

Multiple Solutions for a Class of Neumann Elliptic Problems on Compact Riemannian Manifolds with Boundary

Alexandru Kristály, Nikolaos S. Papageorgiou, and Csaba Varga

Abstract. We study a semilinear elliptic problem on a compact Riemannian manifold with boundary, subject to an inhomogeneous Neumann boundary condition. Under various hypotheses on the non-linear terms, depending on their behaviour in the origin and infinity, we prove multiplicity of solutions by using variational arguments.

1 Introduction

Let (M, g) be a smooth, connected, compact Riemannian manifold of dimension $n \ge 3$ with boundary ∂M . For $\lambda > 0$ and $\mu > 0$, we consider the following inhomogeneous Neumann boundary value problem

$$(P_{\lambda,\mu}) \qquad \begin{cases} -\triangle u + k(x)u = \lambda K(x)f(u(x)) & \text{for } x \in M, \\ \frac{\partial u}{\partial n} = \mu D(x)h(u(x)) & \text{for } x \in \partial M, \end{cases}$$

where $k, K: M \to \mathbb{R}$, $D: \partial M \to \mathbb{R}$ are positive continuous functions, Δ denotes the Laplace-Beltrami operator in the metric $g, \frac{\partial}{\partial n}$ is the normal derivative with respect to the outward normal n on ∂M in the metric g.

Problems like $(P_{\lambda,\mu})$ arise in various contexts, motivated by certain physical phenomena; see for example [1, 6] and references therein. On the other hand, when $f(s) = |s|^{\frac{4}{n-2}}s$ and $g(s) = |s|^{\frac{2}{n-2}}s$, the problem of the existence of a positive solution for $(P_{\lambda,\mu})$ is equivalent to the classical problem of finding a conformal metric g' on M with the prescribed scalar curvature K on M and the mean curvature D on ∂M , see [3–5]. For the quasilinear extension, we refer the reader to [2].

The purpose of this paper is to provide multiple solutions for problem $(P_{\lambda,\mu})$ when the nonlinearities f and h have various growth conditions. Note that if $K(x)/k(x) = \lambda_0 = \text{constant on } M$ and $\operatorname{Fix}(\lambda\lambda_0 f) \cap h^{-1}(0) \neq \emptyset$, then $(P_{\lambda,\mu})$ has at least one solution for every $\mu > 0$, where $\operatorname{Fix}(\lambda\lambda_0 f)$ is the fixed point set of the function $s \mapsto \lambda\lambda_0 f(s)$. Indeed, the constant function $u(x) = c \in \operatorname{Fix}(\lambda\lambda_0 f) \cap h^{-1}(0)$ verifies both equations in $(P_{\lambda,\mu})$. Clearly, we are interested not only in this particular case when K/k is constant on M. Due to this fact, we assume that the continuous function $f: \mathbb{R} \to \mathbb{R}$ verifies the following:

Received by the editors November 14, 2007; revised August 8, 2008.

Published electronically July 26, 2010.

A. Kristály and Cs. Varga were supported by Grant PN II, ID_527/2007 and 1467/2006 from CNCSIS. AMS subject classification: **58J05**, 35P30.

Keywords: Riemannian manifold with boundary, Neumann problem, sublinearity at infinity, multiple solutions.

- $(f_1) \lim_{s \to 0} \frac{f(s)}{s} = 0;$
- (f) $\lim_{|s| \to +\infty} \frac{f(s)}{s} = 0;$ (f₃) there exists $s_0 \in \mathbb{R}$ such that $F(s_0) > 0$, where $F(s) = \int_0^s f(t) dt$.

Let $h: \mathbb{R} \to \mathbb{R}$ be a continuous function. For every $q \in [1, \frac{n}{n-2})$, we introduce the assumption

 $(h_q) \sup_{s \in \mathbb{R}} \frac{|h(s)|}{1+|s|^q} < \infty.$

Theorem 1.1 Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function that fulfills the assumptions (f_1) – (f_3) . Then, there exist a number σ and a non-degenerate compact interval $A \subset$ $[0, +\infty)$ such that for every $\lambda \in A$ and every continuous function $h: \mathbb{R} \to \mathbb{R}$ fulfilling (h_q) for some $q \in [1, \frac{n}{n-2})$, there exists $\delta_{\lambda,h} > 0$ with the property that for each $\mu \in$ $(0, \delta_{\lambda,h})$, the problem $(P_{\lambda,\mu})$ has at least three weak solutions which are in norm less than σ .

