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Abstract

We study best proximity points in the framework of metric spaces with w-distances. The results extend,
generalise and unify several well-known fixed point results in the literature.
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1. Introduction and preliminaries

In this paper, we introduce a new class of contractions involving R-functions in
the framework of complete metric spaces with a w-distance. Our main results
(Theorems 2.3 and 2.5) give the existence and uniqueness of best proximity points of
such mappings. Our results continue earlier work of Kostić et al. [8], where a similar
problem has been investigated using the simulation functions of Khojasteh et al. [7].
However, as noted by Găvruţa et al. [1], the Z-contractions (involving simulation
functions) introduced in [7] are a special case of Meir–Keeler (MK) contractions [9].
The R-contractions introduced by Roldán López de Hierro and Shahzad [12] are a
true generalisation of MK contractions. Our best proximity results for R-proximal
contractions therefore generalise some earlier results such as those of Jleli et al. [4].
Moreover, our results hold in a more general setting than the usual metric space.

Definition 1.1. Let A ⊆ R be a nonempty subset and let % : A × A→ R be a mapping.
We say that % is an R-function if the following two properties hold.

(a) an → 0 for every sequence {an} ⊂ (0,∞) ∩ A such that %(an+1, an) > 0 for all
n ∈ N.

(b) For any two sequences {an}, {bn} ⊂ (0,∞) ∩A such that limn→∞ an = limn→∞ bn =

L ≥ 0 with L < an and %(an, bn) > 0 for all n ∈ N, we have L = 0.

If, additionally, the following property is satisfied, then % is called a strong R-function.
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(c) If {an}, {bn} ⊂ (0,∞) ∩ A are two sequences such that bn → 0 and %(an, bn) > 0
for all n ∈ N, then an → 0.

The concept of R-functions was proposed by Roldán López de Hierro and Shahzad
[12] in 2015, inspired by the simulation functions of Khojasteh et al. [7]. Since then,
various authors have contributed to the study of fixed points, as well as best proximity
points via R-functions (see, for example, [3, 6, 10, 11, 15]).

We recall some basic results and fundamental definitions. Meir and Keeler [9]
proved the following theorem, which is a generalisation of the Banach contraction
principle.

Theorem 1.2. Let (X, d) be a complete metric space and let T : X → X be a mapping
such that, for every ε > 0, there exists a δ > 0 such that

ε ≤ d(x, y) < ε + δ⇒ d(T x,Ty) < ε

for all x, y ∈ X. Then there exists a unique point z ∈ X which is a fixed point of the
mapping T , and T nx0 → z when n→∞ for every x0 ∈ X.

From Theorem 1.2, we derive the notion of an MK-function.

Definition 1.3. A function φ : [0,∞)→ [0,∞) is called an MK-function if it satisfies:

(a) φ(0) = 0;
(b) φ(t) > 0 for all t > 0; and
(c) for all ε > 0 there exists a δ > 0 such that φ(t) < ε for all t ∈ [ε, ε + δ).

The next definition recalls the notion of a simulation function which was introduced
by Khojasteh et al. [7].

Definition 1.4. A mapping ζ : [0,∞) × [0,∞)→ R is a simulation function if

(a) ζ(0, 0) = 0;
(b) ζ(t, s) < s − t for t, s > 0; and
(c) if {tn} and {sn} are two sequences in (0,∞) such that limn→∞ tn = limn→∞ sn = ` >

0, then lim supn→∞ ζ(tn, sn) < 0.

Example 1.5. The following examples of R-functions are taken from [3, 6, 7, 12, 15]:

(a) %(t, s) = sϕ(s) − t, where ϕ : [0, ∞) → [0, 1) is a mapping such that
lim supt→s+ ϕ(t) < 1 for all s ∈ (0,∞);

(b) %(t, s) = sϕ(s) − t, where ϕ : [0, ∞) → [0, 1) is a mapping such that
limn→∞ ϕ(tn) = 1 implies that limn→∞ tn = 0 for every sequence {tn} ⊆ [0,∞);

