On the Square of the First Zero of the Bessel Function $J_{\nu}(z)$

Árpád Elbert and Panayiotis D. Siafarikas

Abstract

Let $\mathrm{j}_{\nu, 1}$ be the smallest (first) positive zero of the Bessel function $\mathrm{J}_{\nu}(\mathrm{z}), \nu>-1$, which becomes zero when ν approaches -1 . Then $\mathrm{j}_{\nu, 1}^{2}$ can be continued analytically to $-2<\nu<-1$, where it takes on negative values. We show that $\mathrm{j}_{\nu, 1}^{2}$ is a convex function of ν in the interval $-2<\nu \leq 0$, as an addition to an old result [Á. Elbert and A. Laforgia, SIAM J. M ath. Anal. 15(1984), 206-212], stating this convexity for $\nu>0$. Also the monotonicity properties of the functions $\frac{\mathrm{j}_{\nu, 1}^{2}}{4(\nu+1)}, \frac{\mathrm{j}_{\nu, 1}^{2}}{4(\nu+1) \sqrt{\nu+2}}$ are determined. Our approach is based on the series expansion of Bessel function $\mathrm{J}_{\nu}(\mathrm{z})$ and it turned out to be effective, especially when $-2<\nu<-1$.

1 Introduction and Results

The Bessel function $\mathrm{J}_{\nu}(\mathrm{z})$ of first kind has the representation

$$
\mathrm{J}_{\nu}(\mathrm{z})=\sum_{\mathrm{n}=0}^{\infty} \frac{(-1)^{\mathrm{n}}}{\mathrm{n}!} \frac{\left(\frac{z}{2}\right)^{2 \mathrm{n}+\nu}}{\Gamma(\mathrm{n}+\nu+1)}, \quad z>0
$$

and has infinitely many positive zeros $\mathrm{j}_{\nu, k}, \mathrm{k}=1,2, \ldots, 0<\mathrm{j}_{\nu, 1}<\mathrm{j}_{\nu, 2}<\cdots$, tending to infinity as $\nu \rightarrow \infty$ [10, p. 478]. For $\nu>-1$ all zeros of $\mathrm{J}_{\nu}(\mathrm{z})$ are positive. The first zero $\mathrm{j}_{\nu, 1}$ can be continued analytically to $\nu=-1$ where it vanishes. Continuing $\mathrm{j}_{\nu, 1}$ analytically to the interval $(-2,-1)$ we find, according to a theorem of Hurwitz [3], [10, p. 483] that $\mathrm{j}_{\nu, 1}$ becomes purely imaginary. At the point $\nu=-2$ the function $\mathrm{j}_{\nu, 1}$ is vanishing again. Concerning the local behavior of $\mathrm{j}_{\nu, 1}, \mathrm{R}$. Piessens [9] has found the following representation

$$
\mathrm{j}_{\nu, 1}=2(\nu+1)^{1 / 2}\left[1+\frac{\nu+1}{4}-\frac{7}{96}(\nu+1)^{2}+\cdots\right]
$$

in the neighborhood of $\nu=-1$. We shall investigate the function $\mathrm{j}_{\nu, 1}^{2}$ for $\nu>-2$ where it is real. Clearly the function

$$
\begin{equation*}
\ell(\nu)=\frac{\mathrm{j}_{\nu, 1}^{2}}{4(\nu+1)} \tag{1.1}
\end{equation*}
$$

has the local representation

$$
\begin{equation*}
\ell(\nu)=1+\frac{\nu+1}{2}-\frac{1}{12}(\nu+1)^{2}+\cdots \tag{1.2}
\end{equation*}
$$

Received by the editors November 20, 1996.
AM S subject classification: 33A40.
(C)Canadian M athematical Society 1999.
which implies

$$
\begin{equation*}
\lim _{\nu \rightarrow-1} \ell(\nu)=1, \quad \lim _{\nu \rightarrow-2} \ell(\nu)=0, \quad \text { and } \quad \ell(1)=\frac{j_{1,1}^{2}}{8}=1.83525 \cdots \tag{1.3}
\end{equation*}
$$

Recalling the inequalities [6,(5.11)], [6,(5.12)]

$$
\begin{gathered}
\mathrm{j}_{\nu, 1}^{2}<2(\nu+1)(\nu+3), \quad \nu>-1 \\
\mathrm{j}_{\nu, 1}^{2}>2(\nu+1)(\nu+3), \quad-2<\nu<-1
\end{gathered}
$$

we have

$$
\begin{equation*}
\ell(\nu)<1+\frac{1}{2}(\nu+1)=\frac{\nu+3}{2} \quad \text { for } \nu>-2, \quad \nu \neq-1 . \tag{1.4}
\end{equation*}
$$

In [6], [7] one can find the graph of the function $\mathrm{j}_{\nu, 1}^{2}$ in the interval ($-2,0$), indicating the property that $\mathrm{j}_{\nu, 1}^{2}$ is a convex function of ν in that interval. This property was proved for $3 \leq \nu<+\infty$ by J. T. Lewis and M. E. Muldoon [8]. Á. Elbert and A. Laforgia [2] proved this property for $\mathrm{j}_{\nu, \mathrm{k}}^{2}, \mathrm{k}=1,2, \ldots, \nu \geq 0$. Also, they indicated that the function $j_{\nu, k}^{2}$ can not be convex on the whole interval $(-k, \infty)$ for $k=2,3, \ldots$, and conjectured that the function $\mathrm{j}_{\nu, 1}^{2}$ is convex for $-1<\nu<0$. In [7] it was proved that $\mathrm{j}_{\nu, 1}^{2}$ decreases to a minimum and then increases again to 0 as ν increases from -2 to -1 . In this paper weshall prove the convexity of $\mathrm{j}_{\nu, 1}^{2}$ in $(-2,0$. Consequently, by [2] the function $\mathrm{j}_{\nu, 1}^{2}$ is convex on $(-2, \infty)$, too, because $\mathrm{d} \mathrm{j}_{\nu, 1} / \mathrm{d} \nu$ is continuous function of the variable ν (see [10, Ch. 15.6]). Concerning the function $\ell(\nu)$, two observations were formulated in [6, p. 9]:
(i) the function $\ell(\nu)$ is increasing for $\nu>-2$ (for $\nu>-1$ this fact is already known, see [5, Thm. 2]),
(ii) the function $\frac{\ell(\nu)}{\sqrt{\nu+2}}$ decreases in the interval $(-2,-1)$ and increases for $\nu>-1$.

