iff for each y, z where {x, y}Rz, if y � A then z � B .
• x � A ◦ B iff for some y, z where {y, z}Rx, both y � A and z � B .
• x � t iff { }Rx.
• x � ⊥ never.

As with multiset models, the evaluation relation � on set models is hereditary across
the relation R. And as with contracting multiset models, the logic R+ is sound for set.
The soundness proof for RW+ can be rewritten, word-for-word, with set singletons
and set union replacing multiset singletons and multiset union. Furthermore, any
relation compositional set relation R satisfies the contraction condition vacuously,
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so the contraction rule preserves validity on all set models. We have the following
soundness theorem for free:

Theorem 35 (R+ is sound for set frames). Any R+ derivable sequent Γ � A holds in each
model 〈P,R,�〉 on a set frame.

A natural question arises. Is R+ complete for set frames? Here, any completeness
theorem will not be quite as straightforward as in the case for multiset frames and
RW+. We cannot simply take the canonical frame and show that it is a set frame. In
general, contracting ternary frames (or contracting multiset frames) do not turn out
to be equivalent to set frames. In any set frame we have {x, x}Ry if and only if {x}Ry
trivially, but the corresponding biconditional—Rxxy if and only if x � y (or [x, x]Ry
iff [x]Ry)—does not hold in all ternary relational frames for R+, or on all contracting
multiset frames. In general, only one direction of the biconditional holds.

Example 36 (A ternary R+ frame that isn’t (equivalent to) a set frame). The frame
on the set P = {0, a, b} of points with N = {0}, where � is identity and where R is
defined with the following table

R 0 a b
0 0 a b
a a ab 0ab
b b 0ab ab

is not equivalent to a set frame. To read the table, the values in the x row and y column
in the table are the different values of z such that Rxyz. So, the ab in the a row and
a column indicates that Raaa and Raab. It is not too difficult to check that this is a
ternary R+ frame (it is associative, commutative and contracting), but it does not satisfy
the condition needed for equivalence to a set frame: thatRxxy if and only if x � y. Here,
Raab, but a � b. This is a ternary frame that is not equivalent to a set frame.

What goes for this ternary frame can go for the canonical frame for R+.26 So, there
is no guarantee that any canonical frame for R+ will be (equivalent to) a set frame.
This raises the question of whether set frames overgenerate, whether they determine a
logic stronger than R+. It might be thought that the stronger frame condition induced
on a set frame means that the mingle axiom p → (p → p) (which is equivalent to
(p ◦ p) → p) holds on our frames. It fails, as the following example shows.

Example 37 (A set frame counterexample to mingle). Consider the inhabited-set
frame on �, where XRy iff y is in the interval bound by the set X. So, for example,
the set {0, 2} is related to 0, 1 and 2 but no other elements of �. This is frame on
inhabited sets. We can then extend this frame to construct a set frame using the technique
of Lemma 8, by adjoining an element ∞ and choosing the R× extension of the relation
R. Here, { }R×∞ and {∞}R×∞ and for every other set X, XR×z iff (X\∞)Rz, to
make this a model for the whole of R+, including t. In this model, the order relation �
is the identity relation, since {x}R×y iff y = x, for every x (including ∞). Let’s take
�p� = {0, 2}. Then it is straightforward that 0 � p but 0 � p → p, since 2 � p and 1 � p

26 In fact, this ternary R+ frame is isomorphic to the canonical frame constructed from a small
R+ algebra on eight elements—the eight subsets of {0, a, b}, the propositions defined on
that frame, and under the operations, conjunction, disjunction, conditional, fusion, t and ⊥,
defined by the truth conditions on that frame.
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and {0, 2}R×1. So, since {0,∞}R×0, we have ∞ � p → (p → p), and since { }R×∞,
we see that p → (p → p) fails at a normal point (at the only normal point, ∞), giving
us a counterexample to the sequent � � p → (p → p), as desired.

So, set frames are sound for R+, but the standard techniques for completeness do not
suffice to show completeness for R+. It seems we must use another approach, or find
some way that these frames overgenerate R+. We will not, however, settle the question
here, so we leave it as a topic for further research.27

[open question] Is R+ complete for the class of all set frames?

As with multiset frames, we can move from set frames to inhabited-set frames, if
we loosen the requirement that the compositional relation R relates the empty set to
points. All of the results concerning inhabited-multiset frames generalise to inhabited-
set frames. Inhabited-set frames on the real plane are surprisingly straightforward to
construct, and they have interesting properties of their own.28 We have the following
result.

