
COLOURING OF TRIVALENT POLYHEDRA 

ANTON KOTZIG 

By an Euler polyhedron of valence three or a trivalent convex polyhedron in 
Euclidean 3-space (4) we mean in the present paper an Euler polyhedron in 
the sense of Steinitz (8, p. 113), such that each vertex is incident with exactly 
three edges. 

In the present paper we establish a theorem concerning the colouring of 
trivalent polyhedra. A specialization of this theorem solves the following 
problem implicit in Eberhard (1, p. 84): Does there exist a trivalent Euler 
polyhedron with an odd number of faces such that the number of edges incident 
with any face is divisible by three? 

I wish to mention that this problem has recently been solved completely 
by Motzkin in (6). Previously, Griinbaum and Motzkin solved it, by a different 
method, in (4) for the special case where all faces are triangles or hexagons. 
The present paper solves it by a third, completely different method. 

Let % be any Euler polyhedron and let 33 [§ , ©] be the set of its vertices 
[edges, faces]. By a colouring of the faces of $ we mean a mapping <j> of the 
set © onto the set <i> = {a, /3, 7, 5} such that 4>(Si) y* <f>(S2) for any two 
faces 5i, S2 G © that have an edge in common. The elements of the set $ 
will be called the colours of the faces. By a colouring of the edges of the poly
hedron we mean a mapping X of the set § onto the set A = {1, 2, 3} such that 
X(i7i) ^ \(H2) for any two edges Hi, H2 G § , incident with the same vertex 

The following lemma is well known (2; 3). 

LEMMA 1. A colouring of the faces of the polyhedron $ exists if and only if 
there exists a colouring of its edges. 

Given a colouring </> of the faces of $, a colouring X of its edges can easily 
be found in the following way. Let H be any edge incident with the faces 
SUS2. Define F(H) = {«(Si), 0(52)} and set: 

(\(H) = 1 if F(H) = {a, p) or if F (JET) = {7, 5}, 
(*) h(H) = 2 if F(H) = {a, 7} or if F(H) = {£, 6], 

{\(H) = 3 if F(H) = {a,ô} or il F(H) = {P,y}. 

Obviously the mapping X defined in this way is a colouring of the edges of $ . 
Conversely, given a colouring of the edges of $ , we can always find exactly 
four colourings of the faces of $ with colours from $ such that the conditions 
(*) are fulfilled. It is sufficient to choose for one face 5 G © the value 0(5) G $; 
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the colours of the other faces in © are then uniquely determined by the con
ditions (*). 

Remark 1. The problem of colouring maps, which has resisted solution for a 
century, known as "the four-colour problem," can be reduced to the question 
of whether there exists a colouring of edges for every trivalent Euler poly
hedron. 

For a given colouring X of the edges of $ , we define a mapping X* of 93 into 
the set { - 1 , 1} by letting X*(F) = 1 if the edges VVt such that \(VVt) = i 
(i = 1, 2, 3) follow each other in the positive sense of rotation; otherwise put 
X*(7) = - 1 . 

The mapping X* will be said to be the valuation of vertices with respect to 
the colouring X, and the number \*(V) will be said to be the value of the vertex 
V for this colouring. 

We know (7, p. 18, Theorem 5) the following lemma. 

LEMMA 2. Let $ be any Euler polyhedron of valence three. A colouring X of the 
edges of this polyhedron exists if and only if there exists a mapping K of the set 93 
into the set { — 1, 1} such that the sum of the values K(V) for all the vertices incident 
with any given face is divisible by three. If K is such a mapping, then there exists 
a colouring X such that X* = K. 

The following lemma is a direct consequence of Lemma 2. 

LEMMA 3. Let S)3 be any Euler polyhedron of valence three, such that the number 
of edges incident with any face is divisible by three. Then there exists a colouring 
X of the edges of the polyhedron such that \*(V) = 1 for each vertex V £ 93. 

Let <t> be a colouring of the faces of an Euler polyhedron $ of valence three 
and let X be a colouring of its edges such that X and <j> fulfil the conditions (*). 
Let X* be the corresponding valuation of the vertices in 93. Let £ ^ tj be any 
two colours in $. Denote by § (£, rj) the set of all those edges in § which are 
incident with faces, one of which has the colour £, the other the colour rj. 
Further, denote by the symbol 93(5, v) the set of all the vertices in 93 that are 
incident with edges in § (£, rj) and put 

A* (£ ,* )= Z X*(V). 

We evidently have 

25 = SB (a, 0) U SB(Y, Ô) = 95(a, 7 ) W SB (0, à) = SB (a, S) U 95(/3, 7 ) , 

0 = SB (a, 0) r\ 93(7, «) = SB(a, 7) H 93(0, 5) = SB (a, ô) H 93(0, 7 ) . 

This yields: 

LEMMA 4. 4̂ colouring cj> of the faces of the polyhedron S|3 and the corresponding 
valuation of the vertices X* always satisfy 

A*(a, 0) = A*(7, «), A*(a, 7) = A*(0, fi), A*(«, Ô) = A*(0, 7). 
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Proof. The set § (a , 0) U $ ( Y , ô) = $(1) is evidently the set of all the 
edges of 3̂ which for the colouring X have the colour 1. Similarly 