All these observations turned out to be correct and we are going to prove them.
The main tool is the implicit relation between $\ell=\ell(\nu)$ and ν

$$
\begin{align*}
\mathrm{H}(\ell, \nu)=1 & -\frac{\ell}{1!}+\frac{\ell^{2}}{2!} \frac{\nu+1}{\nu+2}-\frac{\ell^{3}}{3!} \frac{(\nu+1)^{2}}{(\nu+2)(\nu+3)}+\cdots \\
& +\frac{(-1)^{\mathrm{k}} \ell^{\mathrm{k}}}{\mathrm{k}!} \frac{(\nu+1)^{\mathrm{k}-1}}{(\nu+2) \cdots(\nu+\mathrm{k}+1)}+\cdots=0 \tag{1.5}
\end{align*}
$$

which comes from the series expansion of Bessel function $\mathrm{J}_{\nu}(\mathrm{z})$. Introducing the notations

$$
\begin{equation*}
\mathrm{e}_{0}(\nu)=1, \quad \mathrm{e}_{\mathrm{k}}(\nu)=\frac{(\nu+1)^{\mathrm{k}}}{(\nu+2) \cdots(\nu+\mathrm{k}+1)}, \quad \mathrm{k}=1,2, \ldots, \tag{1.6}
\end{equation*}
$$

the relation (1.5) is written as follows

$$
\begin{equation*}
\mathrm{H}(\ell, \nu)=1-\frac{\ell}{1!}+\frac{\ell^{2}}{2!} \mathrm{e}_{1}(\nu)-\frac{\ell^{3}}{3!} \mathrm{e}_{2}(\nu)+\cdots+\frac{(-1)^{\mathrm{k}} \ell^{\mathrm{k}}}{\mathrm{k!}} \mathrm{e}_{\mathrm{k}-1}(\nu)+\cdots=0 . \tag{1.7}
\end{equation*}
$$

Our statements on the function $\mathrm{H}(\ell, \nu)$ are formulated in two lemmas:
Lemma 1 The partial derivative $\frac{\partial H(\ell, \nu)}{\partial \ell} \equiv \mathrm{H}_{\ell}$ is negative for $-2<\nu \leq 1$ and $0<\ell<2$.

Lemma 2 The partial derivative $\frac{\partial H(\ell, \nu)}{\partial \nu} \equiv \mathrm{H}_{\nu}$ is positive for $-2<\nu \leq 1$ and $0<\ell<2$.
These two lemmas yield the following
Theorem 1 Thefunction $\ell(\nu)$ in (1.1) increases for $-2<\nu \leq 1$.
Concerning the derivative $\ell^{\prime}(\nu)$ of the function $\ell(\nu)$ with respect to ν the next lemma holds.

Lemma 3 Thefunction $\ell^{\prime}(\nu)$ satisfies the inequalities
(i) $\ell^{\prime}(\nu)<\frac{\ell(\nu)}{2(\nu+2)}$ for $-2<\nu<-1$;
(ii) $\ell^{\prime}(\nu)>\frac{\ell(\nu)}{2(\nu+2)}$ for $-1<\nu \leq 1$.

Using this lemma and also the inequalities from [4]

$$
\begin{equation*}
\frac{1}{\mathrm{j}_{\nu, 1}} \frac{\mathrm{~d} \mathrm{j}_{\nu, 1}}{\mathrm{~d} \nu}>\frac{1}{\mathrm{j}_{\nu, 1}^{2}}\left[1+\left(1+\mathrm{j}_{\nu, 1}^{2}\right)^{1 / 2}\right] \quad \text { for } \nu>-1 \tag{1.8}
\end{equation*}
$$

and from [5, (6.10)]

$$
\begin{equation*}
\mathrm{j}_{\nu, 1}^{2}<\frac{2(\nu+1)(\nu+5)(5 \nu+11)}{7 \nu+19}, \quad \nu>-1 \tag{1.9}
\end{equation*}
$$

we are going to prove
Theorem 2 Thefunction $\frac{\mathrm{j}_{\nu, 1}^{2}}{4(\nu+1) \sqrt{\nu+2}}$ decreases from $\sqrt{2}$ to 1 for $-2<\nu<-1$ and increases for $\nu>-1$.

From Theorem 2 we obtain the inequalities

$$
4 \sqrt{2}(\nu+1) \sqrt{\nu+2}<\mathrm{j}_{\nu, 1}^{2}<4(\nu+1) \sqrt{\nu+2}, \quad-2<\nu<-1
$$

The right hand side is already known [6, (5.8)]. The lower bound is new and it is sharp when ν approaches -2 .

Finally, we formulate our main result.
Theorem 3 Thefunction $\mathrm{j}_{\nu, 1}^{2}$ is convex for $-2<\nu \leq 0$.
Using the convexity of $\mathrm{j}_{\nu, 1}^{2}$, we can obtain new inequalities in the interval $(-2,0)$. For example, $\mathrm{j}_{\nu, 1}<\mathrm{j}_{0,1} \sqrt{\nu+1}$ provided $-1<\nu<0$.

We conjecture that $\ell(\nu)=\frac{\mathrm{j}_{\nu, 1}^{2}}{4(\nu+1)}$ is a concave function for $\nu>-2$.
The question of convexity of $j_{\nu, 1}^{2}$ is connected with the Putterman-Kac-U hlenbeck conjecture[1] about a quantum mechanics problem which states that the sequence of the differences $j_{n, 1}^{2}-j_{n-1,1}^{2}$ is increasing as n increases where $j_{n, 1}$ denotes the first positive zero of Bessel function $J_{n}(x), n=1,2, \ldots$.

In the next section wegive the proofs of the above results. Also the inequality (1.4) could be proved by our approach at least for $-2<\nu \leq 1$, but we shall not address ourselves to this problem here.

