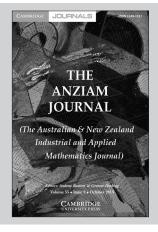
INDEX

BUI QUANG, N. and HO DANG, P.; Stable and semistable probability	
measures on convex cone	390
BUNDSCHUH, P. and VÄÄNÄNEN, K.; Algebraic independence of certain	
Mahler functions and of their values	289
CASTRYCK, W. and COOLS, F.; A minimal set of generators for the canonical	
ideal of a nondegenerate curve	311
COOLS, F.; see CASTRYCK, W.	311
DELBOURGO, D. and PETERS, L.; Higher order congruences amongst	
Hasse–Weil <i>L</i> -values	1
DIXIT, A., JIU, L., MOLL, V. H. and VIGNAT, C.; The finite Fourier transform	
of classical polynomials	145
FLETCHER, J. and MOORS, W. B.; Chebyshev sets	161
FOŠNER, A.; see XU, J.	407
GEROLDINGER, A. and ZHONG, Q.; The catenary degree of Krull	
monoids II	324
GÓRKA, P. and REYES, E. G.; Sobolev spaces on locally compact abelian	
groups and the bosonic string equation	39
GRACZYK, P. and SAWYER, P.; Convolution of orbital measures on	
symmetric spaces of type C_p and D_p	232
HO DANG, P.; see BUI QUANG, N.	390
HOWLETT, P.; The best weighted gradient approximation to an observed	
function	54
JAMBOR, S.; Determining Aschbacher classes using characters	355
JIU, L.; see DIXIT, A.	145
KIM, J. M.; The \mathcal{K}_{up} -approximation property and its duality	364
LEE, K., LEE, M. and LEE, S.; Hyperbolicity of homoclinic classes of C^1 vector	
fields	375
LEE, M.; see LEE, K.	375
LEE, S.; see LEE, K.	375
MC LAUGHLIN, J.; Further results on vanishing coefficients in infinite product	
expansions	69
MOLL, V. H.; see DIXIT, A.	145
MOORS, W. B.; see FLETCHER, J.	161
PETERS, L.; see DELBOURGO, D.	1
PONNUSAMY, S. and QIAO, J.; Classification of univalent harmonic mappings	
on the unit disk with half-integer coefficients	257
QIAO, J.; see PONNUSAMY, S.	257
REYES, E. G.; see GÓRKA, P.	39
SAANOUNI, T.; Global well-posedness and instability of a nonlinear	
Schrödinger equation with harmonic potential	78
SAWYER, P.; see GRACZYK, P.	232

TANG, X. H.; Non-Nehari-manifold method for asymptotically linear	
Schrödinger equation	104
VÄÄNÄNEN, K.; see BUNDSCHUH, P.	289
VIGNAT, C.; see DIXIT, A.	145
WANG, C., XIAO, J. and ZHU, K.; Logarithmic convexity of area integral	
means for analytic functions II	117
XIAO, J.; see WANG, C.	117
XIONG, M.; On positive proportion of rank-zero twists of elliptic curves	
over Q	281
XU, J., ZHENG, B. and FOŠNER, A.; Linear maps preserving tensor products	
of rank-one Hermitian matrices	407
ZHENG, B.; see XU, J.	407
ZHONG, Q.; see GEROLDINGER, A.	324
ZHU, K.; An integral representation for Besov and Lipschitz spaces	129
ZHU, K.: see WANG, C.	117

JOURNALS


The ANZIAM Journal

Published for the Australian Mathematical Society

Editors-in-Chief

A. Bassom, The University of Western Australia, Australia G. C. Hocking, Murdoch University, Australia

The ANZIAM Journal considers papers in any field of applied mathematics and related mathematical sciences with the aim of rapid publication in print and electronic formats. Novel applications of mathematics in real situations are especially welcomed. All papers should include some indication of applicability, and an introduction that can be understood by non-specialist readers from the whole applied mathematical community.

ANZIAM Journal

is available online at: http://journals.cambridge.org/anz

To subscribe contact Customer Services

in Cambridge:

Phone +44 (0)1223 326070 Fax +44 (0)1223 325150 Email journals@cambridge.org

in New York:

Phone +1 (845) 353 7500 Fax +1 (845) 353 4141 Email subscriptions_newyork@cambridge.org

Free email alerts

Keep up-to-date with new material – sign up at journals.cambridge.org/register

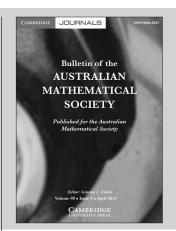
For free online content visit: http://journals.cambridge.org/anz

