SYSTEMS OF CONGRUENCES

BY
L. J. MORDELL(${ }^{1}$)

An interesting problem is to discuss the solutions of the congruences in n variables $(x)=\left(x_{1}, \ldots, x_{n}\right)$,

$$
\begin{equation*}
\frac{P_{n}}{x_{r}}+a \equiv 0\left(\bmod x_{r}\right), \quad r=1,2, \ldots, n \tag{1}
\end{equation*}
$$

where

$$
P_{n}=x_{1} x_{2} \cdots x_{n}, \quad a= \pm 1
$$

The case $n=3$ for positive x and $a=1$, was proposed as Problem 179 by G. E. J. Barbeau in the Canadian Mathematical Bulletin 14 (1971), p. 129.

It is obvious that every two of the x are relatively prime. It follows immediately that (1) is equivalent to the single congruence,

$$
\begin{equation*}
\frac{P_{n}}{x_{1}}+\cdots+\frac{P_{n}}{x_{n}}+a \equiv 0\left(\bmod P_{n}\right) . \tag{2}
\end{equation*}
$$

For if (2) holds, then $P_{n} / x_{r}+a \equiv 0\left(\bmod P_{n}\right)$ for $r=1,2, \ldots, n$. If (1) holds,

$$
\frac{P_{n}}{x_{1}}+\cdots+\frac{P_{n}}{x_{n}}+a \equiv 0\left(\bmod x_{r}\right), \quad r=1,2, \ldots, n
$$

and so (2) follows. Then from (2),

$$
\begin{equation*}
\frac{P_{n}}{x_{1}}+\cdots+\frac{P_{n}}{x_{n}}+a=y \cdot P_{n} \tag{3}
\end{equation*}
$$

where y is an integer. A trivial solution is given by $\left|x_{1}\right|=\cdots=\left|x_{n}\right|=1$. Further if for s of the x we have $|x|=1$, then (1) reduces to the corresponding problem in $n-s$ variables. Hence we may exclude without further mention the cases when some of the $|x|$ equal one. When $y=0$, it is difficult to find all the solutions of (3) when $n \geq 4$ though one can do so when $n=3$ on putting $x_{2}+x_{3}=t$ where x_{3} is arbitrary and t is a divisor of $a-x_{3}^{2}$. We shall not hereafter consider the solution with $y=0$. I find all the other solutions for $2 \leq n \leq 5$. There is no theoretical difficulty when $n \geq 6$ but much detailed work is involved.

Suppose then that $2 \leq n \leq 5$. Write

$$
\begin{equation*}
y=\frac{1}{x_{1}}+\cdots+\frac{1}{x_{n}}+\frac{a}{x_{1} \cdots x_{n}} . \tag{4}
\end{equation*}
$$

${ }^{(1)}$ Professor Mordell died on 12th March, 1972.

We may assume that $\left|x_{1}\right|<\left|x_{2}\right|<\cdots<\left|x_{n}\right|$, and since the x 's are relatively prime in pairs, that

$$
\left|x_{1}\right| \geq 2, \quad\left|x_{2}\right| \geq 3, \quad\left|x_{3}\right| \geq 5, \quad\left|x_{4}\right| \geq 7, \quad\left|x_{5}\right| \geq 11
$$

Furthermore $\left|x_{1} x_{2} \cdots x_{n}\right| \geq 6$. Hence

$$
|y| \leq \frac{1}{2}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{11}+\frac{1}{6}<2,
$$

and so $y= \pm 1$, and

$$
\begin{equation*}
\pm 1=\frac{1}{x_{1}}+\cdots+\frac{1}{x_{n}}+\frac{a}{x_{1} \cdots x_{n}} \tag{5}
\end{equation*}
$$

We show now that $\left|x_{1}\right|=2$. For if $\left|x_{1}\right| \geq 3$, then