$ (a , T) W $(0 , «) = §(2) [$(a, 6) U $(,8, T) = §(3)] 

is the set of all the edges in § with the colour 2 [3]. For each i £ {1, 2, 3} we 
have: §( i ) is the set of edges of a linear factor L(i) of the graph G of $ (we 
obtain the graph of $ from $ by deleting all the faces while preserving the 
vertices and edges as well as their incidence) ; from i 9^ j it follows that 
$(i) H £0') = 0. Then #(2) U §(3) is the set of the edges of a quadratic 
factor Q2,z of G; hence each component of Q2,z is, in the sense of the theory 
of finite graphs, a circuit (5, p. 155) with an even number of vertices, where the 
edges of colour 2 alternate with edges of colour 3. Let Si be any faces in ©. To 
every circuit K of Q2t% we can assign a partition of the set © into two classes 
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©oCfiQ and ©i(iT) in the following way: the face S Ç © belongs to ©i(i£) if and 
only if we can move from S on the surface of $ to Si without crossing the circuit 
K;&o(K) = © — ©i(iT). The set ®o(K) will be the exterior and the set 
©i(2£) the interior of if. Any edge in §(1) incident with a vertex of K (hence 
not belonging to K) is incident either with two faces of the interior or with 
two faces of the exterior. In addition, the following holds: either all the edges 
in §(1) , incident with a vertex from K and with a face in <&o(K), belong to 
§ (a , 0) (first case) or all of them belong to £>(Y, 5) (second case). In the first 
case all the edges in §(1) incident with a vertex from K and with a face in 
©i(iT) belong to § (Y» 5); in the second case they all belong to § (a , /3). 

Let us partition the set of vertices of the circuit K alternating into classes 
2Bo, 2Bi so that an observer moving along K on the surface of $ in such a way 
that the interior of K stays on his left must, after passing a vertex in 9Bo 
[a vertex in 261], move through an edge of colour 2 [an edge of colour 3]. 
Evidently only four types of vertices can exist on K, viz. the types 7\, T2j Tz, TA 
illustrated in Fig. 1 (the vertices in 9Bo are indicated by disks; those in 28i by 
circles; the number of an edge denotes its colour). Let us denote by 31 [by 93] 
the set of all the vertices in K incident with an edge in §(1) which is incident 
with a face in the interior [the exterior] of K. Evidently 

X*(Fi) = - 1 , X*(72) = 1, X*(F3) = 1, X*(^4) = - 1 ; 

cf. Fig. 1. 
Denote by Tt the number of those vertices of K that belong to the type Tt 

(i = 1, 2, 3, 4). Since the number of vertices belonging to SBo must be equal to 
the number of vertices belonging to 2Bi, we have 

T\ + T.3 = T2 + T4, 

and further 

E X*(10 = - r i + r2, £ X*(7) = T3 - r4; 

hence 

E X*(F) = E X*(F). 

Thus the sum of the values of the vertices in 33 (a, (3) belonging to K is equal 
to the sum of the vertices in 93(7, à) belonging to K. Since K was any circuit 
of <22)3, this holds for each component of Q2,9 and so for Q2,s itself. Since each 
vertex in 93 belongs to Q2,3, it follows that 

A*(a,0) = A* (7, 5). 

Symmetrically, we obtain in 

A* (a, 7) = A*(0, 5) and A* (a, 5) = A* (ft 7). 
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THEOREM. Let $ be any Euler polyhedron of valence three and let <j>bea colouring 
of its faces. Let X be the colouring of its edges defined by the conditions (*) and 
let X* be the corresponding valuation of the vertices of $ . Let 3S(£) {where £ is any 
colour in $) be the set of all the vertices in 33 incident with a face of colour £ and 
let 

M{1) = Z X*(7). 
Fe5B(0 

Then M(£) = M for all £ £ <E>, w/zere M is an integer divisible by three. 

Proof. Put 12 = Ev€» X*(F). Then 

M (a) + M(/3) = 12 + A* (a, 0). 

This assertion follows at once from the fact that in the sum M (a) + M((3) the 
value of a vertex V not incident with an edge in §(a , 0) is counted exactly 
once and the value of a vertex V incident with such an edge twice (because 
V is incident both with a face of colour a and with a face of colour /3). Similarly 

M($ + M(n) =12 + A* (1,1,) 

for any two colours £ and 77. From Lemma 4 it follows, therefore, that: 

M (a) + M(fi) = M (7) + M(ô), 
M (a) + M (y) = M (13) + M(ô), 
M (a) + M(<5) = M(/3) + M (y). 

Hence 

M(a) = M (fi) = M (7) = M(5) = M. 

It follows from the definition of the sum M (a) and from Lemma 2 that the 
number M is divisible by three. This proves the theorem. 

We deduce some corollaries. 

COROLLARY 1. The sum 12 = SveS X*(F) is divisible by four. 

Proof. In the sum M (a) + M(fi) + AT (7) + M (6) = 4M the value of each 
vertex in 33 is counted exactly three times. Thus 4M = 312, which proves our 
assertion. 

COROLLARY 2. If the number of edges incident with any face of an Euler 
polyhedron ty of valence three is divisible by threey then the number of vertices is 
divisible by four and the number of faces is even. 

Proof. Let T0 denote the number of vertices, xi that of the edges, and 7T2 that 
of the faces of $ . By Lemma 3, there exists a colouring X of the edges of $ such 
that X*(F) = 1 for each vertex V. Hence 12 = wo and x0 = 4iV, where N is 
a positive integer. Since $ has valence three, we have 2T± = 37r0 ; hence 
7Ti = 67V. By Euler's equation (valid for all Euler polyhedra) 

TTO — 7Ti + 7T2 = 2 . 
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This yields 7r2 = 2N + 2; thus the number of faces of $ is even. This proves 
both assertions. 

Remark 2. Corollary 2 contains a new solution of the problem of Eberhard 
(1), quoted in (4); Motzkin gives a complete solution in (6). 

Remark 3. We can readily show that a similar theorem holds for all tri valent 
planar regular graphs which are decomposable into three linear factors. It is 
therefore not necessary to restrict the above considerations to graphs of 
(trivalent) Euler polyhedra. 
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