JOURNALS

Bulletin of the Australian Mathematical Society

Published for The Australian Mathematical Society

Graeme L. Cohen, University of Technology, Sydney, Australia


Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.

is available at: http://journals.cambridge.org/baz

Free email alerts

Keep up-to-date with new material – sign up at http://journals.cambridge.org/baz-alerts

Bulletin of the Australian Mathematical Society

is available online at: http://journals.cambridge.org/baz

To subscribe contact Customer Services

in Cambridge:

Phone +44 (0)1223 326070 Fax +44 (0)1223 325150 Email journals@cambridge.org

in New York:

Phone +1 (845) 353 7500 Fax +1 (845) 353 4141 Email subscriptions_newyork@cambridge.org

For free online content visit: http://journals.cambridge.org/baz

JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY

Submission of research papers in all areas of pure mathematics including theoretical contributions in fields such as probability, mathematical physics and mathematical statistics are invited under the condition that the paper has not been published and is not being considered for publication anywhere else. The Journal is seeking articles of more general interest and of moderate length, preferring papers with a good introduction explaining the meaning and value of results. Articles below ten pages or much above thirty pages will usually not be accepted. In view of the pressure on space, only papers highly rated by assessors can be accepted.

For information on submission of papers, and to submit a paper, see the journal's submission system: http://mc.manuscriptcentral.com/jaz.

PREPARATION OF MANUSCRIPTS

- 1. Papers should be double spaced and have a generous margin. Authors should keep copies of all files.
- 2. Files must be prepared using LATEX or another variant of TEX, and must not contain definitions of additional commands. A JAustMS style file can be found at: https://mc.manuscriptcentral.com/jaz. In the top right corner click on 'Instructions & Forms'. A ScholarOne Manuscripts box will open. Click on LaTex Style Files and jaustms.zip will be sent to your downloads on your computer.
- 3. Each manuscript should include an abstract of no more than 150 words, preferably containing no formulae, a list of keywords, a 2010 Mathematics subject classification, and a short title of no more than 40 characters.
- 4. For the style of references consult recent issues of the journal. The current usage is either the number referencing [1], [2], [3], or the letter referencing, such as [DS1], [DS2], [DS3] if the authors are N. Dunford and J. T. Schwartz, and the reference is to the 3 volumes of their monograph. In either style, references should be ordered alphabetically by the first author's name. Abbreviations of journal names should follow Mathematical Reviews.
- 5. Avoid abbreviations such as Thm., Prop., Eq., Ex., iff. In the text do not use the symbols \forall , \exists , \Longrightarrow and \Longleftrightarrow . For more information about our stylistic requirements, see the Journal website accessible through www.austms.org.au.
- 6. Graphics should be prepared to professional standards, preferably using Postscript or LATEX drawing facilities. Charges may apply if the typesetters have to recreate a graphics file because the original is not suitable for printing.

Copying: This journal is registered with the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, USA. Organizations in the USA who are registered with the CCC may therefore copy material beyond the limits permitted by sections 107 and 108 of US copyright law subject to payment to CCC of the per-copy fee of \$16.00. This consent does not extend to multiple copying for promotional and commercial purposes. Code 1446-7887/2015 \$16.00.

Organizations authorized by the Copyright Licensing Agency may also copy material subject to the usual conditions. For all other use, permission should be sought from Cambridge or the American branch of Cambridge University Press.

Published by Cambridge University Press for the Australian Mathematical Publishing Association Incorporated. Printed in the United Kingdom at Bell & Bain Ltd, Glasgow.

© 2015 Australian Mathematical Publishing Association Inc.

MIX
Paper from
responsible sources
FSC® C007785

This journal issue has been printed on FSC-certified paper and cover board. FSC is an independent, non-governmental, not-for-profit organization established to promote the responsible management of the world's forests. Please see www.fsc.org for information.

Table of Contents

Algebraic independence of certain Mahler functions and of their values	
Bundschuh, P. & Väänänen, K.	289
A minimal set of generators for the canonical ideal of a nondegenerate curve Castryck, W. & Cools, F.	311
The catenary degree of Krull monoids II Geroldinger, A. & Zhong, Q.	324
Determining Aschbacher classes using characters Jambor, S.	355
The \mathcal{K}_{up} -approximation property and its duality $\mathit{Kim}, \mathcal{J}.\ M.$	364
Hyperbolicity of homoclinic classes of C^1 vector fields Lee, K., Lee, M. \mathcal{C} Lee, S.	375
Stable and semistable probability measures on convex cone Bui Quang, N. & Ho Dang, P.	390
Linear maps preserving tensor products of rank-one Hermitian matrices $Xu, \mathcal{J}, \mathcal{Z}heng, B. \mathcal{C}$ Fošner, $A.$	407
Author index	429