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Abstract

We focus on supercritical decomposable (reducible) multitype branching processes.
Types are partitioned into irreducible equivalence classes. In this context, extinction
of some classes is possible without the whole process becoming extinct. We derive
criteria for the almost-sure extinction of the whole process, as well as of a specific class,
conditionally given the class of the initial particle. We give sufficient conditions under
which the extinction of a class implies the extinction of another class or of the whole
process. Finally, we show that the extinction probability of a specific class is the minimal
nonnegative solution of the usual extinction equation but with added constraints.
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1. Introduction

Decomposable (or reducible) multitype branching processes differ in several ways from
irreducible processes. In the literature, authors generally focus on the asymptotic behaviour of
such branching processes without discussing extinction criteria or algorithmic issues.

Let {Z(t), t ∈ N} denote a supercritical discrete-time multitype branching process, where
Z(t) is a row vector whose ith entry is the size of the type-i population at time t ; let ρ > 1 be
the spectral radius of the mean offspring matrix M , and let v be its corresponding positive left
eigenvector. In the case where M is irreducible, Kesten and Stigum [8] showed that there exists
a one-dimensional random variable w such that limt→∞(Z(t)/ρt ) = wv with probability 1:
the eigenvalue ρ plays the role of a normalizing constant; all types grow at the same rate ρ.
The same authors proved in [9] that in the reducible case, the asymptotic behaviour of Z(t)

depends on the type of the initial individual. In addition, different subsets of components of
the vector Z(t) have, in general, different normalizing constants: different types may grow at
different rates. The corresponding limit vector shows a greater variety of qualitative properties
than in the irreducible case.

Foster and Ney [2] studied the asymptotic behaviour of the extinction probability of the var-
ious types in a critical multitype decomposable Galton–Watson process. They also emphasized
that, unlike in the irreducible case, the asymptotic behaviour depends on the type of the initial
particle. In another paper [3], still in the critical case, they analyzed limiting distributions of the
population size in different subsets of particle types, normalized by the appropriate constants,
and conditioned on existence or nonexistence of some subsets of particle types.

Received 19 November 2010; revision received 16 February 2012.
∗ Postal address: Department of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010,
Australia. Email address: sophiemh@unimelb.edu.au

639

https://doi.org/10.1239/jap/1346955323 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1346955323


640 S. HAUTPHENNE

Among other authors, we also refer the reader to the work of Sugitani [14], who also focused
on critical decomposable Galton–Watson processes and described general limit theorems, and
to Sewastjanow [13, Chapter 4], who made a classification of the types in a reducible branching
process.

From a practical point of view, decomposable branching processes have many applications
in biology and epidemiology: Olofsson [11] used a decomposable branching process as a model
of telomere shortening, and Scalia-Tomba [12] studied the asymptotic final size distribution of
reducible multitype Reed–Frost epidemic processes.

Here, we investigate extinction probabilities of discrete-time supercritical decomposable
multitype branching processes. The types are partioned into irreducible equivalence classes.
We distinguish among two types of extinction event: the whole process may become extinct,
which corresponds to total extinction, and there may also be situations where the process lives
forever while some classes become extinct and will never be generated again, which we classify
as partial extinction (a precise definition is given later).

We derive necessary and sufficient conditions for total and partial extinctions, as well as for
the extinction of a specific class, conditionally given the class of the initial particle. We give
sufficient conditions under which the extinction of a class implies the extinction of another class
or of the whole process. Finally, we show that the extinction probability of a specific class is
the minimal nonnegative solution of the usual extinction equation but with added constraints,
and that it is also equal to the total extinction of a modified branching process. We discuss
the algorithmic issues to compute the partial extinction probabilities, in particular for special
classes of multitype branching processes called Markovian trees [1], [6], [7].