2 Proofs

During the proofs of the above statements we shall use the following relations. By (1.6) we obtain

$$
\begin{equation*}
\mathrm{e}_{k}^{\prime}(\nu)=\frac{\mathrm{e}_{\mathrm{k}}(\nu)}{\nu+1} \alpha_{\mathrm{k}}(\nu), \quad \mathrm{k}=1,2, \ldots \tag{2.1}
\end{equation*}
$$

where

$$
\begin{gather*}
\alpha_{\mathrm{k}}(\nu)=\frac{1}{\nu+2}+\frac{2}{\nu+3}+\cdots+\frac{\mathrm{k}}{\nu+\mathrm{k}+1}=\mathrm{k}-(\nu+1) \mathrm{c}_{\mathrm{k}}(\nu), \tag{2.2}\\
c_{\mathrm{k}}(\nu)=\frac{1}{\nu+2}+\frac{1}{\nu+3}+\cdots+\frac{1}{\nu+\mathrm{k}+1}
\end{gather*}
$$

moreover

$$
\begin{gather*}
\bar{c}_{\mathrm{k}}(\nu)=\frac{1}{(\nu+2)^{2}}+\frac{1}{(\nu+3)^{2}}+\cdots+\frac{1}{(\nu+\mathrm{k}+1)^{2}}, \\
\mathrm{e}_{\mathrm{k}}^{\prime \prime}(\nu)=\frac{\mathrm{e}_{\mathrm{k}}(\nu)}{\nu+1}\left[\frac{\alpha_{\mathrm{k}}^{2}(\nu)-\alpha_{\mathrm{k}}(\nu)}{\nu+1}+\alpha_{\mathrm{k}}^{\prime}(\nu)\right], \tag{2.3}\\
\alpha_{\mathrm{k}}^{\prime}(\nu)=-\mathrm{c}_{\mathrm{k}}(\nu)-(\nu+1) \mathrm{c}_{\mathrm{k}}^{\prime}(\nu)=-\mathrm{c}_{\mathrm{k}}(\nu)+(\nu+1) \bar{c}_{\mathrm{k}}(\nu) .
\end{gather*}
$$

For $\alpha_{\mathrm{k}}(\nu)$ and $\overline{\mathrm{c}}_{\mathrm{k}}(\nu)$ we have the inequalities

$$
\begin{gather*}
\frac{1}{2} \mathrm{k}<\alpha_{\mathrm{k}}(\nu)<\mathrm{k} \text { for }-1<\nu \leq 0 \\
\bar{c}_{\mathrm{k}}(\nu)<\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{\mathrm{k}^{2}}<\sum_{\mathrm{j}=1}^{\infty} \frac{1}{\mathrm{j}^{2}}=\frac{\pi^{2}}{6} \text { for } \nu>-1 . \tag{2.4}
\end{gather*}
$$

Proof of Lemma 1 Partial differentiation of $\mathrm{H}(\ell, \nu)$ in (1.5) with respect to the variable ℓ gives
(2.5) $\frac{\partial \mathrm{H}(\ell, \nu)}{\partial \ell} \equiv \mathrm{H}_{\ell}=-1+\frac{1}{1!} \mathrm{e}_{1}(\nu) \ell-\frac{1}{2!} \mathrm{e}_{2}(\nu) \ell^{2}+\cdots+\frac{(-1)^{\mathrm{k}}}{(\mathrm{k}-1)!} \theta_{k-1}(\nu) \ell^{\mathrm{k}-1}+\cdots$.

Hence by (1.5)

$$
\frac{\partial \mathrm{H}(\ell, \nu)}{\partial \ell}=\frac{\partial \mathrm{H}(\ell, \nu)}{\partial \ell}+\mathrm{H}(\ell, \nu)=-\ell \mathrm{G}(\ell, \nu)
$$

where

$$
\begin{equation*}
\mathrm{G}(\ell, \nu)=\frac{1}{\nu+2}-\frac{\ell}{1!} \frac{1}{\nu+3} \mathrm{e}_{\mathrm{1}}(\nu)+\cdots+\frac{(-1)^{\mathrm{k}} \ell^{\mathrm{k}}}{\mathrm{k}!} \frac{1}{\nu+\mathrm{k}+2} \mathrm{e}_{\mathrm{k}}(\nu)+\cdots . \tag{2.6}
\end{equation*}
$$

We observe first that for $-2<\nu<-1$ the function $\mathrm{G}(\ell, \nu)$ is a sum of positive terms hence $\mathrm{G}(\ell, \nu)>0$ and $\mathrm{H}_{\ell}<0$.

For $\nu=-1$ we have $\ell(-1)=1$ and $\mathrm{G}(\ell,-1)=1>0$.

For $-1<\nu \leq 1$ we observe that $\mathrm{G}(\ell, \nu)$ is a sum of terms with alternating sign and the first term is positive. We are going to show that the terms of $\mathrm{G}(\ell, \nu)$ form a Leibniz type series (i.e., it is a series of the type $\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}$ where $a_{n} \geq 0$ such that (i) $a_{1} \geq a_{2} \geq$ $\cdots \geq a_{n} \geq \cdots$ and (ii) $\lim _{n \rightarrow \infty} a_{n}=0$. Then this sum is convergent: $s=\sum(-1)^{n-1} a_{n}$, and $\mathrm{sa}_{1} \geq 0$. Since

$$
\frac{\ell^{\mathrm{k}}}{\mathrm{k}!} \frac{\mathrm{e}_{\mathrm{k}}(\nu)}{\nu+\mathrm{k}+2}-\frac{\ell^{\mathrm{k}+1}}{(\mathrm{k}+1)!} \frac{e_{\mathrm{k}+1}(\nu)}{\nu+\mathrm{k}+3}=\frac{\ell^{\mathrm{k}}}{\mathrm{k}!} \frac{\mathrm{e}_{\mathrm{k}}(\nu)}{\nu+\mathrm{k}+2}\left[1-\frac{\ell}{\mathrm{k}+1} \frac{\nu+1}{\nu+\mathrm{k}+3}\right]
$$

and

$$
\frac{\nu+1}{\nu+\mathrm{k}+3} \leq \frac{2}{\mathrm{k}+4} \quad \text { for }-1<\nu \leq 1
$$

we have $(k+1)(k+4) \geq 4 \geq 2 \ell$. Consequently, we have a Leibniz type series in $G(\ell, \nu)$ which was to be proved.