Theorem 38 (R+
–� is sound for set frames). Any R+

–� derivable sequent Γ � A holds in
each model 〈P,R,�〉 on an inhabited-set frame.

Again, the proof of this theorem comes essentially for free, once we recognise that
the structural rule IW of intensional contraction satisfied on inhabited-set frames. We
can use an inhabited-set frame to show that the sequent (A→ A) → B � B also fails
in R+

–� , so R+ fails to be conservative over R+
–� , just as RW+ is not conservative over

RW+
–� .

Example 39 (R+ is not conservative over R+
–�). This time, consider the inhabited-set

frame 〈P,R〉 where P = {0, 1, 2} and XRy holds when y is bounded by the set X. In
other words, XRy if and only if min(X ) ≤ y ≤ max(Y ). In this frame, the underlying
order is identity, so the relation is reflexive, and any set of points is a possible extension
of a formula. Let �p� = {0, 2}. Then at p → p is satisfied nowhere, since for any point
x you choose, there is some point y (choose 2 if x is 0, and choose 0 otherwise) where
y � p, and where {x, y}R1, where 1 � p. So, at every point we have a counterexample
to the identity statement p → p.

This means that every point in our frame supports (p → p) → q, since p → p fails
everywhere. In particular, 1 � (p → p) → p, while 1 � p, so (p → p) → p � p fails
on this frame, and hence, it is not derivable in R+

–� . A fortiori, neither is the sequent
(p → p) → q � q.

§4. List frames and tree frames. Different collections gather their elements in
different ways. Sets collect elements with no regard to order or multiplicity. Multisets
allow their members to occur repeatedly, but there is no record of the order of their
arrival. It is natural to consider collections that keep track of both multiplicity and

27 Standefer [52] has shown that the logic of functional set frames is sound and complete with
respect to Urquhart’s semilattice logic, which is a proper extension of the {→,∧,∨}-fragment
of R+.

28 Elsewhere [42], Restall explores features of frames on geometric spaces, and options for
extending geometric set frames with new points to bring in the empty set, in case one simply
cannot do without t and without �.
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order: lists. The list 〈a, a, b, c〉 is distinct from the list 〈a, b, a, c〉, both of which are
distinct from the list 〈a, b, c〉.

The definition given for compositionality in set and multiset frames generalises
nicely to the context of list frames, but we will need to be careful when doing so: the
definitions were not attentive to matters of ordering, so we will need to pay attention
to that here when defining what it is to replace an element y occurring in some list by
another list. To this we turn, now.

Definition 40 (List composition). If the list X is 〈x1, ... , xn〉 and the inhabited list
Y (yj) is 〈y1, ... , yj , ... , ym〉, then Y (X ) is 〈y1, ... , yj–1, x1, ... , xn, yj+1, ... , ym〉.

Given an inhabited set P, the set L(P) is the set of all finite lists of elements from P.

Definition 41 (Compositionality). A list relation R on L(P) × P is said to be
compositional if and only if for all lists X and Y and for all points z,

(∃y)(XRy and (Y (y))Rz) iff (Y (X ))Rz.

A list relation R is reflexive iff for all points x, we have

〈x〉Rx.

As with multisets, a compositional list relation between inhabited lists and points
adds the requirement that X be inhabited to the preceding definition. (Y (y) must of
course be inhabited, though of course it may just be the singleton list 〈y〉.)

Definition 42 (List frames and list models). If P is an inhabited set and R is a
compositional list relation on P, then 〈P,R〉 is said to be a list frame. (If R is an
inhabited-list relation, then this is an inhabited-list frame.) If � is a relation between
the set P and the set of atomic formulas, which is hereditary along R (so if x � p and
〈x〉Ry then y � p too), then 〈P,R,�〉 is said to be a list model, where � evaluates all
formulas in the language of R+ as follows:

• x � A ∧ B iff x � A and x � B .
• x � A ∨ B iff x � A or x � B .
• x � A→ B iff for each y, z where 〈x, y〉Rz, if y � A then z � B .
• x � A ◦ B iff for some y, z where 〈y, z〉Rx, both y � A and z � B .
• x � ⊥ never.

If R is a list relation, and not merely an inhabited-list relation, we can add the t clause.

• x � t iff 〈 〉Rx.

