SYSTEMS OF CONGRUENCES

BY L. J. MORDELL(¹)

An interesting problem is to discuss the solutions of the congruences in n variables $(x)=(x_1,\ldots,x_n)$,

(1)
$$\frac{P_n}{x_r} + a \equiv 0 \pmod{x_r}, \quad r = 1, 2, \dots, n,$$

where

$$P_n = x_1 x_2 \cdots x_n, \qquad a = \pm 1.$$

The case n=3 for positive x and a=1, was proposed as Problem 179 by G. E. J. Barbeau in the Canadian Mathematical Bulletin 14 (1971), p. 129.

It is obvious that every two of the x are relatively prime. It follows immediately that (1) is equivalent to the single congruence,

(2)
$$\frac{P_n}{x_1} + \cdots + \frac{P_n}{x_n} + a \equiv 0 \pmod{P_n}.$$

For if (2) holds, then $P_n/x_r + a \equiv 0 \pmod{P_n}$ for $r = 1, 2, \ldots, n$. If (1) holds,

$$\frac{P_n}{x_1} + \cdots + \frac{P_n}{x_n} + a \equiv 0 \pmod{x_r}, \qquad r = 1, 2, \dots, n,$$

and so (2) follows. Then from (2),

(3)
$$\frac{P_n}{x_1} + \cdots + \frac{P_n}{x_n} + a = y \cdot P_n$$

where y is an integer. A trivial solution is given by $|x_1| = \cdots = |x_n| = 1$. Further if for s of the x we have |x|=1, then (1) reduces to the corresponding problem in n-s variables. Hence we may exclude without further mention the cases when some of the |x| equal one. When y=0, it is difficult to find all the solutions of (3) when $n\geq 4$ though one can do so when n=3 on putting $x_2+x_3=t$ where x_3 is arbitrary and t is a divisor of $a-x_3^2$. We shall not hereafter consider the solution with y=0. I find all the other solutions for $2\leq n\leq 5$. There is no theoretical difficulty when $n\geq 6$ but much detailed work is involved.

Suppose then that $2 \le n \le 5$. Write

(4)
$$y = \frac{1}{x_1} + \dots + \frac{1}{x_n} + \frac{a}{x_1 \cdots x_n}.$$

457

⁽¹⁾ Professor Mordell died on 12th March, 1972.

We may assume that $|x_1| < |x_2| < \cdots < |x_n|$, and since the x's are relatively prime in pairs, that

$$|x_1| \ge 2$$
, $|x_2| \ge 3$, $|x_3| \ge 5$, $|x_4| \ge 7$, $|x_5| \ge 11$.

Furthermore $|x_1 x_2 \cdots x_n| \ge 6$. Hence

$$|y| \le \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \frac{1}{6} < 2,$$

and so $y = \pm 1$, and

(5)
$$\pm 1 = \frac{1}{x_1} + \dots + \frac{1}{x_n} + \frac{a}{x_1 \cdots x_n}$$

We show now that $|x_1|=2$. For if $|x_1|\geq 3$, then

Then from (5), $\begin{aligned} |x_2| \ge 5, \quad |x_3| \ge 7, \quad |x_5| \ge 11, \quad |x_7| \ge 13. \\ 1 < \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \frac{1}{13} + \frac{1}{15}, \end{aligned}$

and this is false. We shall consider only the solution with $x_1=2$, since those with $x_1=-2$ can be found by writing -x for x and $(-1)^{n-1}$ for a.

We show now that $|x_2|=3$ if $n \le 4$. For if $|x_2|>3$, then from (5)

$$1 \le \frac{1}{2} + \frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \frac{1}{70},$$

which is false.

We now consider the various values of *n*.

n=2.

Here

$$2 + x_2 + a = 2yx_2.$$

Since $x_2 | 2+a$, we have a=1 and $x_2=\pm 3$, but $x_2=-3$ corresponds to y=0 which is not being discussed.

Then $x_1=2, x_2=\pm 3, a=1$ is a solution.

<u>n=3</u>. We mention again, once and for all, that there are solutions with $x_1 = -2$, and also with $|x_1| = 1$ etc.

Here $x_2 \neq -3$, since from (5)

$$1 \le \frac{1}{2} - \frac{1}{3} + \frac{1}{|x_3|} + \frac{1}{6},$$

which is false. Now from (1),

$$6+a \equiv 0 \pmod{x_3},$$

and so $|x_3|=5$ if a=-1, $|x_3|=7$ if a=1.