(c) %(t, s) = ϕ(s) − t, where ϕ : [0,∞)→ [0,∞) is an MK-function (Definition 1.2);
(d) %(t, s) = ζ(t, s), where ζ : [0,∞) × [0,∞)→ R is a simulation function;
(e) %(t, s) = ψ(s) − ϕ(s) − ψ(t), where ψ, ϕ : [0,∞)→ [0,∞) are two functions such

that ψ is nondecreasing and continuous from the right, while ϕ is lower
semicontinuous and ϕ−1({0}) = {0};

https://doi.org/10.1017/S0004972718001193 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718001193


[3] Best proximity points with R-functions and w-distances 499

(f) %(t, s) = s/(t + 1) − t;
(g) %(t, s) = se−t − t; and
(h) %(t, s) = ln(s + 1) − t.

In 1996, Kada et al. [5] introduced a new generalised distance, the w-distance,
which they used to extend and improve some well-known fixed point results,
most notably Caristi’s theorem, Ekeland’s variational principle and the minimisation
theorems of Takahashi.

Definition 1.6. Let (X, d) be a metric space and let p : X × X → [0,∞) be a function.
Then p is called a w-distance on X if

(a) p(x, y) ≤ p(x, z) + p(y, z) for every x, y, z ∈ X;
(b) for any x ∈ X, the function p(x, ·) : X → [0,∞) is lower semicontinuous; and
(c) for any ε > 0 there exists a δ > 0 such that p(z, x) ≤ δ, p(z, y) ≤ δ⇒ d(x, y) ≤ ε

holds for all x, y, z ∈ X.

By adding the condition of semicontinuity with respect to the second variable in
Definition 1.6, we propose a new notion of w0-distance.

Definition 1.7. Let (X, d) be a metric space. A w-distance function p : X × X→ [0,∞)
is called a w0-distance on X if, additionally, it fulfils the following condition:

(d) p(·, y) : X → [0,∞) is a lower semicontinuous function for any y ∈ X.

Remark 1.8. In general, accounts of w-distance (see, for example, [13, 15]) assume the
symmetry condition, p(x, y) = p(y, x) for all x, y ∈ X. We note that every symmetric w-
distance is a w0-distance in the sense of Definition 1.7, but the converse is not true.

Example 1.9. Let (X, d) be a metric space and let p : X × X → [0,∞) be a function.
Kada et al. [5] gave the following examples of w-distances on X:

(1) p(x, y) = d(x, y);
(2) p(x, y) = c, where c is a positive real number;
(3) if (X, ‖ · ‖) is a normed space, then p(x, y) = ‖x‖ + ‖y‖ is a w-distance on X;
(4) if (X, ‖ · ‖) is as in (3), then p(x, y) = ‖y‖ is also a w-distance on X;
(5) p(x, y) = max{d(T x, y), d(T x,Ty)}, where T : X → X is a continuous mapping;
(6) if X = R with the standard metric d, then p(x, y) = |

∫ y
x f (u) du| is a w-

distance on X, where f : X → [0,∞) is a continuous function such that
infx∈X

∫ x+r
x f (u) du > 0 for any r > 0; and

(7) if F is a closed bounded subset of X and c ≥ diam F, then

p(x, y) =

d(x, y) for all x, y ∈ F,
c for all x < F or y < F.

It is clear that the w-distances defined in each of these examples are lower
semicontinuous with respect to both variables. Hence all of the examples (1)–(7) are,
in fact, examples of w0-distances. Moreover, examples (1)–(3) and (7) are symmetric
w-distances.
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Example 1.10. Here we give an example of a w-distance which is not a lower
semicontinuous function of the first variable when the other one is fixed.

Let (X, d) be a metric space endowed with the w-distance p, defined as in
Example 1.9(7). Let x0 ∈ X be an accumulation point of X and let α : X → [0,∞)
be a function defined by

α(x) =

3c for x = x0,

2c for all x , x0.

The function P : X × X → [0,∞) defined by

P(x, y) = max{α(x), p(x, y)}

is also a w-distance on X [5, Lemma 3]. However, P is not a w0-distance on X.
Indeed, since x0 is an accumulation point of X, there exists a sequence {xn} ⊆ X

such that xn → x0 and xn , x0 for all n ∈ N. Then

P(x0, y) = max{α(x0), p(x0, y)} = 3c > 2c = lim inf
n→∞

P(xn, y)

for any y ∈ X, which means that P(·, y) is not a lower semicontinuous function.