Proof of Lemma 2 Partial differentiation of $\mathrm{H}(\ell, \nu)$ in (1.5) with respect to the variable ν gives

$$
\begin{equation*}
\frac{\partial \mathrm{H}(\ell, \nu)}{\partial \nu} \equiv \mathrm{H}_{\nu}=\frac{1}{2!} \mathrm{e}_{1}^{\prime}(\nu) \ell^{2}-\frac{1}{3!} \mathrm{e}_{2}^{\prime}(\nu) \ell^{3}+\cdots+\frac{(-1)^{\mathrm{k}}}{\mathrm{k!}} \mathrm{e}_{\mathrm{k}-1}^{\prime}(\nu) \ell^{\mathrm{k}}+\cdots \tag{2.7}
\end{equation*}
$$

By (2.1)

$$
\operatorname{sign} \mathrm{e}_{k}^{\prime}(\nu)= \begin{cases}1 & \nu>-1 \\ (-1)^{k-1} & -2<\nu<-1\end{cases}
$$

hence it follows from (2.7) that $\mathrm{H}_{\nu}>0$ for $-2<\nu<-1$.
Now weprove that $\mathrm{H}_{\nu}>0$ also for $-1<\nu<1$. In this case weobservethat $\frac{\ell^{2}}{2!} e_{1}^{\prime}(\nu)>0$ and that the signs of the consecutive terms of series (2.7) are alternating. So, we are going to show that the series (2.7) is of Leibniz type:

$$
\frac{\ell^{k}}{k!} e_{k-1}^{\prime}(\nu)>\frac{\ell^{k+1}}{(k+1)!} e_{k}^{\prime}(\nu), \quad k=2,3, \ldots
$$

or by (2.2)

$$
\frac{\mathrm{e}_{\mathrm{k}-1}(\nu)}{\nu+1} \alpha_{\mathrm{k}-1}>\frac{\ell}{\mathrm{k}+1} \frac{\mathrm{e}_{\mathrm{k}}(\nu)}{\nu+1} \alpha_{\mathrm{k}}
$$

hence by $\mathrm{e}_{\mathrm{k}}(\nu)=\mathrm{e}_{\mathrm{k}-1}(\nu) \frac{\nu+1}{\nu+\mathrm{k}+1}$

$$
\begin{equation*}
\left[\frac{1}{\nu+2}+\frac{2}{\nu+3}+\cdots+\frac{\mathrm{k}-1}{\nu+\mathrm{k}}\right]\left[1-\frac{\ell}{\mathrm{k}+1} \frac{\nu+1}{\nu+\mathrm{k}+1}\right]>\frac{\mathrm{k}}{(\nu+\mathrm{k}+1)^{2}} \frac{\ell(\nu+1)}{\mathrm{k}+1} \tag{2.8}
\end{equation*}
$$

First we examine the casek $=2$. We have from (2.8)

$$
\frac{1}{\nu+2}\left[1-\frac{\ell}{3} \frac{\nu+1}{\nu+3}\right]>\frac{2}{(\nu+3)^{2}} \frac{\ell(\nu+1)}{4}
$$

or after somesimplifications

$$
1>\frac{\ell(\nu+1)(3 \nu+7)}{3(\nu+3)^{2}}
$$

Since $\frac{(\nu+1)(3 \nu+7)}{(\nu+3)^{2}}<\frac{5}{4}$ for $-1<\nu<1$, we have from the above inequality that $1>\frac{\ell}{3} \frac{5}{4}$ or $\ell<\frac{12}{5}$ which is true.

Next we examine the case $k \geq 3$. We observe that the left hand side of (2.8) is a decreasing function of ν and for the right hand side we have

$$
\frac{(\nu+1)}{(\nu+\mathrm{k}+1)^{2}}<\frac{2}{(\mathrm{k}+2)^{2}} \quad \text { in }-1<\nu<1
$$

So it is sufficient to show that

$$
\begin{equation*}
\left[\frac{1}{3}+\cdots+\frac{k-1}{k+1}\right]\left[1-\frac{2 \ell}{(k+1)(k+2)}\right]>\frac{2 \ell k}{(k+1)(k+2)^{2}} \tag{2.9}
\end{equation*}
$$

For $k \geq 3$ the left hand side of (2.9) is an increasing function of k and the right hand side is a decreasing one. In particular, for $k=3$ the inequality in (2.9) is reduced to

$$
\left[\frac{1}{3}+\frac{2}{4}\right]\left[1-\frac{2 \ell}{4 \cdot 5}\right]>\frac{2 \cdot 3 \ell}{4 \cdot 5^{2}}
$$

or to $\ell<\frac{250}{43}$ which is true and the proof of Lemma 2 is complete.
Proof of Theorem 1 Differentiation of $\mathrm{H}(\ell(\nu), \nu)=0$ with respect to ν gives

$$
\mathrm{H}_{\ell} \frac{\mathrm{d} \ell(\nu)}{\mathrm{d} \nu}+\mathrm{H}_{\nu}=0
$$

hence

$$
\begin{equation*}
\frac{\mathrm{d} \ell(\nu)}{\mathrm{d} \nu}=\frac{\mathrm{H}_{\nu}}{-\mathrm{H}_{\ell}} . \tag{2.10}
\end{equation*}
$$

According to Lemma 1 and Lemma 2, the relations $\mathrm{H}_{\nu}>0, \mathrm{H}_{\ell}<0$ hold provided $-2<$ $\nu \leq 1,0<\ell<2$, we find $\frac{\mathrm{d} \ell(\nu)}{\mathrm{d} \nu}>0$. Since $\ell(1)=\frac{\mathrm{j}_{1,1}^{2}}{8}=1.83525 \cdots<2$ therefore $\frac{d \ell(\nu)}{d \nu}>0$ for $-2<\nu \leq 1$.