It is easily seen from (5), that $x_3 \neq -5$, $x_3 \neq -7$, and so we have the solutions,

$$x_1 = 2, x_2 = 3, x_3 = 5, a = -1, x_1 = 2, x_2 = 3, x_3 = 7, a = 1.$$

[September

n=4. As before, $x_2 \neq -3$. Since

$$6x_3 + a \equiv 0 \pmod{x_4}, \qquad 6x_4 + a \equiv 0 \pmod{x_3},$$

we have

$$6(x_3 + x_4) + a = z_1 x_3 x_4,$$

where z_1 is an integer, i.e.

$$6\left(\frac{1}{x_3} + \frac{1}{x_4}\right) + \frac{a}{x_3 x_4} = z_1.$$

Since $|x_3| \ge 5$, $|x_4| \ge 7$, $|z_1| < 3$ and so $|z_1| = 1$.

Now $z_1x_3x_4 \equiv a \pmod{3}$, and $2x_3x_4 + a \equiv 0 \pmod{3}$. Hence $z_1 \equiv 1 \pmod{3}$ and so $z_1=1$. Hence

$$(x_3-6)(x_4-6) = 6^2 + a,$$

and we have the following solutions. If a=1

 $x_3 - 6 = \pm 1$, $x_4 - 6 = \pm 37$;

and so

$$(x_3, x_4) = (5, -31);$$
 (7, 43).

If a = -1,

$$x_3 - 6 = \pm 1, \pm 5; \quad x_4 - 6 = \pm 35, \pm 7$$

and so

$$(x_3, x_4) = (5, -29), (7, 41), (11, 13).$$

n=5. We show that $|x_2|=3$ or 5. If $|x_2|>5$, then

$$|x_2| \ge 7$$
, $|x_3| \ge 9$, $|x_4| \ge 11$, $|x_5| \ge 13$,

From (5),

$$1 \leq \frac{1}{2} + \frac{1}{7} + \frac{1}{9} + \frac{1}{11} + \frac{1}{13} + \frac{1}{2 \cdot 7 \cdot 9 \cdot 11 \cdot 13},$$

and this is false. If $|x_2|=5$, we can reject $x_2=-5$, from (5), and so

$$|x_3| \ge 7$$
, $|x_4| \ge 9$, $|x_5| \ge 11$.

If $|x_3| > 7$, then $|x_4| \ge 11$, $|x_5| \ge 13$, whence

$$1 \le \frac{1}{2} + \frac{1}{5} + \frac{1}{9} + \frac{1}{11} + \frac{1}{13} + \frac{1}{2 \cdot 5 \cdot 9 \cdot 11 \cdot 13},$$

and this is false. Hence $|x_3|=7$ and we can reject $x_3=-7$, and so the solution is

 $(2, 5, 7, x_4, x_5), \quad |x_4| \ge 9, \quad |x_5| \ge 11.$

Also from (1),

$$70(x_4+x_5)+a = z_2x_4x_5,$$

$$z_2 = 70\left(\frac{1}{x_4}+\frac{1}{x_5}\right)+\frac{a}{x_4x_5},$$

$$|z_2| \le 70(\frac{1}{9}+\frac{1}{11})+\frac{1}{99} < 15.$$

 $\mathbf{10}$

L. J. MORDELL

460 Also

$$z_2 x_4 x_5 \equiv a \pmod{35},$$

and

$$10x_4x_5 + a \equiv 0 \pmod{7}, \qquad 14x_4x_5 + a \equiv 0 \pmod{5}.$$

Hence

$$10+z_2 \equiv 0 \pmod{7}, \quad 14+z_2 \equiv 0 \pmod{5},$$

and so $z_2 = 11$. Next,

$$(11x_4 - 70)(11x_5 - 70) = 70^2 + 11a$$

This has no solution since

$$4900 + 11 = 3.1637, \qquad 4900 - 11 = 4889,$$

and

1637, 4889 are primes.

We deal finally with $|x_2|=3$ and can reject $x_2=-3$ as usual. We have two cases $|x_3|=5$, $|x_3|\geq 5$.

If $|x_3| = 5$, we can exclude $x_3 = -5$ since

$$1 \leq \frac{1}{2} + \frac{1}{3} - \frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \frac{1}{100}$$

is false. Hence we must investigate the solution $(2, 3, 5, x_4, x_5)$ with $|x_4| \ge 7$, $|x_5| \ge 11$. Since $30x_4 + a \equiv 0 \pmod{x_5}$, $30x_5 + a \equiv 0 \pmod{x_4}$ we have

$$30(x_4+x_5)+a = z_3 x_4 x_5,$$
$$30\left(\frac{1}{x_4}+\frac{1}{x_5}\right)+\frac{a}{x_4 x_5} = z_3,$$

where z_3 is an integer.