Basic properties of a w0-distance are the same as those of a w-distance, as described
in the next lemma due to Kada et al. [5].

Lemma 1.11 (Kada et al. [5]). Let (X, d) be a metric space with a w-distance p. Also,
let {xn}, {yn} be two sequences in X and let {αn}, {βn} be two sequences of real numbers
converging to zero. Then the following properties hold for all x, y, z ∈ X:

(a) (for all n ∈ N) p(xn, y) ≤ αn, p(xn, z) ≤ βn ⇒ y = z and, in particular, p(x, y) =
p(x, z) = 0⇒ y = z;

(b) (for all n ∈ N) p(xn, yn) ≤ αn, p(xn, z) ≤ βn ⇒ yn → z;
(c) (for all m, n ∈ N,m > n) p(xn, xm) ≤ αn ⇒ {xn} is a Cauchy sequence; and
(d) (for all n ∈ N) p(y, xn) ≤ αn ⇒ {xn} is a Cauchy sequence.

We also recall the following standard notation in the setting of a metric space (X, d):
for ∅ , A, B ⊆ X,

d(A, B) = inf{d(x, y) : x ∈ A, y ∈ B},

A0 = {x ∈ A : (∃y ∈ B) d(x, y) = d(A, B)},
B0 = {y ∈ B : (∃x ∈ A) d(x, y) = d(A, B)}.

In the next section, we introduce the notion of R-proximal contractions and
investigate whether such mappings yield the existence and uniqueness of best
proximity points (and also fixed points) in the context of a complete metric space
with a w0-distance.
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2. Main results

In this section, we introduce the notions of R-proximal contractions and prove our
main results. For all x, y ∈ X, where (X,d) is a metric space with a w0-distance p, define
a function q : X × X → [0,∞) by

q(x, y) = max{p(x, y), p(y, x)}.

It is easily checked that the function q is symmetric and satisfies the triangle inequality
and q(x, y) = 0 implies that x = y for all x, y ∈ X.

Definition 2.1. Let (X, d) be a metric space with a w0-distance p and ∅ , A, B ⊆ X. Let
% : A × A→ [0,∞) be a strong R-function and assume that {p(x, y) : x, y ∈ X} ⊆ A. A
mapping T : A→ B such that

d(u,Tv) = d(x,Ty) = d(A, B)⇒ %(q(u, x), q(y, v)) > 0

holds for all u, v, x, y ∈ A is called an R-proximal contraction of the first kind.
In the same setting, the mapping T is called an R-proximal contraction of the second

kind if
d(u,Tv) = d(x,Ty) = d(A, B)⇒ %(q(Tu,T x), q(Tv,Ty)) > 0

for every u, v, x, y ∈ A.

Lemma 2.2. Let (X, d) be a metric space with w0-distance p and let {xn} be a sequence
in X such that

lim
n→∞

q(xn, xn+1) = 0. (2.1)

Then one of the following conditions holds:

(i) limm,n→∞ q(xn, xm) = 0; or
(ii) there exist ε > 0 and two subsequences {xmk } and {xnk } of {xn} with mk > nk for

all k ∈ N such that q(xnk , xmk ) ≥ ε for all k ∈ N and

lim
k→∞

q(xnk , xmk ) = lim
k→∞

q(xnk−1, xmk−1) = ε.

Proof. Suppose that (i) is not true. Then there exist ε > 0 and two sequences
{mk}, {nk} ⊆ N ∪ {0} with mk > nk such that

q(xnk , xmk ) ≥ ε (2.2)

for all k ∈ N. We can assume that mk is a minimal index for which (2.2) holds. Then

q(xnk , xmk−1) < ε (2.3)

for any k ∈ N. Using the triangle inequality for q, together with (2.2) and (2.3),

ε ≤ q(xnk , xmk ) ≤ q(xnk , xmk−1) + q(xmk−1, xmk ) < ε + q(xmk−1, xmk ).