We return to the case where K/k is constant on M in order to state our second result. For a fixed $\lambda > 0$, we assume the following.

 (f_{λ}) $\frac{K(x)}{k(x)} = \lambda_0$ for every $x \in M$, and the set of all global minima of $t \mapsto \tilde{F}_{\lambda}(t) := \frac{1}{2}t^2 - \lambda\lambda_0 F(t)$ has at least $m \ge 2$ connected components.

In particular, (f_{λ}) implies that the function $t \mapsto \tilde{F}_{\lambda}(t)$ has at least m-1 local maxima. Thus, $Card(Fix(\lambda\lambda_0 f)) \ge 2m - 1$. Therefore, if an element from $Fix(\lambda\lambda_0 f)$ belongs to $h^{-1}(0)$, it may be considered as a constant solution for problem $(P_{\lambda,\mu})$ for every $\mu > 0.$

Theorem 1.2 Let $f, h: \mathbb{R} \to \mathbb{R}$ be two continuous functions that fulfill the assumptions $(f_2), (f_{\lambda})$ for some $\lambda > 0$ fixed, and (h_1) , respectively. Then there exists a number $\delta_{\lambda} > 0$ such that for every $\mu \in (0, \delta_{\lambda})$, problem $(P_{\lambda,\mu})$ has at least m + 1 distinct weak solutions.

The proof of Theorems 1.1 and 1.2 are based on two recent results of Ricceri [7,8]. In the next section, we recall some notions and results that we will use in the sequel. In Sections 3 and 4 our main results are proved.

Preliminaries 2

We denote by $2^* = 2n/(n-2)$ and $\overline{2}^* = (2n-2)/(n-2)$ the critical Sobolev exponents for the embedding $W_1^2(M) \hookrightarrow L^{2^*}(M)$ and the trace-embedding $W_1^2(M) \hookrightarrow$ $L^{\overline{2}^{\star}}(\partial M)$, respectively. Here, and in the sequel, (M, g) is a compact Riemannian manifold with boundary and $W_1^2(M)$ is the standard Sobolev space equipped with the norm

$$||u|| = \left(\int_M |\nabla u|^2 d\mu_g + \int_M u^2 d\mu_g\right)^{\frac{1}{2}}.$$

In the sequel we use the notations:

$$k_m = \min_M k, \quad k_M = \max_M k; \quad D_{\partial M} = \max_{\partial M} D, \quad K_M = \max_M K.$$

It is easy to see that the norm

$$\|u\|_k = \left(\int_M |\nabla u|^2 d\mu_g + \int_M k(x)u^2 d\mu_g\right)^{\frac{1}{2}}$$

is equivalent to the norm $\|\cdot\|$ defined above, *i.e.*, $a_k \|u\| \le \|u\|_k \le b_k \|u\|$, where $a_k = \min\{1, \sqrt{k_m}\}$ and $b_k = \max\{1, \sqrt{k_M}\}$.

It is well known that the embedding $W_1^2(M) \hookrightarrow L^r(M)$ is compact for $r \in [1, 2^*)$ and the trace-embedding $W_1^2(M) \hookrightarrow L^s(\partial M)$ for $s \in [1, \overline{2}^*)$, respectively. We denote by $C_{M,r}$ the Sobolev embedding constant of $W_1^2(M) \hookrightarrow L^r(M)$ and by $C_{\partial M,s}$ the embedding $W_1^2(M) \hookrightarrow L^s(\partial M)$.