Proof of Lemma 3 Since $\ell^{\prime}(\nu)=\frac{\mathrm{H}_{\nu}}{-\mathrm{H}_{\ell}}$, by Lemma 1 it is sufficient to prove that

$$
\begin{equation*}
2(\nu+2) \mathrm{H}_{\nu}+\ell \mathrm{H}_{\ell}<0 \text { for }-2<\nu<-1 \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
2(\nu+2) \mathrm{H}_{\nu}+\ell \mathrm{H}_{\ell}>0 \text { for }-1<\nu<1 \tag{2.12}
\end{equation*}
$$

By (2.5), (2.7) wehave

$$
\begin{align*}
\frac{2(\nu+2)}{\ell} \mathrm{H}_{\nu}+\mathrm{H}_{\ell}=-1 & +\ell\left[(\nu+2) \mathrm{e}_{1}^{\prime}(\nu)+\mathrm{e}_{1}(\nu)\right]+\cdots \\
& +\frac{(-1)^{\mathrm{k}+1}}{(\mathrm{k}+1)!} \ell^{\mathrm{k}}\left[2(\nu+2) \mathrm{e}_{\mathrm{k}}^{\prime}(\nu)+\mathrm{e}_{\mathrm{k}}(\nu)\right]+\cdots \tag{2.13}
\end{align*}
$$

Since $(\nu+2) \mathrm{e}_{1}^{\prime}(\nu)+\mathrm{e}_{1}(\nu)=1$ and $\mathrm{H}(\ell(\nu), \nu)=1-\frac{\ell}{1!}+\frac{\ell^{2}}{2!} \mathrm{e}_{1}(\nu)+\cdots=0$, therelation (2.13) is rewritten as

$$
\begin{equation*}
\frac{2(\nu+2)}{\ell} \mathrm{H}_{\nu}+\mathrm{H}_{\ell}+\mathrm{H}=\sum_{\mathrm{k}=2}^{\infty} \frac{(-1)^{\mathrm{k}}}{(\mathrm{k}+1)!} \ell^{\mathrm{k}} \frac{e_{\mathrm{k}-1}(\nu)}{\nu+\mathrm{k}+1} \mathrm{~A}_{\mathrm{k}}(\nu) \tag{2.14}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{A}_{\mathrm{k}}(\nu)=-2(\nu+2)\left[\frac{1}{\nu+2}+\frac{2}{\nu+3}+\cdots+\frac{\mathrm{k}}{\nu+\mathrm{k}+1}\right]+\mathrm{k}^{2}+\mathrm{k} \tag{2.15}
\end{equation*}
$$

Now we are going to prove the relations

$$
\begin{equation*}
0<\mathrm{A}_{2}(\nu)<\mathrm{A}_{3}(\nu)<\cdots<\mathrm{A}_{\mathrm{k}-1}(\nu)<\mathrm{A}_{\mathrm{k}}(\nu)<\cdots, \quad \mathrm{k}=2,3, \ldots \tag{2.16}
\end{equation*}
$$

The first elements of the sequence $\left\{A_{k}(\nu)\right\}_{\mathrm{k}=2}^{\infty}$ are

$$
\begin{gather*}
\mathrm{A}_{2}(\nu)=\frac{4}{\nu+3} \\
\mathrm{~A}_{3}(\nu)=\frac{4(4 \nu+13)}{(\nu+3)(\nu+4)} \tag{2.17}\\
\mathrm{A}_{4}(\nu)=\frac{4\left(10 \nu^{2}+75 \nu+137\right)}{(\nu+3)(\nu+4)(\nu+5)} .
\end{gather*}
$$

By (2.15) we find

$$
\begin{equation*}
\mathrm{A}_{\mathrm{k}}(\nu)-\mathrm{A}_{\mathrm{k}-1}(\nu)=\frac{2 \mathrm{k}(\mathrm{k}-1)}{\nu+\mathrm{k}+1} \tag{2.18}
\end{equation*}
$$

which is positive. Thus the relation (2.16) is true. Since $\operatorname{sign}(-1)^{\mathrm{k}} \mathrm{e}_{k-1}(\nu)<0$ for $-2<$ $\nu<-1$ and $A_{k}(\nu)>0, k=2,3, \ldots$, it follows from (2.14) that inequality (2.11) holds.

Now let $-1<\nu<1$. Then the terms have alternating signs in (2.14). For $k=2$ the first term of the infinite sum is positive. We are going to show that

$$
\frac{1}{(\mathrm{k}+1)!} \ell^{\mathrm{k}} \frac{\mathrm{e}_{\mathrm{k}-1}(\nu)}{\nu+\mathrm{k}+1} \mathrm{~A}_{\mathrm{k}}(\nu)>\frac{1}{(\mathrm{k}+2)!} \ell^{\mathrm{k}+1} \frac{\mathrm{e}_{\mathrm{k}}(\nu)}{\nu+\mathrm{k}+2} \mathrm{~A}_{\mathrm{k}+1}(\nu)
$$

or equivalently by (1.6)

$$
\begin{equation*}
\mathrm{A}_{\mathrm{k}}(\nu)>\frac{1}{\mathrm{k}+2} \ell \frac{\nu+1}{\nu+\mathrm{k}+2} \mathrm{~A}_{\mathrm{k}+1}(\nu), \quad \mathrm{k}=2,3, \ldots, \quad-1<\nu \leq 1 \tag{2.19}
\end{equation*}
$$

Let $k=2$. Then by (2.17) we have the restriction on ℓ

$$
\frac{4(\nu+4)^{2}}{(\nu+1)(4 \nu+13)}>\ell \quad \text { for }-1<\nu \leq 1
$$

The function on the left hand side is decreasing on $(-1,1]$, its minimum on $(-1,1]$ is $\frac{50}{17}$, which is clearly greater than $\ell=\ell(\nu)$, since $\ell(\nu)<2$.

Similarly we get for $k=3$ the upper bound

$$
\begin{equation*}
\frac{5(\nu+5)^{2}(4 \nu+13)}{(\nu+1)\left(10 \nu^{2}+75 \nu+137\right)}>\ell \quad \text { for }-1<\nu \leq 1 \tag{2.20}
\end{equation*}
$$

The left hand side of (2.20) is again a decreasing function of ν, with the minimum $\frac{5 \cdot 6^{2} \cdot 17}{2 \cdot 222}=$ $\frac{765}{111}>2>\ell$.

When $k>3$, we rewrite the inequality (2.19) by using (2.18) in the following form

$$
\begin{equation*}
\mathrm{A}_{\mathrm{k}}(\nu)\left[1-\frac{\ell(\nu+1)}{(\mathrm{k}+2)(\nu+\mathrm{k}+2)}\right]>\frac{2 \ell(\nu+1) \mathrm{k}(\mathrm{k}+1)}{(\mathrm{k}+2)(\nu+\mathrm{k}+2)^{2}} \tag{2.21}
\end{equation*}
$$

By (2.16) the left hand sidedecreases if we replacek by 3 , whilethe right hand sideincreases. However, for $k=3$ inequality (2.21) reduces to the case $k=3$ in (2.19) which was treated before. Hence the inequality (2.12) is proved completing the proof of Lemma 3.