Passing to the limit when k→∞, by (2.1),

lim
k→∞

q(xnk , xmk ) = ε. (2.4)
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Next, we show that
lim
k→∞

q(xnk−1, xmk−1) = ε. (2.5)

Letting k→∞ in the inequalities

q(xnk−1, xmk−1) ≤ q(xnk−1, xnk ) + q(xnk , xmk ) + q(xmk , xmk−1)

and
q(xnk , xmk ) ≤ q(xnk , xnk−1) + q(xnk−1, xmk−1) + q(xmk−1, xmk ),

by (2.1) and (2.4),
lim
k→∞

q(xnk−1, xmk−1) ≤ ε

and
ε ≤ lim

k→∞
q(xnk−1, xmk−1),

respectively, which together imply (2.5). �

Now we can formulate our first main result.

Theorem 2.3. Let (X, d) be a complete metric space with a w0-distance p and let
∅ , A, B ⊆ X such that A0 is nonempty and closed. Let T : A→ B and g : A→ A be
two mappings satisfying the following conditions:

(a) T is an R-proximal contraction of the first kind;
(b) T (A0) ⊆ B0;
(c) p(x, y) = p(gx, gy) for all x, y ∈ A;
(d) g is continuous; and
(e) A0 ⊆ g(A0).

Then there is a unique point z ∈ A such that d(gz, Tz) = d(A, B) and p(z, z) = 0.
Moreover, starting with an arbitrary x0 ∈ A0, we can construct a sequence {xn} ⊂ A0

such that d(gxn+1,T xn) = d(A, B) for every n ∈ N ∪ {0} and xn → z when n→∞.

Remark 2.4. Theorem 2.3 extends and generalises several best proximity point (and
also fixed point) theorems. We give a number of examples which can be obtained by
specialising the parameters in Theorem 2.3.

• If % : [0,∞) × [0,∞)→ R is a simulation function, g = idA and p = d, we obtain
Corollary 2.1 of Tchier et al. [14].

• If p is a symmetric w-distance on X and A = B = X, we obtain Theorem 9 of
Zarinfar et al. [15].

• If %(t, s) = φ(s) − t, where φ : [0,∞)→ [0,∞) is an MK-function, we obtain a
generalisation of the best proximity point results of Jleli et al. [4]. Moreover, the
conditions imposed on the sets A and B are also relaxed.

• If %(t, s) is defined as in Example 1.5(b), and A = B = X, we obtain the fixed point
theorem of Geraghty [2] extended to spaces with a w0-distance.
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Proof of theorem 2.3. Let x0 ∈ A0. Then conditions (b) and (e) imply that there is
an x1 ∈ A0 such that d(gx1, T x0) = d(A, B). Continuing in the same manner, for any
xn ∈ A0, we can find an xn+1 ∈ A0 such that d(gxn+1,T xn) = d(A, B).

If there exists n0 ∈ N such that q(xn0−1, xn0 ) = 0, then xn0−1 = xn0 , which means that
d(gxn0−1, T xn0−1) = d(A, B): that is, xn0−1 is a best proximity point of T under the
mapping g and the proof is finished.

Hence we can assume that q(xn−1, xn) > 0 for all n ∈ N.
Let us prove that the sequence {xn} converges. Since T is an R-proximal contraction

of the first kind,

0 < %(q(gxn, gxn+1), q(xn−1, xn)) = %(q(xn, xn+1), q(xn−1, xn))

for every n ∈ N. By property (a) of Definition 1.1,

lim
n→∞

q(xn−1, xn) = 0.