The paper is organized as follows. In Section 2 we recall a fundamental result about the
extinction probability of a multitype branching process, and we define partial extinction. In
Section 3 we prove various extinction criteria. Finally, in Section 4 we characterize the partial
extinction probabilities and discuss computational matters.

2. Definitions and notation

Let {Z(t) = (Z1(t), . . . , Zn(t)), t ∈ N} be a multitype branching process, where Zi(t)

represents the number of individuals of type i alive at time t , 1 ≤ i ≤ n. We denote by Pi(s)

the offspring generating function of an individual of type i, that is,

Pi(s) = E[sZ(1) | ϕ0 = i] for s = [s1, s2, . . . , sn]� with |si | ≤ 1,

where the notation sZ(1) stands for s
Z1(1)
1 s

Z2(1)
2 · · · sZn(1)

n , and ϕ0 is the type of the progenitor:
ϕ0 = i means Z(0) = ei , where ei is a vector whose ith component is 1 and whose
other components are all 0. Here ‘�’ denotes the transpose operator. Accordingly, P (s) =
[P1(s), P2(s), . . . , Pn(s)]� is the offspring generating vector.

We use the notation 1 for the column vector [1, 1, . . . , 1]�, and write s ≤ t and s < t for
two vectors s and t if si ≤ ti and si < ti , respectively, for all i.

The matrix M = (Mij ) represents the mean offspring matrix: Mij = (∂Pi(s)/∂sj )|s=1 is
the mean number of children of type j generated by a parent of type i, 1 ≤ i, j ≤ n.

A multitype branching process is said to be irreducible when any type of individual may have
individuals of all types among their (direct or indirect) descendants with positive probability.
Otherwise, it is called reducible. This is stated more formally as follows.

Definition 2.1. A multitype branching process is irreducible if the mean offspring matrix M is
irreducible, that is, if, for each 1 ≤ i, j ≤ n, there exists an integer k ≥ 0 such that (Mk)ij �= 0.
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Definition 2.2. A multitype branching process is singular if the n generating functions P1(s),

. . . , Pn(s) are linear in s1, . . . , sn (thus without constant term), that is, if each individual
generates exactly one and only one direct descendant.

Let q = [q1, q2, . . . , qn]� be the vector of conditional extinction probabilities of Z(t), given
the type of the initial individual, that is,

qi = P[there exists T < ∞: Z(T ) = 0 | ϕ0 = i], 1 ≤ i ≤ n.

This is a total extinction: there will be no individual alive after time T .
Let ρ = sp(M) be the spectral radius of the matrix M . The following theorem is a

fundamental result in the theory of branching processes. A nice proof may be found, for
instance, in [10, Chapter 1, Theorem 7.1].

Theorem 2.1. Assume that the branching process is nonsingular.

• If ρ < 1 then q = 1, and we say that the branching process is subcritical.

• If ρ = 1 then q = 1, and we say that the branching process is critical.

• If ρ > 1 then we say that the branching process is supercritical, and q < 1 in the
irreducible case, q ≤ 1 with q �= 1 otherwise.

In all cases, q is the minimal nonnegative solution of the vector equation

P (s) = s (2.1)

in the sense that any other solution x of (2.1) is such that q ≤ x.

In practice, the extinction probability vector q may be obtained by applying the functional
iteration on the extinction equation (2.1) (see [5, Chapter 2, Theorem 7.2]). Let P (1)(s) = P (s)

and P (k)(s) = P (P (k−1)(s)) for k ≥ 2.

Theorem 2.2. If 0 ≤ a < 1 then limk→∞ P (k)(a) = q. This still holds if a ≤ 1 with a �= 1 in
the irreducible case.

From now on, we assume that the branching process {Z(t), t ∈ N} is supercritical and
reducible, that is, there exist indices 1 ≤ i, j ≤ n such that, for all k ≥ 0, (Mk)ij = 0;
this means that individuals of type i will never have any individual of type j among their
descendants.