Proof of Theorem 2 Since

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \nu}\left[\frac{\ell^{2}(\nu)}{\nu+2}\right]=\frac{\ell(\nu)}{(\nu+2)^{2}}\left[2 \ell^{\prime}(\nu)(\nu+2)-\ell(\nu)\right] \tag{2.22}
\end{equation*}
$$

and $\ell(\nu)>0$, Lemma 3 yields

$$
\frac{\mathrm{d}}{\mathrm{~d} \nu}\left[\frac{\ell^{2}(\nu)}{\nu+2}\right]<0 \quad \text { for }-2<\nu<-1
$$

which proves that the function $\frac{\ell(\nu)}{\sqrt{\nu+2}}=\frac{\mathrm{j}_{\nu, 1}^{2}}{4(\nu+1) \sqrt{\nu+2}}$ decreases as ν increases in the interval $(-2,-1)$.

On the other hand, we have by (1.5)

$$
1-\ell(\nu)+\frac{\ell^{2}(\nu)}{2(\nu+2)}\left[\nu+1-\frac{\ell(\nu)}{3} \frac{\nu+1}{\nu+3}+\frac{\ell^{2}(\nu)}{3 \cdot 4} \frac{(\nu+1)^{2}}{(\nu+3)(\nu+4)}+\cdots\right]=0
$$

and since $\lim _{\nu \rightarrow-2} \ell(\nu)=0$, we obtain

$$
\lim _{\nu \rightarrow-2} \frac{\ell^{2}(\nu)}{2(\nu+2)}=1
$$

or

$$
\lim _{\nu \rightarrow-2} \frac{\ell(\nu)}{\sqrt{\nu+2}}=\sqrt{2}
$$

which completes the proof of the first part of Theorem 2.
Also, from (2.22) and Lemma 2, we obtain

$$
\frac{\mathrm{d}}{\mathrm{~d} \nu}\left[\frac{\ell^{2}(\nu)}{\nu+2}\right]>0 \quad \text { for }-1<\nu \leq 1,
$$

which implies that the function $\frac{\ell(\nu)}{\sqrt{\nu+2}}=\frac{\mathrm{j}_{\nu, 1}^{2}}{4(\nu+1) \sqrt{\nu+2}}$ increases as ν increases in the interval ($-1,1$].

Next we are going to prove that

$$
\frac{\mathrm{d}}{\mathrm{~d} \nu}\left[\frac{\mathrm{j}_{\nu, 1}^{2}}{4(\nu+1) \sqrt{\nu+2}}\right]>0 \quad \text { for } \nu>1
$$

or equivalently

$$
\begin{equation*}
\frac{1}{\mathrm{j}_{\nu, 1}} \frac{\mathrm{j}_{\nu, 1}}{\mathrm{~d} \nu}>\frac{3 \nu+5}{4(\nu+1)(\nu+2)}=\frac{1}{\mathrm{P}(\nu)} \quad \text { for } \nu>1 . \tag{2.23}
\end{equation*}
$$

In (1.8) we have a lower bound for the devivative of $\mathrm{j}_{\nu, 1}$ in terms of $\mathrm{j}_{\nu, 1}$. The right hand side of (1.8) will be greater than $\frac{1}{P(\nu)}$ of (2.23) if

$$
\mathrm{j}_{\nu, 1}^{2}<\mathrm{P}^{2}(\nu)+2 \mathrm{P}(\nu) .
$$

To check the validity of this inequality we make use of the upper bound for $\mathrm{j}_{\nu, 1}^{2}$ in (1.9):

$$
\begin{aligned}
\mathrm{P}^{2}(\nu)+2 \mathrm{P}(\nu)-\mathrm{j}_{\nu, 1}^{2} & >\mathrm{P}^{2}(\nu)+2 \mathrm{P}(\nu)-\frac{2(\nu+1)(\nu+5)(5 \nu+11)}{7 \nu+19} \\
& =\frac{2(\nu+1)^{3}\left(11 \nu^{2}+20 \nu-7\right)}{(5+3 \nu)^{2}(7 \nu+19)}
\end{aligned}
$$

which is clearly positive for $\nu>1$. This proves the inequality (2.23). So the function $\frac{\mathrm{j}_{, 1,1}^{2}}{4(\nu+1) \sqrt{\nu+2}}$ increases as ν increases for $\nu>1$ which completes the proof of Theorem 2.

Proof of Theorem 3 Since $\frac{1}{4} \mathrm{j}_{\nu, 1}^{2}=\ell(\nu)(\nu+1)$, we have to prove that

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} \nu^{2}}[\ell(\nu)(\nu+1)]=\frac{\mathrm{d}^{2} \ell(\nu)}{\mathrm{d} \nu^{2}}(\nu+1)+2 \frac{\mathrm{~d} \ell(\nu)}{\mathrm{d} \nu}=\ell^{\prime \prime}(\nu)(\nu+1)+2 \ell^{\prime}(\nu)>0 .
$$

From (2.3) and Lemma 1, we can rewritethis inequality into the following

$$
\begin{equation*}
-\mathrm{H}_{\ell}\left[\ell^{\prime \prime}(\nu)(\nu+1)+2 \ell^{\prime}(\nu)\right]=\sum_{\mathrm{k}=0}^{\infty} \frac{(-1)^{\mathrm{k}}}{(\mathrm{k}+2)!} \ell^{\mathrm{k}} \frac{\mathrm{e}_{k}(\nu)}{\nu+\mathrm{k}+2} \mathrm{~B}_{\mathrm{k}}(\nu)>0 \tag{2.24}
\end{equation*}
$$

where

$$
\begin{align*}
\mathrm{B}_{0}(\nu)= & \frac{2}{(\nu+2)^{2}}\left[(\nu+1)(\nu+2) \ell^{\prime}+\ell\right]^{2} \\
\mathrm{~B}_{\mathrm{k}}(\nu)= & (\mathrm{k}+1)(\mathrm{k}+2)\left[(\nu+1) \ell^{\prime}+\frac{\alpha_{\mathrm{k}+1}(\nu)}{\mathrm{k}+1} \ell\right]^{2} \tag{2.25}\\
& \quad+(\nu+1)^{2} \ell^{2}\left[\overline{\mathrm{c}}_{\mathrm{k}+1}-\frac{1}{\mathrm{k}+1} \mathrm{c}_{\mathrm{k}+1}^{2}(\nu)\right] \text { for } \mathrm{k}=1,2, \ldots
\end{align*}
$$