Then from (5),

$$
\left|x_{2}\right| \geq 5, \quad\left|x_{3}\right| \geq 7, \quad\left|x_{5}\right| \geq 11, \quad\left|x_{7}\right| \geq 13
$$

$$
1 \leq \frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{11}+\frac{1}{13}+\frac{1}{15},
$$

and this is false. We shall consider only the solution with $x_{1}=2$, since those with $x_{1}=-2$ can be found by writing $-x$ for x and $(-1)^{n-1}$ for a.
We show now that $\left|x_{2}\right|=3$ if $n \leq 4$. For if $\left|x_{2}\right|>3$, then from (5)

$$
1 \leq \frac{1}{2}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{70},
$$

which is false.
We now consider the various values of n.
$n=2$.
Here

$$
2+x_{2}+a=2 y x_{2}
$$

Since $x_{2} \mid 2+a$, we have $a=1$ and $x_{2}= \pm 3$, but $x_{2}=-3$ corresponds to $y=0$ which is not being discussed.
Then $x_{1}=2, x_{2}= \pm 3, a=1$ is a solution.
$n=3$. We mention again, once and for all, that there are solutions with $x_{1}=-2$, $\overline{\text { and }}$ also with $\left|x_{1}\right|=1$ etc.

Here $x_{2} \neq-3$, since from (5)

$$
1 \leq \frac{1}{2}-\frac{1}{3}+\frac{1}{\left|x_{3}\right|}+\frac{1}{6}
$$

which is false. Now from (1),

$$
6+a \equiv 0\left(\bmod x_{3}\right)
$$

and so $\left|x_{3}\right|=5$ if $a=-1,\left|x_{3}\right|=7$ if $a=1$.
It is easily seen from (5), that $x_{3} \neq-5, x_{3} \neq-7$, and so we have the solutions,

$$
\begin{array}{llll}
x_{1}=2, & x_{2}=3, & x_{3}=5, & a=-1 \\
x_{1}=2, & x_{2}=3, & x_{3}=7, & a=1 .
\end{array}
$$

$n=4$. As before, $x_{2} \neq-3$. Since

$$
6 x_{3}+a \equiv 0\left(\bmod x_{4}\right), \quad 6 x_{4}+a \equiv 0\left(\bmod x_{3}\right)
$$

we have

$$
6\left(x_{3}+x_{4}\right)+a=z_{1} x_{3} x_{4},
$$

where z_{1} is an integer, i.e.

$$
6\left(\frac{1}{x_{3}}+\frac{1}{x_{4}}\right)+\frac{a}{x_{3} x_{4}}=z_{1} .
$$

Since $\left|x_{3}\right| \geq 5,\left|x_{4}\right| \geq 7,\left|z_{1}\right|<3$ and so $\left|z_{1}\right|=1$.
Now $z_{1} x_{3} x_{4} \equiv a(\bmod 3)$, and $2 x_{3} x_{4}+a \equiv 0(\bmod 3)$. Hence $z_{1} \equiv 1(\bmod 3)$ and so $z_{1}=1$. Hence

$$
\left(x_{3}-6\right)\left(x_{4}-6\right)=6^{2}+a,
$$

and we have the following solutions. If $a=1$
and so

$$
x_{3}-6= \pm 1, \quad x_{4}-6= \pm 37
$$

If $a=-1$,

$$
\left(x_{3}, x_{4}\right)=(5,-31) ;(7,43)
$$

and so

$$
x_{3}-6= \pm 1, \pm 5 ; \quad x_{4}-6= \pm 35, \pm 7
$$

$$
\left(x_{3}, x_{4}\right)=(5,-29),(7,41),(11,13) .
$$

$n=5$. We show that $\left|x_{2}\right|=3$ or 5 . If $\left|x_{2}\right|>5$, then

From (5),

$$
\left|x_{2}\right| \geq 7, \quad\left|x_{3}\right| \geq 9, \quad\left|x_{4}\right| \geq 11, \quad\left|x_{5}\right| \geq 13
$$

$$
1 \leq \frac{1}{2}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}+\frac{1}{13}+\frac{1}{2 \cdot 7 \cdot 9 \cdot 11 \cdot 13}
$$

and this is false. If $\left|x_{2}\right|=5$, we can reject $x_{2}=-5$, from (5), and so

$$
\left|x_{3}\right| \geq 7, \quad\left|x_{4}\right| \geq 9, \quad\left|x_{5}\right| \geq 11
$$