The matrix M may be written in a normal form, possibly after a permutation of indices
(see [4, Chapter 13]):

M =

⎡
⎢⎢⎢⎢⎢⎣

M11 0 0 · · · 0
M21 M22 0 · · · 0
M31 M32 M33 · · · 0

...
...

...
. . .

...

Mm1 Mm2 Mm3 · · · Mmm

⎤
⎥⎥⎥⎥⎥⎦ , (2.2)

where the diagonal blocks Mkk are irreducible or equal to 0, and the subdiagonal blocks Mk�

for k > � are nonnegative. We write Mk� (1 ≤ k, � ≤ m) for the (k, �)th submatrix of M , in
order to distinguish it from Mij , which is the (i, j)th component of M .
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We will say that there is a path from type i to type j , and write i → j , if there exists a
nonnegative integer n such that (Mn)ij > 0, that is, if an individual of type i has a descendant
of type j with positive probability. We will write i ↔ j if i → j and j → i. The relation
‘↔’ is an equivalence relation; accordingly, the n types of branching process {Z(t), t ∈ N}
are partitioned into m ≤ n equivalence classes Ck, 1 ≤ k ≤ m (see [10, Section 2.3]). The
diagonal blocks of the normal form of the matrix M reflect this partition: Mkk = (Mij )i,j∈Ck

and Mk� = (Mij )i∈Ck, j∈C�
.

We can extend paths to classes by saying that there is a path from class Ck to class C�, and
write k → � if there are i ∈ Ck and j ∈ C� such that i → j .

We define the following sets of class indices for 1 ≤ k ≤ m:

Dk = {� ≤ k : k → �}, Ak = {� ≥ k : � → k}, Ek = {� < k : Mk� �= 0}.
In other words, Dk is the set of classes descending from Ck and Ak is the set of ancestor

classes of Ck . Clearly, � ∈ Ak if and only if k ∈ D�. Finally, � ∈ Ek means that an individual
in class Ck has a positive probability of directly generating an individual in class C�, k �= �.

For each k, if ϕ0 = i, where i ∈ Ck , the subprocess {Zk(t) = [Zj (t)], j ∈ Ck, t ∈ N},
restricted to the individuals whose type is in Ck , is an irreducible branching process with mean
offspring matrix Mkk [9].

It is well known [4] that, when a matrix M has the form given by (2.2), its spectrum is
precisely the union of the spectra of the Mkk, 1 ≤ k ≤ m, so that the spectral radius of M

is sp(M) = max1≤k≤m sp(Mkk). Therefore, one supercritical subprocess {Zk(t), t ∈ N} is
enough for the whole process {Z(t), t ∈ N} to be supercritical as well. However, the behaviour
of the reducible branching process is not determined by the spectral radius of M only; we shall
demonstrate in the next section how the criticality of the different subprocesses {Zk(t), t ∈ N}
influences the behaviour of the whole process Z(t). Let us first introduce some notation.

Let E denote the total extinction event: E = {there exists T > 0 : Z(T ) = 0}. We write
qk for the vector of extinction probability of the whole process, given that the initial individual
belongs to class Ck . That is, for each i ∈ Ck , the ith entry of qk is given by

(qk)i = P[E | ϕ0 = i].
With this, q = [q1, q2, . . . , qm]� denotes the vector of conditional extinction probabilities of
the whole process, given the class of the initial individual.

Now observe that if we restrict our attention to the class C� only, then the event {there exists
T > 0 : Z�(T ) = 0} does not necessarily imply the extinction of class C� since at time T , some
individual in another class might be alive and able to produce new individuals of class C� in
the future. Thus, extinction of class C�, which we term a partial extinction, corresponds to the
event E� = {there exists T > 0 : for all t ≥ T , Z�(t) = 0}. We denote by q�

k the extinction
probability vector of class C� given that the initial individual belongs to class Ck . That is, for
each i ∈ Ck , the ith entry of q�

k is given by

(q�
k )i = P[E� | ϕ0 = i],

and q� = [q�
1, q�

2, . . . , q�
m]� denotes the vector of conditional partial extinction probabilities

of class C�, given the class of the initial individual.
The proposition below directly results from the fact that if the whole process {Z(t), t ∈ N}

becomes extinct then all the classes C� become extinct too.