Let $f, h: \mathbb{R} \to \mathbb{R}$ be two continuous functions, and let

(2.1)
$$F(s) = \int_0^s f(t)dt, \qquad H(s) = \int_0^s h(t)dt.$$

We introduce the energy functional $\mathcal{E}_{\lambda,\mu}$: $W_1^2(M) \to \mathbb{R}$ given by

$$\mathcal{E}_{\lambda,\mu}(u) = \mathcal{A}(u) - \lambda \mathcal{F}(u) + \mu \mathcal{H}(u),$$

where

$$\mathcal{A}(u) = \frac{1}{2} \|u\|_k^2, \quad \mathcal{F}(u) = \int_M K(x) F(u(x)) d\mu_g.$$

and

(2.2)
$$\mathfrak{H}(u) = -\int_{\partial M} D(x)H(u(x))d\nu_g.$$

Under the hypotheses of our main theorems, a standard argument shows that the functional $\mathcal{E}_{\lambda,\mu}$: $W_1^2(M) \to \mathbb{R}$ is of class C^1 and that its critical points are exactly the weak solutions of $(P_{\lambda,\mu})$. Therefore, it is enough to show the existence of multiple critical points of $\mathcal{E}_{\lambda,\mu}$ for the parameters λ, μ specified in our results. Before concluding this section, we recall two recent critical point results which are used in order to prove Theorems 1.1 and 1.2, respectively.

Theorem 2.1 ([7, Theorem 1]) Let X be a reflexive real Banach space, $\mathbb{I} \subset \mathbb{R}$ an interval, and $\Phi: X \to \mathbb{R}$ a sequentially weakly lower semicontinuous C^1 functional whose derivative admits a continuous inverse on X^* . Assume Φ is bounded on each bounded subset of X, and J: $X \to \mathbb{R}$ is a C^1 functional with compact derivative. Assume that

$$\lim_{\|x\|\to\infty} (\Phi(x) + \lambda J(x)) = +\infty$$

for all $\lambda \in \mathbb{I}$ and that there exists $\rho \in \mathbb{R}$ such that

(2.3)
$$\sup_{\lambda \in \mathbb{I}} \inf_{x \in X} (\Phi(x) + \lambda(J(x) + \rho)) < \inf_{x \in X} \sup_{\lambda \in \mathbb{I}} (\Phi(x) + \lambda(J(x) + \rho)).$$

Then there exists a nonempty open set $A \subseteq \mathbb{I}$ and a real number $\sigma > 0$ such that, for each $\lambda \in A$ and every C^1 functional $\Psi \colon X \to \mathbb{R}$ with compact derivative, there exists $\delta > 0$ such that for each $\mu \in [0, \delta]$, the equation

$$\Phi'(x) + \lambda J'(x) + \mu \Psi'(x) = 0$$

has at least three solutions in X whose norms are less than σ .

Theorem 2.2 ([8, Theorem 5]) Let X be a separable and reflexive real Banach space, and let $\mathbb{N}, \mathbb{H}: X \to \mathbb{R}$ be two sequentially weakly lower semicontinuous and continuously Gâteaux differentiable functionals, with \mathbb{N} coercive. Assume that the functional $\mathbb{N} + \mu \mathbb{H}$ satisfies the (PS)-condition for every $\mu > 0$ small enough and that the set of all global minima of \mathbb{N} has at least m connected components in the weak topology, with $m \geq 2$.

Then, there exists $\overline{\mu} > 0$ such that for every $\mu \in (0, \overline{\mu})$, the functional $\mathbb{N} + \mu \mathbb{H}$ has at least m + 1 critical points.

3 Proof of Theorem 1.1

Throughout this section we suppose that the hypotheses of Theorem 1.1 are fulfilled.

Lemma 3.1 $\lim_{t\to 0^+} \sup\{\mathfrak{F}(u) : \mathcal{A}(u) < t\}/t = 0.$

Proof Due to (f_1) , for an arbitrarily small $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon) > 0$ such that

$$|f(s)| < \frac{\varepsilon}{2}|s|$$
 for all $|s| < \delta$.