and $\alpha_{k}(\nu), c_{k}(\nu), \bar{c}_{k}(\nu)$ are defined in (2.3).
By the well-known inequality between the quadratic and arithmetic means we have for $k=2,3, \ldots$

$$
\frac{1}{\mathrm{k}} \overline{\mathrm{c}}_{\mathrm{k}}=\frac{\frac{1}{(\nu+2)^{2}}+\cdots+\frac{1}{(\nu+\mathrm{k}+1)^{2}}}{\mathrm{k}}>\left(\frac{\frac{1}{\nu+2}+\cdots+\frac{1}{\nu+\mathrm{k}+1}}{\mathrm{k}}\right)^{2}=\left(\frac{\mathrm{c}_{\mathrm{k}}(\nu)}{\mathrm{k}}\right)^{2} .
$$

Using this inequality, we conclude from (2.25) that $\mathrm{B}_{\mathrm{k}}(\nu)>0$ for $\mathrm{k}=1,2, \ldots$. Concerning the relation $\mathrm{B}_{0}(\nu)>0$ it is clear that it holds for $\nu \geq-1$ and also for $-2<\nu<-1$ using inequality (1.8) of Lemma 3. Consequently, we have

$$
\begin{equation*}
\mathrm{B}_{\mathrm{k}}(\nu)>0 \text { for } \mathrm{k}=0,1,2, \ldots \tag{2.26}
\end{equation*}
$$

Consider the interval ($-2,-1$] in (2.24). Since $\operatorname{sign}\left((-1)^{\mathrm{k}} \mathrm{e}_{\mathrm{k}}(\nu)\right)>0$, every term of the infinite sum is positive which implies that $\mathrm{j}_{\nu, 1}^{2}$ is convex on $(-2,-1]$.

In the case $-1<\nu \leq 0$ the signs of the terms of the infinite series in (2.24) are alternating. Therefore we are going to show that the series is of Leibniz type, i.e., the inequality

$$
\frac{1}{(\mathrm{k}+2)!} \ell^{\mathrm{k}} \frac{\mathrm{e}_{\mathrm{k}}(\nu)}{\nu+\mathrm{k}+2} \mathrm{~B}_{\mathrm{k}}>\frac{1}{(\mathrm{k}+3)!} \ell^{\mathrm{k}} \frac{\Theta_{\mathrm{k}+1}(\nu)}{\nu+\mathrm{k}+3} \mathrm{~B}_{\mathrm{k}+1}, \quad \mathrm{k}=0,1,2, \ldots
$$

or

$$
\begin{equation*}
(\mathrm{k}+3)(\nu+\mathrm{k}+3) \mathrm{B}_{\mathrm{k}}>\ell(\nu+1) \mathrm{B}_{\mathrm{k}+1}, \quad \mathrm{k}=0,1,2, \ldots \tag{2.27}
\end{equation*}
$$

holds.
Let $\mathrm{k}=0$. Then

$$
\begin{equation*}
3(\nu+3) \mathrm{B}_{0}-\ell(\nu+1) \mathrm{B}_{1}=\mathrm{U}_{0}\left(\ell^{\prime}\right)^{2}+2 \mathrm{~V}_{0} \ell \ell^{\prime}+\mathrm{W}_{0} \ell^{2} \tag{2.28}
\end{equation*}
$$

where

$$
\begin{gathered}
\mathrm{U}_{0}=6(\nu+1)^{2}[(\nu+3)-(\nu+1) \ell] \\
\mathrm{V}_{0}=3 \frac{\nu+1}{\nu+2}\left[2(\nu+3)-\ell \frac{(\nu+1)(3 \nu+7)}{\nu+3}\right] \\
\mathrm{W}_{0}=6 \frac{\nu+1}{(\nu+2)^{2}}-\frac{3}{2} \ell \frac{(\nu+1)(3 \nu+7)^{2}}{(\nu+3)^{2}(\nu+2)^{2}}+\ell \frac{(\nu+1)^{3}}{2(\nu+2)^{2}(\nu+3)^{2}} .
\end{gathered}
$$

Recalling the inequality (1.4), we get $\mathrm{U}_{0}>0, \mathrm{~V}_{0}>0$ for $\nu \geq-1$, and also

$$
\begin{aligned}
\mathrm{W}_{0} & =\frac{1}{(\nu+2)^{2}}\left\{6(\nu+3)-\ell \frac{(\nu+1)}{(\nu+3)^{2}}\left(13 \nu^{2}+62 \nu+73\right)\right\} \\
& >\frac{1}{(\nu+2)^{2}}\left\{6(\nu+3)-\frac{(\nu+1)}{2(\nu+3)}\left(13 \nu^{2}+62 \nu+73\right)\right\} \\
& =\frac{-13 \nu^{3}-63 \nu^{2}-63 \nu+35}{(\nu+2)^{2}(\nu+3)}>0,
\end{aligned}
$$

for $-1<\nu \leq 0$. Hence by (2.28) the inequality (2.27) is justified for $k=0$.
Let $\mathrm{k} \geq 1$. Using relation (2.25) in (2.27) we obtain

$$
\begin{equation*}
(\mathrm{k}+3)(\nu+\mathrm{k}+3) \mathrm{B}_{\mathrm{k}}-\ell(\nu+1) \mathrm{B}_{\mathrm{k}+1}=\mathrm{U}_{\mathrm{k}}\left(\ell^{\prime}\right)^{2}+2 \mathrm{~V}_{\mathrm{k}} \ell \ell^{\prime}+\mathrm{W}_{\mathrm{k}} \ell^{2} \tag{2.29}
\end{equation*}
$$

where

$$
\begin{gathered}
\mathrm{U}_{\mathrm{k}}=(\mathrm{k}+2)(\mathrm{k}+3)(\nu+1)^{2}[(\mathrm{k}+1)(\nu+\mathrm{k}+3)-(\nu+1) \ell] \\
\mathrm{V}_{\mathrm{k}}=(\mathrm{k}+3)(\nu+1) \mathrm{Z}_{\mathrm{k}+1}
\end{gathered}
$$