We can define validity for sequents on our models in the usual way. In fact, the
definitions the extension �A� of a formula A carries over unchanged in the setting of
list frames, and the definition of the shadow {{Γ}} of a structure requires only one
small tweak, given the move from multiset or set frames to list frames. References to
multisets must be replaced by the corresponding references to lists, as follows:

• {{�}} = {x ∈ P : 〈 〉Rx},
• {{A}} = {x ∈ P : (∃y ∈ �A�)〈y〉Rx},
• {{Γ,Γ′}} = {x ∈ P : (∃y ∈ {{Γ}})(∃z ∈ {{Γ′}})〈y〉Rx ∧ 〈z〉Rx},
• {{Γ; Γ′}} = {x ∈ P : (∃y ∈ {{Γ}})(∃z ∈ {{Γ′}})〈y, z〉Rx}.
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With this, we can define validity on a model as before. The sequent Γ � A is valid on
〈P,R,�〉 iff {{Γ}} ⊆ �A�.

We have seen that logic RW+ is sound and complete for multiset frames. The logic
R+ is sound and complete for multiset frames with contraction, and that R+ is sound
for set frames. A natural question is what logic is sound and complete for list frames.
List frames will not validate the structural rules IC and IW , so the logic will be weaker
than RW+. One might think that list frames validate TW+, a close relative of RW+ that
eschews the structural rules IC and IW , but that thought is not borne out, as we will
show.

Lemma 43. The following structural rules are valid on list frames.

Γ(Γ′; (Γ′′; Γ′′′)) � B
IB

Γ((Γ′; Γ′′); Γ′′′) � B

Γ((Γ′; Γ′′); Γ′′′) � B
IBc.

Γ(Γ′; (Γ′′; Γ′′′)) � B

Proof. It is straightforward to show that {{Γ′; (Γ′′; Γ′′′)}} = {{(Γ′; Γ′′); Γ′′′}}, given
the associativity of list composition, and the compositionality of the relation R.
The proof used for Theorem 26 carries over here with only notational changes,
like so: {{(Γ′; Γ′′); Γ′′′}} = {x ∈ P : (∃y ∈ {{(Γ′; Γ′′)}})(∃z ∈ {{Γ′′′}})〈y, z〉Rx}
unpacking the definition of {{Γ′; Γ′′}} this set is identical to {x ∈ P : (∃y ∈
P)(∃u ∈ {{Γ′}})(∃v ∈ {{Γ′′}})(〈u, v〉Ry ∧ 〈y, z〉Rx)}. Applying compositionality,
we see that (∃y ∈ P)(〈u, v〉Ry ∧ 〈y, z〉Rx) is equivalent to 〈u, v, z〉Rx so the set
{{(Γ′; Γ′′); Γ′′′}} simplifies (as expected) to {x ∈ P : (∃u ∈ {{Γ′}})(∃v ∈ {{Γ′′}})(∃z ∈
{{Γ′′′}})〈u, v, z〉Rx} where the left-associated structure (Γ′; Γ′′); Γ′′′ unwraps into
the unassociated list〈u, v, z〉. Similarly, the right-associated structure Γ′; (Γ′′; Γ′′′)
unwraps to exactly the same set, so {{(Γ′; Γ′′); Γ′′′}} = {{Γ′; (Γ′′; Γ′′′)}}, showing that
the associativity structural rule IB is valid on list frames.

The structural rule IB is valid in ternary frames for TW+, but the rule IBc is not. The
latter rule can be used to derive the sequentA ◦ (B ◦ C ) � (A ◦ B) ◦ C , which does not
hold in TW+.29 Rather than the structural rule IBc, the usual structural rule paired
with IB for TW+ is the rule IB′.

Γ(Γ′; (Γ′′; Γ′′′)) � B
IB′.

Γ((Γ′′; Γ′); Γ′′′) � B

This rule, despite its importance in the study of relevant logics, is not valid on inhabited
list frames.

Lemma 44. The rule IB′ is not valid on list frames.

Proof. For the counterexample, let the frame be 〈�,R〉 on inhabited lists from
�, where 〈x1, ... , xn〉Ry iff x1 = y. For this frame, x � y iff x = y, so any set of
points is an extension, and this frame is reflexive. On this frame, set �p� = {1}, �q� =
{2} and �r� = {3}. Let’s check the validity of (q;p); r � p ◦ (q ◦ r) on this model.
Here, {{q;p}} = {x : 〈2, 1〉Rx} = {2}, and so, {{(q;p); r}} = {x : 〈2, 3〉Rx} = {2},
too. On the other hand, �q ◦ r� = {x : 〈2, 3〉Rx} = {2}, and so, �p ◦ (q ◦ r)� = {x :
〈1, 2〉Rx} = {1}, and hence, {{(q;p); r}} ⊆ �p ◦ (q ◦ r)�, and (q;p); r � p ◦ (q ◦ r) is

29 We will leave it to the reader to find a counterexample, for which we suggest using John
Slaney’s program MaGIC (http://users.cecs.anu.edu.au/˜jks/magic.html).
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not valid on our model. Since it is derivable, using IB′, this rule is not valid on list
frames.