If $\left|x_{3}\right|>7$, then $\left|x_{4}\right| \geq 11,\left|x_{5}\right| \geq 13$, whence

$$
1 \leq \frac{1}{2}+\frac{1}{5}+\frac{1}{9}+\frac{1}{11}+\frac{1}{13}+\frac{1}{2 \cdot 5 \cdot 9 \cdot 11 \cdot 13}
$$

and this is false. Hence $\left|x_{3}\right|=7$ and we can reject $x_{3}=-7$, and so the solution is

$$
\left(2,5,7, x_{4}, x_{5}\right), \quad\left|x_{4}\right| \geq 9, \quad\left|x_{5}\right| \geq 11
$$

Also from (1),

$$
\begin{gathered}
70\left(x_{4}+x_{5}\right)+a=z_{2} x_{4} x_{5}, \\
z_{2}=70\left(\frac{1}{x_{4}}+\frac{1}{x_{5}}\right)+\frac{a}{x_{4} x_{5}}, \\
\left|z_{2}\right| \leq 70\left(\frac{1}{9}+\frac{1}{11}\right)+\frac{1}{99}<15 .
\end{gathered}
$$

Also

$$
z_{2} x_{4} x_{5} \equiv a(\bmod 35)
$$

and

$$
10 x_{4} x_{5}+a \equiv 0(\bmod 7), \quad 14 x_{4} x_{5}+a \equiv 0(\bmod 5) .
$$

Hence

$$
10+z_{2} \equiv 0(\bmod 7), \quad 14+z_{2} \equiv 0(\bmod 5),
$$

and so $z_{2}=11$. Next,

$$
\left(11 x_{4}-70\right)\left(11 x_{5}-70\right)=70^{2}+11 a .
$$

This has no solution since

$$
4900+11=3 \cdot 1637, \quad 4900-11=4889
$$

and

$$
1637,4889 \text { are primes. }
$$

We deal finally with $\left|x_{2}\right|=3$ and can reject $x_{2}=-3$ as usual. We have two cases $\left|x_{3}\right|=5,\left|x_{3}\right| \geq 5$.

If $\left|x_{3}\right|=5$, we can exclude $x_{3}=-5$ since

$$
1 \leq \frac{1}{2}+\frac{1}{3}-\frac{1}{5}+\frac{1}{7}+\frac{1}{11}+\frac{1}{100}
$$

is false. Hence we must investigate the solution ($2,3,5, x_{4}, x_{5}$) with $\left|x_{4}\right| \geq 7$, $\left|x_{5}\right| \geq 11$. Since $30 x_{4}+a \equiv 0\left(\bmod x_{5}\right), 30 x_{5}+a \equiv 0\left(\bmod x_{4}\right)$ we have

$$
\begin{aligned}
30\left(x_{4}+x_{5}\right)+a & =z_{3} x_{4} x_{5}, \\
30\left(\frac{1}{x_{4}}+\frac{1}{x_{5}}\right)+\frac{a}{x_{4} x_{5}} & =z_{3},
\end{aligned}
$$

where z_{3} is an integer.
Hence

$$
\left|z_{3}\right| \leq 30\left(\frac{1}{7}+\frac{1}{11}\right)+\frac{1}{7.11}<8 .
$$

Also

$$
\begin{aligned}
z_{3} x_{4} x_{5} & \equiv a(\bmod 15), \\
6 x_{4} x_{5}+a & \equiv 0(\bmod 5), \\
10 x_{4} x_{5}+a & \equiv 0(\bmod 3) . \\
z_{3} \equiv-6(\bmod 5), \quad z_{3} & \equiv-10(\bmod 3), \quad z_{3}=-1 .
\end{aligned}
$$

We note that we need only satisfy $x_{4} x_{5}+a \equiv 0(\bmod 5)$ and $(\bmod 3)$. Since when $a=1, x_{4} x_{5} \equiv-1(\bmod 3)$ and $(\bmod 5)$, we have solution $(2,3,5,-31,-929),(2$, $3,5,-29,869),(2,3,5,-59,-61)$. When $a=-1, x_{4} x_{5} \equiv+1,(\bmod 3)$ and (mod 5), we have solution $(2,3,5,-13,23),(2,3,5,-31,-931),(2,3,5,-29,871)$, (2, 3, 5, -47, -83)
$\left|x_{3}\right|>5$

$$
\left|x_{3}\right| \geq 7, \quad\left|x_{4}\right| \geq 11, \quad\left|x_{5}\right| \geq 13 .
$$