Using the above inequality and (f_2) , we obtain

(3.1)
$$|F(s)| \le \varepsilon s^2 + K(\delta)|s|^r$$
 for all $s \in \mathbb{R}$,

where $r \in (2, 2^*)$ is fixed and $K(\delta) > 0$ does not depend on *s*. For t > 0 and $\alpha = a_k^{-2}$, define the sets

$$S_t^1 = \{ u \in W_1^2(M) : \mathcal{A}(u) < t \}, \quad S_t^2 = \{ u \in W_1^2(M) : ||u||^2 < 2\alpha t \}.$$

It is easy to see that $S_t^1 \subset S_t^2$. Relation (3.1) yields that

(3.2)
$$\mathfrak{F}(u) \leq \varepsilon K_M \|u\|^2 + K(\delta) K_M C_{M,r}^r \|u\|^r \quad \text{for all} \quad u \in W_1^2(M).$$

Using (3.2), we obtain

$$0 \leq \frac{\sup_{u \in S^1_t} \mathcal{F}(u)}{t} \leq \frac{\sup_{u \in S^2_t} \mathcal{F}(u)}{t} \leq 2\alpha K_M \varepsilon + (2\alpha)^{r/2} K(\delta) K_M C^r_{M,r} t^{\frac{r}{2}-1}.$$

Since $\varepsilon > 0$ is arbitrary and $t \to 0^+$, we get the desired limit.

Let us define the function $\beta(t) = \sup\{\mathfrak{F}(u) : \mathcal{A}(u) < t\}$. For t > 0, we have that $\beta(t) \ge 0$, and Lemma 3.1 yields

(3.3)
$$\lim_{t \to 0^+} \frac{\beta(t)}{t} = 0$$

We consider the constant function $u_0(x) = s_0$ for every $x \in M$, s_0 being from (f_3) . Note that $s_0 \neq 0$ (since F(0) = 0). Moreover, $\mathcal{F}(u_0) > 0$ and $\mathcal{A}(u_0) > 0$. Therefore, it is possible to choose a number $\eta > 0$ such that

$$0 < \eta < \mathfrak{F}(u_0)[\mathcal{A}(u_0)]^{-1}.$$

By (3.3) we get the existence of a number $t_0 \in (0, \mathcal{A}(u_0))$ such that $\beta(t_0) < \eta t_0$. Thus

(3.4)
$$\beta(t_0) < [\mathcal{A}(u_0)]^{-1} \mathcal{F}(u_0) t_0$$

Due to the choice of t_0 and using (3.4), we conclude that there exists $\rho_0 > 0$ such that

(3.5)
$$\beta(t_0) < \rho_0 < \mathfrak{F}(u_0)[\mathcal{A}(u_0)]^{-1} t_0 < \mathfrak{F}(u_0).$$

Now define the function $\mathfrak{G}: W_1^2(M) \times \mathbb{I} \to \mathbb{R}$ by $\mathfrak{G}(u, \lambda) = \mathcal{A}(u) - \lambda \mathfrak{F}(u) + \lambda \rho_0$, where $\mathbb{I} = [0, +\infty)$.

Lemma 3.2 $\sup_{\lambda \in \mathbb{I}} \inf_{u \in W_1^2(M)} \mathcal{G}(u, \lambda) < \inf_{u \in W_1^2(M)} \sup_{\lambda \in \mathbb{I}} \mathcal{G}(u, \lambda).$

Proof The function

$$\mathbb{I} \ni \lambda \mapsto \inf_{u \in W_1^2(M)} [\mathcal{A}(u) + \lambda(\rho_0 - \mathfrak{F}(u))]$$

is obviously upper semicontinuous on \mathbb{I} . It follows from (3.5) that

$$\lim_{\lambda \to +\infty} \inf_{u \in W_1^2(M)} \mathfrak{G}(u, \lambda) \leq \lim_{\lambda \to +\infty} [\mathcal{A}(u_0) + \lambda(\rho_0 - \mathfrak{F}(u_0))] = -\infty$$

Thus we find an element $\overline{\lambda} \in \mathbb{I}$ such that

(3.6)
$$\sup_{\lambda \in \mathbb{I}} \inf_{u \in W_1^2(M)} \mathcal{G}(u, \lambda) = \inf_{u \in W_1^2(M)} [\mathcal{A}(u) + \overline{\lambda}(\rho_0 - \mathcal{F}(u))].$$

Since $\beta(t_0) < \rho_0$, it follows from the definition of β that for all $u \in W_1^2(M)$ with $\mathcal{A}(u) < t_0$, we have $\mathcal{F}(u) < \rho_0$. Hence,