This counterexample uses one natural way of forming inhabited list frames from a
given set P of points and suggests another natural example.

[First] Say that XRy iff X = 〈x1, ... , xn〉 and x = x1. 〈x〉Rx clearly holds. It
is only slightly more work to see that the compositionality condition, ∃z(XRz
and Y (z)Ry) iff Y (X )Ry, holds.
[Last] Say that XRy iff X = 〈x1, ... , xn〉 and x = xn.

Each compositional multiset relation R (on inhabited multisets, or on all multisets)
can be lifted to a list relation (correspondingly, on inhabited lists, or all lists) too, where
we set XR′x if and only ifm(X )Rx, wherem(X ) is the multiset of members of the list
X defined in the obvious way.30 So, all of the other compositional multiset relations we
have considered, like sum, product, membership, etc., transfer naturally to this setting,
albeit without making any use of the distinctively non-commutative nature of the list
structures being related. Another example of a functional compositional list relation
is given by any semigroup.

Example 45 (Lifting a semigroup). If 〈P, ∗〉 is a semigroup (if ∗ is an associative
binary operation on P) then the inhabited-list relation R∗, given by setting 〈x〉R∗y iff
x = y and 〈x, x1, ... , xn〉R∗y iff there is some z where 〈x, x1, ... , xn〉R∗z and y = x ∗ z,
is both compositional and functional. If, in addition, P is a monoid with identity e, then
we can extend this to a list relation, setting 〈 〉R∗y iff y = e.

The logic that is sound and complete for list is not TW+, but rather the associative
Lambek calculus.31 Much work on associative Lambek calculus uses a different
language than the one we have been considering, often with the addition of another
conditional, ← and without t.32

In the transition from multisets to lists, we noted that multisets take account of
multiplicity but not order, whereas lists mind them both. There is still more structure
to jettison. Lists are implicitly associative. For example, the list 〈a, b, c〉 is indifferent
to whether it was formed by concatenating 〈a〉 with 〈b, c〉 or by concatenating 〈a, b〉
with 〈c〉. The final collections we will look at are ones that pay more attention to how
the collections were formed, namely trees. We will focus on rooted binary-branching
trees.

Leaf-labelled, rooted, binary-branching trees, or just trees, for the remainder of the
section, are familiar objects. Given a set P of points, T (P) is the set of all inhabited,
finite trees where each node has exactly zero or two successors and each of whose leaves
is labelled with an element of P. The trees will be oriented, so that they distinguish the
left successor node from the right successor node. As an example, let P = {b, c}, then
the following three (distinct) trees are elements of T (P).

30 Here is the ‘obvious way’: m(〈 〉) = [ ], m(〈x,X 〉) = [x] ∪m(X ).
31 Lambek [28] introduced two calculuses, one associative and one non-associative, the latter

of which does not appear here.
32 For example, see [41, 307ff] or [35, 66ff]. See [12] for an early discussion of frames for Lambek

calculus.
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•

cb

•

bc

•

•

cb

c

Rather than draw trees in a two-dimensional array, we will adopt a more compact
notation, specifying the leaves of the tree by their labels. The example trees above
would be represented as follows: (b, c), (c, b), and (c, (b, c)).33 The following definition
formalises this idea.

Definition 46 (Trees). Given a set of points P, the binary trees over P are defined as
follows.

• For all x ∈ P, x is a tree.
• If L and R are trees, (L,R) is a tree.

To maintain the notational similarity with the other collections, we will use (x) for
the singleton tree of x.

Definition 47 (Tree composition). If X is an inhabited tree and Y (x) is a tree with a
distinguished leaf labelled x, then Y (X ) is the tree that results by replacing the leaf x
with the tree X.

As an example of tree composition, let X be (b, c) and letY (b) be (c, b). ThenY (X )
is (c, (b, c)), which is the rightmost tree in the diagram above, obtained by replacing
the b node in the middle tree by the leftmost tree.

Definition 48 (Compositionality). A tree relation R on T (P) × P is said to be
compositional if and only if for all trees X,Y ∈ T (P) and for all points z,

(∃y)(XRy and (Y (y))Rz) iff (Y (X ))Rz.

A tree relation R is reflexive iff for all points x, we have

(x)Rx.