Next, we show that
lim

m,n→∞
q(xn, xm) = 0. (2.6)

Suppose, on the contrary, that the limit in (2.6) is not zero. Then, by Lemma 2.2, there
exist an ε > 0 and two sequences {mk}, {nk} ⊆ N with mk > nk for all k ∈ N such that

q(xnk , xmk ) ≥ ε (2.7)

for all k ∈ N and
lim
k→∞

q(xnk , xmk ) = lim
k→∞

q(xnk−1, xmk−1) = ε. (2.8)

Since T is an R-proximal contraction of the first kind and condition (c) holds,

%(q(gxnk , gxmk ), q(xnk−1, xmk−1)) = %(q(xnk , xmk ), q(xnk−1, xmk−1)) > 0

for all k ∈ N. Now put ak := q(xnk , xmk ) and bk := q(xnk−1, xmk−1) for k ∈ N. By the last
inequality and Definition 1.1(b), together with (2.7) and (2.8),

lim
k→∞

ak = lim
k→∞

bk = 0,

which is a contradiction. Hence (2.6) holds.
From (2.6) and Lemma 1.11(c), {xn} ⊂ A0 is a Cauchy sequence. But (X, d) is

a complete metric space and A0 ⊆ X is closed, so there exists limn→∞ xn = z ∈ A0.
Conditions (c) and (d) also yield limn→∞ gxn = gz ∈ A0. On the other hand, Tz ∈ B0 by
condition (b), which means that there is a u ∈ A such that d(u,Tz) = d(A, B).

To complete the proof, we need to show that u = gz and p(z, z) = 0.
If u = gxn for infinitely many n ∈ N, then u = gz. Hence we assume that u , gz, in

which case there exists n0 ∈ N such that u , gxn for all n ≥ n0. If q(gxn,u) = 0 for some
n ≥ n0, then gxn = u, so we must have q(gxn, u) > 0 for all n ≥ n0. Also, there exists
a subsequence {xnk } of {xn} such that q(xnk , z) > 0 for every k ∈ N (if that is not true,
then there exists N ∈ N such that q(xn, z) = 0 for all n ≥ N, and then q(xn−1, xn) = 0
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for all n > N, which is contrary to our assumption). Also, q(xnk , u) > 0 for every k ∈ N
such that nk ≥ n0. For convenience, from now on we will identify {xnk } with the whole
sequence {xn}.

From (2.6), for any ε > 0, there exists Nε ∈ N such that q(xn, xm) < ε for all
m > n ≥ Nε. For a fixed n ∈ N with n ≥ max{n0, Nε}, the function p(xn, ·) is lower
semicontinuous so that

p(xn, z) ≤ lim inf
m→∞

p(xn, xm) < ε.

Thus limn→∞ p(xn, z) = 0. Similarly, limn→∞ p(z, xn) = 0. Combined with the previous
inequality, this yields

lim
n→∞

q(xn, z) = lim
n→∞

q(gxn, gz) = 0. (2.9)

Take an := q(gxn+1, u) and bn := q(xn, z) for n ∈ N in Definition 1.1(c). Then (2.9) gives

lim
n→∞

q(gxn+1, u) = 0. (2.10)

Finally, from (2.9) and (2.10) we conclude that gz = u by Lemma 1.11(a). Uniqueness
is proved using Definition 1.1(a) by taking an := q(gv, gz) = q(v, z) to be a constant
sequence, where v ∈ A is such that d(gv, Tv) = d(A, B). That p(z, z) = q(z, z) = 0 is
proved similarly. �

Our second main result is a best proximity point theorem for R-proximal
contractions of the second kind.

Theorem 2.5. Let (X, d) be a complete metric space with a w0-distance p and let
∅ , A, B ⊆ X such that T (A0) is nonempty and closed. Let T : A→ B and g : A→ A be
two mappings with the following properties:

(a) T is an R-proximal contraction of the second kind;
(b) T (A0) ⊆ B0;
(c) T is injective on A0;
(d) p(T x,Ty) = p(Tgx,Tgy) for all x, y ∈ A;
(e) g is continuous; and
(f) A0 ⊆ g(A0).

Then there is a unique point z ∈ A such that d(gz, Tz) = d(A, B) and p(Tz, Tz) = 0.
Moreover, starting with an arbitrary x0 ∈ A0 we can construct a sequence {xn} ⊂ A0
such that d(gxn+1,T xn) = d(A, B) for every n ∈ N ∪ {0} and xn → z when n→∞.

Proof. Let x0 ∈ A0. By similar reasoning to that in the proof of Theorem 2.3, using
conditions (b) and (f) we can construct a sequence {xn} ⊆ A0 such that d(gxn+1,T xn) =
d(A, B) for all n ∈ N ∪ {0}.