(3.7)
$$t_0 \leq \inf\{\mathcal{A}(u) : \mathcal{F}(u) \geq \rho_0\}.$$

On the other hand,

$$\inf_{u \in W_1^2(M)} \sup_{\lambda \in \mathbb{I}} \mathfrak{G}(u, \lambda) = \inf_{u \in W_1^2(M)} \Big[\mathcal{A}(u) + \sup_{\lambda \in \mathbb{I}} \Big(\lambda(\rho_0 - \mathfrak{F}(u)) \Big) \Big]$$
$$= \inf_{u \in W_1^2(M)} \{ \mathcal{A}(u) : \mathfrak{F}(u) \ge \rho_0 \}.$$

Thus, inequality (3.7) is equivalent to

(3.8)
$$t_0 \leq \inf_{u \in W_1^2(M)} \sup_{\lambda \in \mathbb{I}} \mathcal{G}(u, \lambda).$$

We consider the following two cases: (I) If $0 \le \overline{\lambda} < \frac{t_0}{\rho_0}$, then we have

$$\inf_{u \in W_1^2(M)} [\mathcal{A}(u) + \overline{\lambda}(\rho_0 - \mathcal{F}(u))] \le \mathcal{G}(0, \overline{\lambda}) = \overline{\lambda}\rho_0 < t_0.$$

Combining this inequality with (3.6) and (3.8) we obtain the desired inequality.

(II) If $\frac{t_0}{\rho_0} \leq \overline{\lambda}$, then from (3.4) and (3.5), it follows that

$$\inf_{u \in W_1^2(M)} \left[\mathcal{A}(u) + \overline{\lambda}(\rho_0 - \mathcal{F}(u)) \right] \leq \mathcal{A}(u_0) + \overline{\lambda}(\rho_0 - \mathcal{F}(u_0))$$
$$\leq \mathcal{A}(u_0) + \frac{t_0}{\rho_0}(\rho_0 - \mathcal{F}(u_0)) < t_0$$

Now, we apply (3.8) again.

Proof of Theorem 1.1 Let us choose $X = W_1^2(M)$, $\mathbb{I} = [0, +\infty)$, $\Phi = \mathcal{A}$ and $J = -\mathcal{F}$ in Theorem 2.1. Since the embedding $W_1^2(M) \hookrightarrow L^2(M)$ is compact, the compactness of $J' = -\mathcal{F}'$ trivially holds. Because of Lemma 3.2, the minimax inequality (2.3) holds too, by choosing $\rho = \rho_0$.

It remains to prove the coercivity of $\Phi + \lambda J = \mathcal{A} - \lambda \mathcal{F}$ for every $\lambda \in \mathbb{I}$. Fix $\lambda \in \mathbb{I}$ arbitrarily. By (f_2) , there exists $\delta = \delta(\lambda) > 0$ such that

(3.9)
$$|f(s)| \le c_k K_M^{-1} (1+\lambda)^{-1} |s| \quad \text{for all} \quad |s| \ge \delta,$$

where $c_k = a_k^2 = \min\{1, k_m\}$. Integrating the above inequality we get that

$$|F(s)| \leq rac{1}{2}c_k K_M^{-1}(1+\lambda)^{-1}s^2 + \max_{|t|\leq \delta} |f(t)||s| \quad ext{for all} \quad s\in\mathbb{R}.$$

Thus, for every $u \in W_1^2(M)$, we have

(3.10)
$$|\mathfrak{F}(u)| \leq \frac{1}{2} c_k (1+\lambda)^{-1} ||u||^2 + K_M \sqrt{\operatorname{vol}_g(M)} ||u|| \max_{|t| \leq \delta} |f(t)|,$$

where $\operatorname{vol}_g(M)$ denotes the Riemann–Lebesgue volume of M in the metric g. Using (3.10), we obtain

$$\begin{aligned} \mathcal{A}(u) - \lambda \mathcal{F}(u) &\geq \mathcal{A}(u) - \lambda |\mathcal{F}(u)| \\ &\geq \frac{1}{2} \frac{c_k}{1+\lambda} \|u\|^2 - \lambda K_M \sqrt{\operatorname{vol}_g(M)} \|u\| \max_{|t| \leq \delta} |f(t)|. \end{aligned}$$

Therefore, when $||u|| \to \infty$, then $\mathcal{A}(u) - \lambda \mathcal{F}(u) \to +\infty$ as well, *i.e.*, $\Phi + \lambda J = \mathcal{A} - \lambda \mathcal{F}$ is coercive.