Definition 49 (Tree frame and tree model). If P is an inhabited set and R is a
compositional tree relation on P, then 〈P,R〉 is said to be a tree frame. If � is a
relation between the set P and the set of atomic formulas, which is hereditary along R (so
if x � p and (x)Ry then y � p too), then 〈P,R,�〉 is said to be a list model, where �
evaluates all formulas in the language of R+ as follows:34

• x � A ∧ B iff x � A and x � B .
• x � A ∨ B iff x � A or x � B .
• x � A→ B iff for each y, z where (x, y)Rz, if y � A then z � B .
• x � A ◦ B iff for some y, z where (y, z)Rx, both y � A and z � B .

33 The linear notation for trees has a natural connection to combinatory terms, and so to
combinatory logic. For an introduction to combinatory logic, see [6]. We would like to thank
an anonymous referee for pointing out this connection.

34 The clause for ⊥ can be added. It is omitted here since the other propositional constant we
have been considering, t, is not included.
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Tree frames are rather easy to come by. Here are two examples.

[groupoid] Let (G, ·) be a groupoid. To define R, we will use a mapping � from
T (G) to G as follows: �((x)) = x and �((X,Y )) = �(X ) · �(Y ). Define R as
follows: (x)Rx, for all x, andXRy iff �(X ) = y. It is straightforward to see that
R is a compositional.
[join semi-lattice] Let (S,+) be a join semi-lattice. Define x � y iff x + y = y.
Set (x)Rx and, adapting � from the previous example, defineXRy iff �(X ) � y.
As in the previous example, it is straightforward to show that R is compositional.

We will now relate the tree frames to some more standard ternary frames. For this, we
will introduce some notation using square brackets, which should not be confused for
multisets as in earlier sections: Here, Y [x] is to be understood as the tree Y with a
distinguished leaf x, whileY [x, y] is Y with two distinguished leaves,Y [(x, y)] is Y with
a distinguished pair of adjacent leaves (x, y), Y [(x, y), (u, v)] with two distinguished
pairs of adjacent nodes, and Y [x, (y, z)] is a distinguished triple of leaves, where one
is adjacent to a pair.

Lemma 50. Each ternary frame 〈P,R,�, N 〉 determines a reflexive tree frame 〈P,R′〉
by setting:

• (x)Ry iff x � y.
• (x, y)R′z iff Rxyz.
• If Y is a tree with two or more leaves, then Y [(x, y)]R′z iff for some u, Y (u)R′z

and (x, y)R′u.

You will notice here that there is nothing in the tree frame that corresponds to the
set N of normal points, since our trees are essentially inhabited.

Proof. The proof proceeds much as in the proof of Lemma 12. We need to verify
that R′ is coherent. There is nothing to check for clause 2.

To check the final clause, we need to prove that if Y [(x, y)] is the same tree as
Y ′[(x′, y′)], then

(∃z)(Y (z)R′u ∧ (x, y)R′z) iff (∃z ′)(Y ′(z ′)R′u ∧ (x′, y′)R′z ′)).

If Y has one leaf, then x = y = x′ = y′, and the displayed biconditional is satisfied by
the first and second clauses of the definition. If Y has either two or three leaves, then
x = x′ and y = y′, and the displayed biconditional is satisfied.

Let X [(x, y), (x′, y′)] be the tree Y with the two distinguished pairs of adjacent
leaves (x, y) and (x′, y′). Assume X has n > 3 leaves. Suppose (∃z)(X [z, (x′, y′)]R′u ∧
(x, y)R′z). The tree X [z, (x′, y′)] has n – 1 leaves, so by the inductive hypothesis,
this is equivalent to (∃z)(∃z ′)(X [z, z ′]R′u ∧ (x, y)R′z ∧ (x′, y′)R′z ′). This, in turn, is
equivalent to (∃z ′)(X [(x, y), z ′]R′u ∧ (x′, y′)R′z ′) by the inductive hypothesis, which
establishes the desired biconditional.

The reflexivity condition on R′ is satisfied by the reflexivity of � and an argument
similar to that of Lemma 12 establishes the compositionality conditions.

So, every ternary frame generates a tree frame. A straightforward inductive argument
shows that the extensional structural rules are all sound for tree frames, as are the
operational rules, excluding the rules for t and for �. This suffices for the adequacy of
the logic B+

–� , given by the connective rules and the extensional structural rules, but
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without the intensional structural rules and IC, IB, and without �I or �E, with respect
to tree frames.

Theorem 51. The logic B+
–� is sound and complete with respect to tree frames.

To model the basic substructural logicB+, we need to add �I and �E to our repertoire
of rules, and to do this in a natural way corresponding to our treatments of lists,
multisets and sets, we would need to allow an empty tree, ( ), such that the tree (( ), R)
is identical to the tree R. We leave exploration of this, and further developments in
collection frames, to future work.
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