Hence

$$|z_3| \le 30(\frac{1}{7} + \frac{1}{11}) + \frac{1}{7.11} < 8.$$

Also

$$z_3 x_4 x_5 \equiv a \pmod{15},$$

$$6x_4 x_5 + a \equiv 0 \pmod{5},$$

$$10x_4 x_5 + a \equiv 0 \pmod{3}.$$

$$z_3 \equiv -6 \pmod{5}, \quad z_3 \equiv -10 \pmod{3}, \quad z_3 = -1.$$

We note that we need only satisfy $x_4x_5+a\equiv 0 \pmod{5}$ and $\pmod{3}$. Since when $a=1, x_4x_5\equiv -1 \pmod{3}$ and $\pmod{5}$, we have solution (2, 3, 5, -31, -929), (2, 3, 5, -29, 869), (2, 3, 5, -59, -61). When $a=-1, x_4x_5\equiv +1$, $\pmod{3}$ and $\pmod{5}$, we have solution (2, 3, 5, -13, 23), (2, 3, 5, -31, -931), (2, 3, 5, -29, 871), (2, 3, 5, -47, -83) $|x_3| > 5$

 $|x_3| \ge 7$, $|x_4| \ge 11$, $|x_5| \ge 13$.

[September

We can exclude $|x_3| \ge 17$ since

$$1 < \frac{1}{2} + \frac{1}{3} + \frac{1}{17} + \frac{1}{19} + \frac{1}{23} + \frac{1}{100}$$

is false. Hence we may have $|x_3|=7$, 11, 13.

We may exclude the case $x_3 < 0$ since

$$1 < \frac{1}{2} + \frac{1}{3} + \frac{1}{x_3} + \frac{1}{x_4} + \frac{1}{x_5} + \frac{1}{6x_3x_4x_5}$$

is false when $x_3 = -7, -11, -13$.

We have an equation

$$6x_3(x_4+x_5)+a = z_4x_4x_5,$$

where z_4 is an integer and so

$$a \equiv z_4 x_4 x_5 \pmod{x_3},$$

Since

$$6x_4x_5 + a \equiv 0 \pmod{x_3}, \qquad z_4 + 6 \equiv 0 \pmod{x_3}.$$

From

$$6x_3\left(\frac{1}{x_4} + \frac{1}{x_5}\right) + \frac{a}{x_4x_5} = z_4,$$

and $|x_4| \ge x_3+2$, $|x_5| \ge x_3+4$, we have $|z_4| \le 12$, and so since $(z_4, 6)=1$, $|z_4|=1, 5$, 7, 11. Hence we have $(x_3, z_4)=(7, 1)$, (11, 5), (13, 7). $x_3=7$ and so

$$(x_4 - 42)(x_5 - 42) = 42^2 + a.$$

If a=1, $(x_4-42)(x_5-42)=1.1765=5.353$. This gives the solutions

a = 1, (2, 3, 7, 43, 1807), (2, 3, 7, 41, -1723), (2, 3, 7, 47, 395), (2, 3, 7, 37, -311)If $a = -1, (x_4 - 42) (x_5 - 42) = 1.1763 = 41.43$ and this gives the solutions

$$a = -1, (2, 3, 7, 43, 1805), (2, 3, 7, 41, -1721), (2, 3, 7, 83, 85),$$

 $x_3 = 11$

$$66(x_4+x_5)+a = 5x_4x_5,$$

(5x_4-66)(5x_5-66) = 66²+5a.

If a=1,

$$5x_4 - 66 = \pm 1, \pm 7^2, \pm 7,$$

$$5x_5 - 66 = \pm 4361, \pm 89, \pm 623,$$

and so

$$x_4 = 13, \quad x_5 = -859,$$

1973]

- L. J. MORDELL
- If a=-1 $5x_4-66 = \pm 1, \pm 19$ $5x_5-66 = \pm 4351, \pm 229$ $x_4 = 13, 17, \quad x_5 = -857, 59$ $78(x_4+x_5)+a = 7x_4x_5$ $(7x_4-78)(7x_5-78) = 78^2+7a$ If a=1, $7x_4-78 = \pm 1, \quad 7x_5-78 = \pm 6091$ $x_4 = 11, \quad x_5 = -859$ If a=-1, $7x_4-78 = \pm 1, \pm 59$ $7x_5-78 = \pm 6077, \pm 103$ $x_4 = 11, \quad x_5 = -857.$

This completes the investigation.

ST. JOHN'S COLLEGE, CAMBRIDGE, ENGLAND

462