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Abstract

A heuristic methodology for the identification of a circuit passing through all the vertices
only once in a graph is presented. The procedure is based upon defining a normal form of
a matrix and then transforming the adjacency matrix into its normal form. For a class of
graphs known to be Hamiltonian, it is conjectured that this methodology will identify
circuits in a small number of steps and in many cases merely by observation.

Introduction

A circuit in a connected graph is said to be Hamiltonian if it includes every vertex
once. Hence a Hamiltonian circuit in a graph of n vertices consists exactly of n
edges. The problem of finding an efficient algorithm for identifying a Hamilto-
nian circuit in a graph has offered an interesting challenge to the applied
mathematicians and graph theorists since it was first proposed by Sir William
Rowan Hamilton in 1895. The basic unvolved problem of determining which
graphs are Hamiltonian has led to the investigation of many related problems,
and consequently, to the development of what might generally be termed,
"Hamiltonian theory". Since it has been shown [3, 7] that the general problem for
finding a Hamiltonian circuit in a graph is AfP-complete, attention has been
directed to the development of efficient algorithms for some special but useful
cases. Sufficient conditions for the existence of a Hamiltonian circuit have been
obtained in terms of the degree sequence of a graph. Polynomial-time algorithms
have been given for finding a Hamiltonian cycle in a graph satisfying such
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sufficient conditions. In this paper some known results regarding Hamiltonian
circuits are reviewed and a heuristic algorithm is presented to determine a
Hamiltonian circuit in a graph.

Preliminaries
Standard graph theory terminology [1, 2, 5] is used. Formally, a graph G =

(V, E) consists of a finite nonempty set of vertices V and a set of edges E. If the
edges are ordered pairs (u, v) of vertices, then the graph is said to be directed. If
the edges are unordered pairs of distinct vertices also denoted by (w, V), then the
graph is said to be undirected. A directed graph is also called a digraph. The order
of a graph n denotes the number of vertices of G: n = \V\.

An edge uv is said to join the vertices u and v and is denoted by uv. If uv e E
then u and v are adjacent and the vertices u and v are incident with edge uv.

The size of a graph e is the number of edges i.e. e = \E\. A graph of order n
and size (£) is called a complete graph and is denoted by Kn. In Kn every two
vertices are adjacent.

Simple graph. A graph is simple if there is no loop of length one at any one of
the vertices.

A digraph is strict if it has no loop and no two edges with the same vertices
have the same orientation.

A graph is bipartite if the vertex set V can be partitioned into two subsets Vx

and V2 such that every edge of G joins Vx with V2.
The degree of a vertex v in a graph G is the number of edges of G incident with

(i. In a digraph the outdegree od(u) of a vertex v is the number of vertices
adjacent to it. A walk of a graph G is an alternating sequence of vertices and
edges vlE1v2E2 • • • Ekvk, beginning and ending with points in which each edge is
incident with the two points immediately preceding and following it. This walk
joins vx and vk and may also be denoted by vlv2 • • • vk; it is sometimes called a
v1vk walk. The walk is closed if vx = vk and is open otherwise. A path is a walk
where all the vertices are distinct. A circuit or a cycle is a walk vxv2 • • • vk where
all the vertices are distinct except for vx = vk. The length of a walk is the number
of occurrences of edges in it. A digraph is diconnected if for any two vertices u
and v there is a directed path from u to v. A graph is connected if for every pair
(«, v) of distinct vertices there is a path from u to v.

The k-closure Ck(G) of a simple graph G of order n is the graph obtained from
G by recursively joining pairs of nonadjacent vertices with degree at least k.