Suppose there exists n0 ∈ N such that q(T xn0−1, T xn0 ) = 0. Then T xn0−1 = T xn0 and
xn0−1 = xn0 because T is injective on A0. But then d(gxn0−1, T xn0 ) = d(gxn0 , T xn0 ) =
d(A, B) and xn0 is the best proximity point of T under the mapping g.
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Now suppose that q(T xn−1,T xn) > 0 for all n ∈ N.
We proceed to prove that the sequence {xn} is convergent. Since T is an R-proximal

contraction of the second kind,

0 < %(q(Tgxn,Tgxn+1), q(T xn−1,T xn)) = %(q(T xn,T xn+1), q(T xn−1,T xn))

for all n ∈ N, which by Definition 1.1(a) implies that

lim
n→∞

q(T xn−1,T xn) = 0.

Let us show that
lim

m,n→∞
q(T xn,T xm) = 0. (2.11)

Assume, to the contrary, that (2.11) does not hold. In that case, by Lemma 2.2 there
exist an ε > 0 and two sequences {mk}, {nk} ⊆ N with mk > nk for all k ∈ N such that

q(T xnk ,T xmk ) ≥ ε (2.12)

for all k ∈ N and

lim
k→∞

q(T xnk ,T xmk ) = lim
k→∞

q(T xnk−1,T xmk−1) = ε. (2.13)

Since T is an R-proximal contraction of the second kind,

%(q(Tgxnk ,Tgxmk ), q(T xnk−1,T xmk−1)) = %(q(T xnk ,T xmk ), q(T xnk−1,T xmk−1)) > 0

for all k ∈ N. Take ak := q(T xnk , T xmk ) and bk := q(T xnk−1, T xmk−1) for k ∈ N in
Definition 1.1(b). By (2.12) and (2.13), it follows that

lim
k→∞

ak = lim
k→∞

bk = 0,

which is a contradiction. Thus (2.11) is proved.
From (2.6) and Lemma 1.11(c), {T xn} ⊂ T (A0) is a Cauchy sequence. Since (X, d)

is a complete metric space and T (A0) ⊆ X is closed, there exists limn→∞ T xn = Tz ∈
T (A0). By condition (b), Tz ∈ T (A0) ⊆ B0, so there exists a u ∈ A0 such that d(u,Tz) =
d(A, B). Also, from condition (f), u = gx for some x ∈ A0. Hence d(gx,Tz) = d(A, B).

Now we prove that T x = Tz.
If T xn = T x holds for infinitely many values of n ∈ N, then Tz = T x. Therefore

we can assume that there exists n0 ∈ N such that T xn , T x for all n ≥ n0. Also, there
exists a subsequence {xnk } of {xn} (which we can assume is the whole sequence) such
that q(T xnk ,Tz) > 0 for all k ∈ N.

Using (2.11), for any ε > 0 there exists an Nε ∈ N such that q(T xn, T xm) < ε for
every m > n ≥ Nε. Then, from Definition 1.6(b),

p(T xn,Tz) ≤ lim inf
m→∞

p(T xn,T xm) < ε

for any fixed n ≥ max{n0, Nε}, which implies that limn→∞ p(T xn, Tz) = 0. Similarly,
limn→∞ p(Tz,T xn) = 0, and so

lim
n→∞

q(T xn,Tz) = 0. (2.14)
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Now take an := q(Tgxn+1, Tgx) = q(T xn+1, T x) and bn := q(T xn, Tz) for n ∈ N in
Definition 1.1(c). By (2.14),

lim
n→∞

q(T xn+1,T x) = 0. (2.15)

Finally, from (2.14), (2.15) and Lemma 1.11(a), we conclude that T x = Tz.
To prove the uniqueness, take an := q(Tgv, Tgz) = q(Tv, Tz) for all n ∈ N in

Definition 1.1(a), where v ∈ A is such that d(gv,Tv) = d(A,B). Then q(Tv,Tz) = 0, that
is, Tv = Tz, and then condition (c) yields v = z. The proof of p(Tz,Tz) = q(Tz,Tz) = 0
is similar. �
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