Now, fix a continuous function $h: \mathbb{R} \to \mathbb{R}$ fulfilling (h_q) for some $q \in [1, \frac{n}{n-2})$, and use the notations from (2.1) and (2.2). We clearly have that $\Psi = \mathcal{H}$ has a compact derivative, due to the compact embedding $W_1^2(M) \hookrightarrow L^{q+1}(\partial M)$.

Consequently, Theorem 2.1 assures the existence of a nonempty open set $A \subset [0, +\infty)$ and a number $\sigma > 0$ such that for every $\lambda \in A$, there exists $\delta_{\lambda,h} > 0$ with the property that for each $\mu \in (0, \delta_{\lambda,h})$, the equation $\mathcal{A}'(u) - \lambda \mathcal{F}'(u) + \mu \mathcal{H}'(u) = 0$ has at least three solutions which are in norm less than σ . This completes the proof.

4 **Proof of Theorem 1.2**

We assume the hypotheses of Theorem 1.2 are fulfilled. Using the notation from the previous sections, we define the functional $\mathcal{N}_{\lambda} \colon W_1^2(M) \to \mathbb{R}$ by

$$\mathcal{N}_{\lambda}(u) = \mathcal{A}(u) - \lambda \mathcal{F}(u) = \mathcal{A}(u) - \lambda \lambda_0 \int_M k(x) F(u(x)) d\mu_g, \quad u \in W_1^2(M),$$

where λ and λ_0 are from hypothesis (f_{λ}).

Lemma 4.1 The set of all global minima of the functional \mathbb{N}_{λ} has at least *m* connected components in the weak topology on $W_1^2(M)$.

Proof First, for every $u \in W_1^2(M)$ we have

$$\begin{split} \mathcal{N}_{\lambda}(u) &= \frac{1}{2} \|u\|_{k}^{2} - \lambda \lambda_{0} \int_{M} k(x) F(u(x)) d\mu_{g} \\ &= \frac{1}{2} \int_{M} |\nabla u|^{2} d\mu_{g} + \int_{M} k(x) \tilde{F}_{\lambda}(u(x)) d\mu_{g} \\ &\geq \|k\|_{1} \inf_{t \in \mathbb{R}} \tilde{F}_{\lambda}(t). \end{split}$$

Moreover, if we consider $u(x) = u_{\tilde{t}}(x) = \tilde{t}$ for almost every $x \in M$, where $\tilde{t} \in \mathbb{R}$ is a minimum point of the function $t \mapsto \tilde{F}_{\lambda}(t)$, then we have equality in the previous estimation. Thus,

$$\inf_{u\in W_1^2(M)}\mathcal{N}_{\lambda}(u) = \|k\|_1 \inf_{t\in\mathbb{R}}\tilde{F}_{\lambda}(t).$$

Moreover, if $u \in W_1^2(M)$ is not a constant function, then $|\nabla u|^2 = g^{ij}\partial_i u\partial_j u > 0$ on a set of positive measure of the manifold *M*. In this case, we have

$$\mathcal{N}_{\lambda}(u) = \frac{1}{2} \int_{M} |\nabla u|^2 d\mu_g + \int_{M} k(x) \tilde{F}_{\lambda}(u(x)) d\mu_g > ||k||_1 \inf_{t \in \mathbb{R}} \tilde{F}_{\lambda}(t).$$

Thus, there is a one-to-one correspondence between the sets

$$\operatorname{Min}(\mathcal{N}_{\lambda}) = \left\{ u \in W_1^2(M) \colon \mathcal{N}_{\lambda}(u) = \inf_{u \in W_1^2(M)} \mathcal{N}_{\lambda}(u) \right\}$$

Multiple Solutions for a Class of Neumann Elliptic Problems

and

$$\operatorname{Min}(\tilde{F}_{\lambda}) = \{t \in \mathbb{R} \colon \tilde{F}_{\lambda}(t) = \inf_{t \in \mathbb{R}} \tilde{F}_{\lambda}(t)\}$$