Proposition 2.1. It holds that q ≤ q� for all 1 ≤ � ≤ m.
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3. Extinction criteria

In an irreducible branching process, the extinction probability vector q has either all its
components equal to 1 or all its components strictly less than 1 [10]. In a reducible branching
process, this dichotomy does not hold anymore: all the components of q are equal to 1 in the
subcritical and critical cases, but there might be some components equal to 1 in the supercritical
case as well.

Actually, by irreducibility of the equivalence classes, for each 1 ≤ k ≤ m, either qk = 1 or
qk < 1, with at least one k such that qk < 1 if the whole process is supercritical, and, for each
1 ≤ � ≤ m, either q�

k = 1 or q�
k < 1. Here, it may thus happen that, starting from one class Ck ,

the whole process eventually becomes extinct with probability 1, so that qk = 1, while starting
from another class Ch, the process has a positive probability of surviving, so that qh < 1.

We shall assume in the rest of the paper that none of the subprocesses {Zk(t), t ∈ N} is
singular (1 ≤ k ≤ m). The first result below provides a necessary and sufficient condition for
the total extinction, given the class of the first individual.

Proposition 3.1. For 1 ≤ k ≤ m,

qk < 1 ⇐⇒ there exists � ∈ Dk : sp(M��) > 1. (3.1)

Proof. First, we show that the statement

qk < 1 ⇐⇒ (sp(Mkk) > 1) or (there exists � ∈ Ek : q� < 1) (3.2)

implies (3.1). To this end, recall the definition of Ek , and further recursively define

E1
k = Ek, E r

k =
⋃

�∈E r−1
k

E� for 2 ≤ r ≤ R(k),

where R(k) is the smallest r such that E r
k = ∅. With this, if k ∈ Dk (i.e. if Mkk �= 0) then

Dk = {k} ∪ ⋃R(k)−1
r=1 E r

k , and Dk = ⋃R(k)−1
r=1 E r

k otherwise.
Now, expanding the right-hand side of (3.2) we obtain

qk < 1 ⇐⇒ (sp(Mkk) > 1) or (there exists � ∈ Ek : q� < 1)

⇐⇒ (sp(Mkk) > 1)

or [there exists � ∈ Ek : (sp(M��) > 1) or (there exists h ∈ E� : qh < 1)]
⇐⇒ (sp(Mkk) > 1) or (there exists � ∈ Ek : sp(M��) > 1)

or (there exists � ∈ E2
k : q� < 1)

⇐⇒ (sp(Mkk) > 1) or (there exists � ∈ Ek : sp(M��) > 1)

or (there exists � ∈ E2
k : sp(M��) > 1) . . .

or (there exists � ∈ ER(k)−1
k : sp(M��) > 1)

or (there exists � ∈ ER(k)
k : q� < 1)

⇐⇒ there exists � ∈ ({k} ∪ E1
k ∪ E2

k ∪ · · · ∪ ER(k)−1
k ) : sp(M��) > 1

⇐⇒ there exists � ∈ Dk : sp(M��) > 1,

yielding (3.1).
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In order to show (3.2), it actually suffices to prove that

there exists � ∈ Ek : q� < 1 ⇒ qk < 1, (3.3)

q� = 1 for all � ∈ Ek ⇒ (qk < 1 ⇐⇒ sp(Mkk) > 1). (3.4)

Recall that P (s) denotes the offspring generating vector associated to the branching process
{Z(t), t ∈ N}; we decompose it as P (s) = [P1(s), P2(s), . . . , Pm(s)]�, where the subscript
in the subvector Pk(s) indicates the class of the initial individual, that is, for each i ∈ Ck ,
(Pk)i(s) = E[sZ(1) | ϕ0 = i].