The adjacency matrix A = [aiy] of G is the n X n matrix given by

1 if v,v e E

0 otherwise
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Sufficient conditions for a Hamiltonian graph

Even though no elegant characterization of a Hamiltonian graph has yet been
found there have been several sufficient conditions established for a graph to be
Hamiltonian. Chronologically, Dirac, Ore, Posa, Bondy and Chvatal have de-
termined such conditions in terms of the degrees of the vertices of a graph, with
each successive result strengthening those preceding it [8]. A graph G of order
n 5* 3 with degree sequence dl^d2 • • • < dn is Hamiltonian if:

(i)
(ii)

(iii)

(Dirac) 1
(Ore) uv <5
(Posa) 1 <

=? k «
£ E =
lk<

: n =» c
> degu
;i/2=»

'* > n/2
+ deg D > «
dk> k

Figure la. A Hamiltonian graph which does not satisfy the sufficient conditions of Posa, Ore, Dirac.

Figure lb. A Hamiltonian graph which does not satisfy the condition of Las Vergnas.

Figure 1. Hamiltonian graphs which do not satisfy sufficient conditions.
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(iv) (Bondy) j < k, dj ^j,dk^k-l=>dj+dk~^n
(v) (Chvatal) dk^k < n/2 => dn_k 3* n - k

(vi) (Las Vergnas) A graph G of order n > 3 is Hamiltonian if the vertices can
be labeled vx, vz,...,vk so that

j < k, & > n -j, VjVk <£ E\
} deg v + deg vk > n

(vii) If G is a graph of order n and the n closure Cn(G) is complete, then G is
Hamiltonian. It can be shown [8] that conditions (i)-(vi) guarantee that
Cn{G) is complete. However, (vii) is strictly stronger than all of these
conditions.

(vii) (Meyniel) In a strict diconnected digraph G, if uv € E and deg(w) +
deg(o) > 2n — 1 for all u, v e V then G contains a direct Hamiltonian
circuit.

The above conditions are sufficient but not necessary for the existence of a
Hamiltonian circuit in a graph. For example the graph shown in Figure l a is
Hamiltonian yet it does not satisfy the conditions (i), (ii) and (iii). The graph
shown in Figure l b is Hamiltonian by (vii) but it does not satisfy the condition
(vi).

Conditions in terms of edges

Related results involving the degree of the vertices of a graph are those
involving the number of edges of the graph. Ore [9] showed that G is Hamiltonian
if n = \V\ 35 3 and \E\ > (n2 - 3« + 6)/2. Another result due to Posa [10] states
that there exists a constant c such that the probability that a random graph with
n vertices and en logn edges is Hamiltonian tends to 1 as n -» oo.

Necessary condition

Since a Hamiltonian circuit must pass through each of the vertices, a simple
necessary condition can be obtained [6] in terms of the power of the adjacency
matrix of G: Let A" = [aW]. Since a\f > 0 implies there exists a walk of length
n between vt and vp the necessary condition for the existence of a circuit of
length n at each of the vertices is that aj,"' > 0 for all i < n.
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Heuristic method

[5]

A heuristic may be viewed as a less-than-perfect method [4] which usually finds
a solution. In this paper the word heuristic is used in the sense of a method for
guiding discovery or improving problem solving. In order to develop the method
to determine a Hamiltoman circuit in G by heuristic, the following definitions will
be essential.

Normal form of a matrix: Let n be the dimension of the adjacency matrix A
and h be an integer such that 1 < h < n — 1. For all /, 1 < i < n if A(i, modn (/
+ h)) = 1 with the modification that modh(n) = n, then A is said to have a
normal form. In this paper the normal form is taken to be of first order i.e. h = 1.

Normal path of a matrix. The path made up of the off-diagonal elements of a
matrix, i.e. made up of (« — 1) ali+1 elements such that 1 < / < n — 1.

The anchor of a matrix. The element corresponding to anl.
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0

1

r-l

0

r-l

r-l
r

0

0

0

0

0

0

0

0

0

0

\
0

0

0

0

0

^ 1

0

Figure 2a. Matrix TV is in normal form.
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Figure 2b. Matrix M is not in normal form.