Indeed, let θ be the function that associates with every number $t \in \mathbb{R}$ the equivalence class of those functions that are almost everywhere equal to t in the whole manifold M. Then θ : Min $(\tilde{F}_{\lambda}) \rightarrow$ Min (\mathcal{N}_{λ}) is actually a homeomorphism between Min (\tilde{F}_{λ}) and Min (\mathcal{N}_{λ}) , where the set Min (\mathcal{N}_{λ}) is considered with the relativization of the weak topology on $W_1^2(M)$. Because of the hypothesis (f_{λ}) , the set Min (\tilde{F}_{λ}) contains at least $m \geq 2$ connected components. Therefore, the same is true for the set Min (\mathcal{N}_{λ}) , which completes the proof.

Lemma 4.2 For arbitrarily $\lambda > 0$ and $\mu > 0$ small enough, the functional $\mathcal{E}_{\lambda,\mu} = \mathcal{N}_{\lambda} + \mu \mathcal{H}$ satisfies the (PS)-condition.

Proof Hypothesis (h_1) implies that

(4.1)
$$|H(s)| \le \frac{c_h}{2}s^2 + c_h|s| \quad \text{for all} \quad s \in \mathbb{R}.$$

Inequality (4.1) yields

(4.2)
$$|\mathcal{H}(u)| \leq \frac{c_h}{2} D_{\partial M} C_{\partial M,2}^2 ||u||^2 + c_h D_{\partial M} C_{\partial M,2} \sqrt{\operatorname{area}_g(\partial M)} ||u||,$$

where $\operatorname{area}_g(\partial M)$ denotes the area of ∂M in the metric g.

Fix $\lambda > 0$ and define $\delta_{\lambda}^* = \frac{a_k^2}{(1+\lambda)} (c_h D_{\partial M})^{-1} C_{\partial M,2}^{-2}$. Fix also $\mu \in (0, \delta_{\lambda}^*)$. Using (3.10), (4.2), we get that

$$\mathcal{E}_{\lambda,\mu}(u) \geq \frac{1}{2} \left[\frac{a_k^2}{(1+\lambda)} - \mu c_h D_{\partial M} C_{\partial M,2}^2 \right] \|u\|^2 - \lambda K_M \sqrt{\operatorname{vol}_g(M)} \max_{|t| \leq \delta} |f(t)| \|u\| - \mu c_h D_{\partial M} C_{\partial M,2} \sqrt{\operatorname{area}_g(\partial M)} \|u\|,$$

where $\delta > 0$ appears at (3.9). Consequently, the functional $\mathcal{E}_{\lambda,\mu}$ is coercive.

We prove now that $\mathcal{E}_{\lambda,\mu}$ satisfies the (PS)-condition for λ, μ specified before. For this, let $\{u_n\} \subset W_1^2(M)$ be a (PS)-sequence for the function $\mathcal{E}_{\lambda,\mu}$, *i.e.*, $\{\mathcal{E}_{\lambda,\mu}(u_n)\}$ is bounded, and $\mathcal{E}'_{\lambda,\mu}(u_n) \to 0$ as $n \to \infty$. Since $\mathcal{E}_{\lambda,\mu}$ is coercive, the sequence $\{u_n\}$ is bounded. By passing, if necessary, to a subsequence, we may suppose that $u_n \rightharpoonup u$ weakly in $W_1^2(M)$, $u_n \to u$ strongly in $L^2(M)$, and $u_n \to u$ strongly in $L^2(\partial M)$. We have that

$$\begin{split} \langle \mathcal{E}_{\lambda,\mu}'(u_n), u_n - u \rangle + \langle \mathcal{E}_{\lambda,\mu}'(u), u - u_n \rangle &= \int_M |\nabla u_n - \nabla u|^2 d\mu_g \\ &+ \int_M k(x)(u_n - u)^2 d\mu_g \\ &- \lambda \int_M K(x)[f(u_n) - f(u)](u_n - u) d\mu_g \\ &- \mu \int_{\partial M} D(x)[h(u_n) - h(u)](u_n - u) d\nu_g. \end{split}$$