We can exclude $\left|x_{3}\right| \geq 17$ since

$$
1<\frac{1}{2}+\frac{1}{3}+\frac{1}{17}+\frac{1}{19}+\frac{1}{23}+\frac{1}{100}
$$

is false. Hence we may have $\left|x_{3}\right|=7,11,13$.
We may exclude the case $x_{3}<0$ since

$$
1<\frac{1}{2}+\frac{1}{3}+\frac{1}{x_{3}}+\frac{1}{x_{4}}+\frac{1}{x_{5}}+\frac{1}{6 x_{3} x_{4} x_{5}}
$$

is false when $x_{3}=-7,-11,-13$.
We have an equation

$$
6 x_{3}\left(x_{4}+x_{5}\right)+a=z_{4} x_{4} x_{5},
$$

where z_{4} is an integer and so

$$
a \equiv z_{4} x_{4} x_{5}\left(\bmod x_{3}\right),
$$

Since

$$
6 x_{4} x_{5}+a \equiv 0\left(\bmod x_{3}\right), \quad z_{4}+6 \equiv 0\left(\bmod x_{3}\right)
$$

From

$$
6 x_{3}\left(\frac{1}{x_{4}}+\frac{1}{x_{5}}\right)+\frac{a}{x_{4} x_{5}}=z_{4},
$$

and $\left|x_{4}\right| \geq x_{3}+2,\left|x_{5}\right| \geq x_{3}+4$, we have $\left|z_{4}\right| \leq 12$, and so since $\left(z_{4}, 6\right)=1,\left|z_{4}\right|=1,5$, 7,11 . Hence we have $\left(x_{3}, z_{4}\right)=(7,1),(11,5),(13,7)$.
$x_{3}=7$ and so

$$
\left(x_{4}-42\right)\left(x_{5}-42\right)=42^{2}+a .
$$

If $a=1,\left(x_{4}-42\right)\left(x_{5}-42\right)=1 \cdot 1765=5 \cdot 353$. This gives the solutions
$a=1,(2,3,7,43,1807),(2,3,7,41,-1723),(2,3,7,47,395),(2,3,7,37,-311)$
If $a=-1,\left(x_{4}-42\right)\left(x_{5}-42\right)=1 \cdot 1763=41 \cdot 43$
and this gives the solutions

$$
a=-1,(2,3,7,43,1805),(2,3,7,41,-1721),(2,3,7,83,85),
$$

$x_{3}=11$

$$
\begin{aligned}
66\left(x_{4}+x_{5}\right)+a & =5 x_{4} x_{5}, \\
\left(5 x_{4}-66\right)\left(5 x_{5}-66\right) & =66^{2}+5 a .
\end{aligned}
$$

If $a=1$,

$$
\begin{gathered}
5 x_{4}-66= \pm 1, \pm 7^{2}, \pm 7 \\
5 x_{5}-66= \pm 4361, \pm 89, \pm 623
\end{gathered}
$$

and so

$$
x_{4}=13, \quad x_{5}=-859,
$$

or

$$
x_{4}=23, \quad x_{5}=31 .
$$

If $a=-1$

$$
\begin{gathered}
5 x_{4}-66= \pm 1, \pm 19 \\
5 x_{5}-66= \pm 4351, \pm 229 \\
x_{4}=13,17, \quad x_{5}=-857,59
\end{gathered}
$$

$x_{3}=13$

$$
\begin{aligned}
78\left(x_{4}+x_{5}\right)+a & =7 x_{4} x_{5} \\
\left(7 x_{4}-78\right)\left(7 x_{5}-78\right) & =78^{2}+7 a
\end{aligned}
$$

If $a=1$,

$$
\begin{aligned}
& 7 x_{4}-78= \pm 1, \quad 7 x_{5}-78= \pm 6091 \\
& x_{4}=11, \quad x_{5}=-859
\end{aligned}
$$

If $a=-1$,

$$
\begin{aligned}
& 7 x_{4}-78= \pm 1, \pm 59 \\
& 7 x_{5}-78= \pm 6077, \pm 103 \\
& x_{4}=11, \quad x_{5}=-857
\end{aligned}
$$

This completes the investigation.
St. John's College, Cambridge, England