Figure 2. Normal form of a matrix.
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Figure 3a. Matrix P is transformed into matrix Q.
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Figure 3b. Matrix R cannot be transformed into normal form.

Figure 3. Transformation into normal form.
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Note in the definitions of normal form, normal path and anchor that the other
elements of the matrix are of no consequence. The matrix TV shown in Figure 2a
is in normal form while the matrix M shown in Figure 2b is not in normal form.
If a matrix is not in normal form, attempts can be made to transform it into
normal form by interchanging any set of pairs of columns and rows, even though
there is no guarantee that a matrix which is initially not in normal form can
ultimately be transformed into normal form. For example the matrix P in Figure
3a is not in normal form. But by first interchanging column 3 and column 4 and
then by interchanging corresponding row 3 and 4, P is transformed into Q as
shown in Figure 3b which is in normal form. But no amount of interchanging of
pairs of columns and rows will transform the matrix R shown in Figure 3c into a
normal form.

Observation. If a Hamiltonian circuit exists in a graph G then its adjacency
matrix must be transformable into normal form, and the row or column headings
will identify the circuit. Alternatively, for graphs which are known to be Hamilto-
nian the corresponding adjacency matrices can always be transormed into normal
forms.

A heuristic algorithm to determine a Hamiltonian circuit in a graph

1. Obtain the adjacency matrix A = [a,7], a,, «- 0 i' = 1,2,..., n; i.e. make the
graph simple.

2. Identify each column and each row by the headings C, and Rr Initially each
C, and each R, corresponds to each t>, and has the value ;', / = 1,2,... ,n.

3. Let the set V, contain all the vertices adjacent to the vertex vt; v, <£ Vt<z V.
4. If A is in normal form then the Hamiltonian Circuit (HC) is identified as

ui> V2 ''' vk- Otherwise, go to 5.
5. Proceed from left to right along the normal path. If a zero element is

encountered, set the corresponding column heading as C,. Replace this zero
element by any nonzero element from the same row corresponding to the
column heading C. Note: the replacement of the zero element is done by the
interchanging of columns corresponding to C, and Cy and rows corresponding
to Rj and Ry While performing this interchanging of rows and columns,
there is a possibility that some existing nonzero elements in the normal path
may be removed. The index j should be chosen in such a way that the
removal of the nonzero elements becomes minimal. This situation corre-
sponds to the "least disturbed" condition of the normal path.

6. If the anchor, i.e. the element corresponding to RnCl is zero, replace it with a
nonzero element so that the normal path is least disturbed.
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7. If the matrix is now in normal form go to 8 otherwise go to 5.
8. Identify the HC by the vertices corresponding to the column headings

c x , c 2 - - cn.

Illustrative examples

In order to demonstrate the algorithm, the following two examples are worked
out in detail. For the first example it is not known in advance whether the graph
contains any Hamiltonian cycle. But for the second example [11] it is known in
advance that the graph is Hamiltonian since it satisfies Meyniel's condition.
Example 1.
Consider the graph of Figure 4.
Steps 1 and 2:

Ci O2 -̂"3 ^4 ^5

1 2 3 4 5

R7

R,

0 1 1 0 0
0 0 0 1 0
1 1 0 0 0
0 0 1 0 1
1 1 1 1 0

Figure 4. Graph of Example 1.
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Step 3:

vi: vi = {V2>vi}

v2: F2 = { y 4 }

v3: V3 = {i>1 ; i>2}

v5: V5 = {v1,v2,v3,v4}

Step 4: yl is not in normal form.
Step 5: The first zero element encountered corresponds to C3, choose Vj e V2,
here j = 4. Interchange columns corresponding to C3 and C4 and rows corre-
sponding to R3 and R4. A is thus transformed into Av

Cl C2 C3 C4 C5

1 2 4 3 5

Ax=
i?3 4
R4 3
A5 5

0 1 0 1 0 '
0 0 1 0 0
0 0 0 1 1
1 1 0 0 0
1 1 1 1 0

The second zero encountered corresponds to C5. Since V3 = { o1; u2}, by replacing
columns corresponding to C5 and Cx the normal path is least disturbed. Ax is
transformed into A2.