and

$$
\begin{gathered}
\mathrm{Z}_{\mathrm{k}}=(\mathrm{k}+1)(\nu+\mathrm{k}+2) \alpha_{\mathrm{k}}-\ell(\nu+1) \alpha_{\mathrm{k}+1} \\
\mathrm{~W}_{\mathrm{k}}=(\mathrm{k}+3)(\nu+\mathrm{k}+3)\left[(\mathrm{k}+2) \frac{\alpha_{\mathrm{k}+1}^{2}}{\mathrm{k}+1}+(\nu+1)^{2}\left(\overline{\mathrm{c}}_{\mathrm{k}+1}-\frac{1}{\mathrm{k}+1} \mathrm{c}_{\mathrm{k}+1}^{2}\right)\right] \\
-\ell(\nu+1)\left[(\mathrm{k}+3) \frac{\alpha_{\mathrm{k}+2}^{2}}{\mathrm{k}+2}+(\nu+1)^{2}\left(\overline{\mathrm{c}}_{\mathrm{k}+2}-\frac{1}{\mathrm{k}+2} \mathrm{c}_{\mathrm{k}+2}^{2}\right)\right] .
\end{gathered}
$$

It is clear that $\mathrm{U}_{\mathrm{k}}>\mathrm{U}_{0}>0$ for $-1<\nu \leq 0, \mathrm{k}=1,2, \ldots$ Using the relation $\alpha_{\mathrm{k}+1}=\alpha_{\mathrm{k}}+\frac{\mathrm{k}+1}{\nu+\mathrm{k}+2}$, we have

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{k}} & =[(\mathrm{k}+1)(\nu+\mathrm{k}+2)-\ell(\nu+1)] \alpha_{\mathrm{k}}-\frac{\ell(\nu+1)(\mathrm{k}+1)}{\nu+\mathrm{k}+2} \\
& >\left[(\mathrm{k}+1)(\nu+\mathrm{k}+2)-\frac{(\nu+1)(\nu+3)}{2}\right] \frac{1}{\nu+2}-\frac{(\nu+1)(\nu+3)}{2} \\
& =\frac{2(\mathrm{k}-1)^{2}+(\mathrm{k}-1)(10+2 \nu)+(3+\nu)\left(1-4 \nu-\nu^{2}\right)}{2(\nu+2)}>0
\end{aligned}
$$

hence $\mathrm{V}_{\mathrm{k}}>0$ for $-1<\nu \leq 0, \mathrm{k}=1,2, \ldots$.

Finally, using the inequalities (2.4), we get

$$
\begin{aligned}
\mathrm{W}_{\mathrm{k}} & >(\mathrm{k}+3)(\nu+\mathrm{k}+3)\left[(\mathrm{k}+2) \frac{\alpha_{\mathrm{k}+1}^{2}}{\mathrm{k}+1}\right]-\ell(\nu+1)\left[(\mathrm{k}+3) \frac{\alpha_{\mathrm{k}+2}^{2}}{\mathrm{k}+2}+(\nu+1)^{2} \overline{\mathrm{c}}_{\mathrm{k}+2}\right] \\
& >(\mathrm{k}+3)(\nu+\mathrm{k}+3)(\mathrm{k}+2) \frac{\mathrm{k}+1}{4}-\ell(\nu+1)\left[(\mathrm{k}+3)(\mathrm{k}+2)^{2}+(\nu+1)^{2} \frac{\pi^{2}}{6}\right] \\
& \left.>(\mathrm{k}+3)(\mathrm{k}+2)\left[\frac{(\mathrm{k}+1)(\nu+\mathrm{k}+3)}{4}-\frac{(\nu+1)(\nu+3)}{2}\right]-\frac{(\nu+3)(\nu+1)^{3}}{2} \frac{\pi^{2}}{6}\right] \\
& \geq 6[\nu+4-(\nu+1)(\nu+3)]-\frac{\pi^{2}}{4}(\nu+1)^{3}=6\left[-\nu^{2}-3 \nu+1\right]-\frac{\pi^{2}}{4}(\nu+1)^{3} \\
& >6-\frac{\pi^{2}}{4}>0
\end{aligned}
$$

for $-1<\nu \leq 0$.
On the right hand side in (2.29) every term is positive hence by (2.27) the terms in the infinite series (2.24) are of Leibniz type and consequently, the $\mathrm{j}_{\nu, 1}^{2}$ is convex on $(-1,0$].

Acknowledgement The authors would like to express their thanks to the anonymous referee for the remarks which helped to improve the presentation of the results in this paper.

References

[1] S. J. Putterman, M. Kac and G. E. Uhlenbeck, Possible origin of the quantized vortices in He, II. Phys. Rev. Lett. 29(1972), 546-549.
[2] Á. Elbert and A. Laforgia, On the square of the zeros of Bessel functions. SIAM J. M ath. Anal. 15(1984), 206-212.
[3] A. Hurwitz, U eber die Nullstellen der Bessel'schen Function. M ath. Ann. 33(1889), 246-266.
[4] E. K. Ifantis and P. D. Siafarikas, A differential inequality for the positive zeros of Bessel functions. J. Comp. Appl. M ath. 44(1992), 115-120.
[5] M. E. H. Ismail and M. E. Muldoon, On the variation with respect to a parameter of zeros of Bessel and q-Bessel functions. J. M ath. Anal. Appl. 135(1988), 187-207.
[6] , Bounds for the small real and purely imaginary zeros of Bessel and related functions. M ethods Appl. Anal. (1) 2(1995), 1-21.
[7] C. G. Kokologiannaki, M. E. Muldoon and P. D. Siafarikas, A unimodal property of purely imaginary zeros of Bessel and related functions. Canad. M ath. Bull. 37(1994), 365-373.
[8] J. T. Lewis and M. E. Muldoon, M onotonicity and convexity property of zeros of Bessel functions. SIAM J. M ath. Anal. 8(1977), 171-178.
[9] R. Piessens, A series expansion for the first positive zero of Bessel function. M ath. Comp. 42(1984), 195-197.
[10] G. N. Watson, A treatise on the theory of Bessel Functions. 2nd edn, Cambridge University Press, 1944.

M athematical Institute	Department of M athematics
of the Hungarian Academy of Science	University of Patras
Budapest	Patras
POB. 428	Greece
1376 Hungary	