Consequently,

$$\begin{aligned} \langle \mathcal{E}_{\lambda,\mu}'(u_n), u_n - u \rangle + \langle \mathcal{E}_{\lambda,\mu}'(u), u - u_n \rangle + \lambda K_M \int_M |f(u_n) - f(u)| |u_n - u| d\mu_g \\ + \mu D_{\partial M} \int_{\partial M} |h(u_n) - h(u)| |u_n - u| d\nu_g \ge \|u_n - u\|_k^2 \end{aligned}$$

Because $\{u_n\}$ is a (PS)-sequence and $u_n \rightarrow u$ weakly in $W_1^2(M)$, it follows that $\langle \mathcal{E}'_{\lambda,\mu}(u_n), u_n - u \rangle \to 0 \text{ and } \langle \mathcal{E}'_{\lambda,\mu}(u), u - u_n \rangle \to 0, \text{ respectively.}$ On the other hand, we have that

$$\int_{M} |f(u_n) - f(u)| |u_n - u| d\mu_g \le c_f [2\sqrt{\operatorname{vol}_g(M)} + ||u_n||_2 + ||u||_2] ||u_n - u||_2.$$

Since $u_n \to u$ strongly in $L^2(M)$, it follows that

$$\lim_{n\to\infty}\int_M |f(u_n)-f(u)||u_n-u|d\mu_g=0.$$

In the same way, since $u_n \to u$ strongly in $L^2(\partial M)$, we may prove that

$$\lim_{n\to\infty}\int_{\partial M}|h(u_n)-h(u)||u_n-u|d\nu_g=0.$$

Hence, $u_n \to u$ strongly in $W_1^2(M)$, *i.e.*, the functional $\mathcal{E}_{\lambda,\mu}$ satisfies the (*PS*)-condition.

Proof of Theorem 1.2 Taking into account that the embedding $W_1^2(M) \hookrightarrow L^2(M)$ and the trace-embedding $W_1^2(M) \hookrightarrow L^{q+1}(\partial M)$ are compact, standard arguments show the sequentially weakly lower semicontinuouity of \mathbb{N}_{λ} and \mathcal{H} . The coercivity of \mathcal{N}_{λ} holds also true. Thus, because of Lemmas 4.1 and 4.2, we may apply Theorem 2.2, concluding the proof of Theorem 1.2.

References

- [1] H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids. 2nd edition, Oxford Press, 1959, рр. 17–23.
- J. I. Diaz, Nonlinear partial differential equation and free boundaries. I. Elliptic equations. Research [2] Notes in Mathematics, 106, Pitman (Advanced Publishing Program), Boston, MA, 1985.
- J. F. Escobar, The Yamabe problem on manifolds with boundary. J. Differential Geom. 35(1992), [3] no. 1, 21-84.
- , Conformal deformation of Riemannian metric to a scalar flat metric with constant mean [4] curvature on the boundary. Ann. of Math. 136(1992), no. 1, 1-50. doi:10.2307/2946545 , Conformal metrics with prescribed mean curvature on the boundary. Calc. Var. Partial [5]
- Differential Equations 4(1996), no. 6, 559–592. doi:10.1007/BF01261763
- R. Michalek, Existence of positive solution of a general quasilinear elliptic equation with a nonlinear [6] boundary condition of mixed type. Nonlinear Anal. 15(1990), no. 9, 871-882. doi:10.1016/0362-546X(90)90098-2

Multiple Solutions for a Class of Neumann Elliptic Problems

- B. Ricceri, A three critical points theorem revisited. Nonlinear Anal. 70(2009), no. 9, 3084–3089. doi:10.1016/j.na.2008.04.010
- [8] _____, Sublevel sets and global minima of coercive functionals and local minima of their perturbations. J. Nonlinear Convex Anal. 5(2004), no. 2, 157–168.

Babeş-Bolyai University, Department of Economics, 400591 Cluj-Napoca, Romania e-mail: alexandrukristaly@yahoo.com

National Technical University, Department of Mathematics, Zografou Campus, Athens, 15780, Greece e-mail: npapg@math.ntua.gr

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, 400084 Cluj-Napoca, Romania e-mail: csvarga@cs.ubbcluj.ro