Oĵ  v^2 ^ 3 ^ 4 ^ 5

Rl

A2= R2

R3
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2

4
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1

5

" 0

0

1

0

0

2

1

0

0

1

1

4

1

1

0

0

0

3

1

0

1

0

1

1

1

0

0

1

0

The normal path is now made up of 5-1 = 4 nonzero elements.
Step 6: The anchor corresponding to R5CX = 0. Since VY = {v2,v3} and the

objective is to disturb the normal path the least, interchange columns correspond-
ing to Cx and Q and rows corresponding to Rx and R4. A2 is now transformed
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Rx
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Step 7: The matrix A3 is now in normal form.
Step 8: A Hamiltonian circuit is obtained as follows:

v3v2v4v5vlv3

Example 2: Consider the graph in Figure 5. Its adjacency matrix A is shown
below.

1 2 3 4 5 6 7 8 9 10 11

A =

1
2
3
4
5
6
7
8
9
10
11

0
0
0
1
0
0
1
1
1
1
0

1
0
0
1
1
0
1
1
0
1
0

1
1
0
1
1
1
1
1
0
0
0

1
0
1
0
1
0
1
0
0
0
0

0
0
1
1
0
1
0
0
1
1
0

0
1
0
0
1
0
1
0
1
1
0

0
1
0
1
0
1
0
1
1
0
0

1
1
0
1
0
1
1
0
1
0
0

1
0
0
0
0
0
0
0
0
1
1

0
1
1
0
0
0
0
0
1
0
1

1
1
1
1
1
1
1
1
1
1
0

A is almost in normal form except in column 9, and in the anchor position. Since
vu G K8, vu is a potential candidate to be brought into the normal path. By
interchanging the columns 9 and 11 and the corresponding rows 9 and 11, A is
transformed into Ax which is in the normal form.

1 2 3 4 5 6 7 8 11 10 9

1
2
3
4
5
6
7
8
11
10
9

0
0
0
1
0
0
1
1
0
1
1

1
0
0
1
1
0
1
1
0
1
0

1
1
0
1
1
1
1
1
0
0
0

1
0
1
0
1
0
1
0
0
0
0

0
0
1
1
0
1
0
0
0
1
1

0
1
0
0
1
0
1
0
0
1
1

0
1
0
1
0
1
0
1
0
0
1

1r-H

0
1
0
1
1
0
0
0
1

1
1
1
1
1
1
1
1
0
1
1

0
1
1
0
0
0
0
0
1
0
1

1
0
0
0
0
0
0
0
1
1
0

A Hamiltonian circuit is identified as follows:
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Figure 5. Graph of Example 2.

Concluding remarks

In conclusion several characteristic features of the proposed algorithm are
noted. The algorithm is applicable for both directed and undirected graphs. The
essential element of the algorithm is first to define a normal form of the adjacency
matrix and then try to transform the matrix into its normal form. The normal
form is obtained by interchanging pairs of columns and corresponding pairs of
rows. Thus the most important aspect of the algorithm is to determine the best
possible candidate to be interchanged with. Otherwise, there is a potential risk
that these interchanges will result in the method cycling in a loop. In selecting the
"best candidate" some looking-ahead aspect should be introduced so that the
" least disturbance" here does not cause a major disturbance later. However, there
is no efficient algorithm known to determine the best candidate. If the adjacency
matrix of a Hamiltonian graph is crowded with l's, then it is quite likely that it
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can be transformed into a normal form in some smaller number of steps and in
many cases merely by observation. The adjacency matrices of the graphs which
satisfy the sufficient conditions as stated by Ore, Dirac and Meyniel are very
dense with l's. Thus it is postulated that for the above situations, the complexity
of the determination of a Hamiltonian Circuit is 0(n).
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