By Theorem 2.1, the extinction probability vector q = [q1, q2, . . . , qm]� is the minimal
nonnegative solution of the fixed point equation s = P (s) and, thus, in particular, for each
1 ≤ k ≤ m, qk = Pk(q). Assume without loss of generality that Mkk �= 0. Actually, Pk(q)

depends only on q� for � = k and all � ∈ Ek . Let k1 < k2 < · · · < kp denote the elements in
Ek; we may thus write

qk = P̄k(qk1 , qk2 , . . . , qkp , qk),

where P̄k(qk1 , qk2 , . . . , qkp , qk) is the restriction of Pk(q) to (qj )j∈(Ek∪{k}).
First, assume that Ek �= ∅ and that there exists at least one � ∈ Ek such that q� < 1. Then,

P̄k(·) being nondecreasing in each of its variables and strictly increasing in at least one variable
of each subvector, we have

qk < P̄k(1, 1, . . . , 1, qk) ≤ 1,

and we get qk < 1, which proves (3.3).
Now, if q� = 1 for all � ∈ Ek then

qk = P̄k(1, 1, . . . , 1, qk) = P̃ k(qk),

where P̃ k(·) is the offspring generating function associated to the irreducible branching process
{Zk(t), t ∈ N} restricted to class Ck . The mean offspring matrix corresponding to that branch-
ing process is given by Mkk , and its total extinction probability vector actually corresponds to qk

k ,
that is, the extinction probability of class Ck , given that the type of the initial individual belongs
to this class. By Theorem 2.1, qk

k is then the minimal nonnegative solution of s = P̃ k(s).
Therefore, since qk also satisfies the fixed point equation s = P̃ k(s), it must be such that
qk ≥ qk

k . On the other hand, by Proposition 2.1, qk ≤ qk
k , so we have qk = qk

k . Consequently,
if sp(Mkk) > 1 then {Zk(t), t ∈ N} is supercritical and qk < 1; otherwise, qk = 1.

If Ek = ∅ then the same conclusion holds by an analogous reasoning. Thus, we obtain (3.4).

The second result concerns partial extinction. Starting from an individual in class Ck , class
C� survives with positive probability if and only if there exists an intermediate class Ch such
that k → h → � which is associated to a supercritical subprocess {Zh(t), t ∈ N}.
Proposition 3.2. For 1 ≤ � ≤ m and all k ∈ A�,

q�
k < 1 ⇐⇒ there exists h ∈ A� ∩ Dk : sp(Mhh) > 1.

If k /∈ A� then q�
k = 1.
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Proof. If k /∈ A� then it is obvious that q�
k = 1 since an individual from class Ck will never

generate any individual in class C�. In particular, q�
k = 1 for all k < �.

Now, let us fix �. We show by induction on k that, for all k ∈ A�,

sp(Mhh) ≤ 1 for all h ∈ A� ∩ Dk ⇒ q�
k = 1. (3.5)

Let k = mink{k ∈ A�}. We initiate the induction by showing that if sp(Mhh) ≤ 1 for all
h ∈ A� ∩ Dk then q�

k = 1.

We denote by P i = [P i
1, P

i
2, . . . ,P

i
m] the vector of direct offspring in each class of an

individual of type i. For i ∈ Ck ,

(q�
k )i =

∑
d≥0

P[P i = (d1, d2, . . . , dm)]
∏

1≤x≤m

(q�
x)

dx . (3.6)

If x ∈ Ek then x /∈ A� by the definition of k, and, therefore, q�
x = 1. Let x �= k. If x /∈ Ek then

dx = 0 with probability 1. So, we find that

(q�
k )i =

∑
dk≥0

P[P i
k = dk](q�

k )
dk = (P̃ k)i(q

�
k ),

where recall that P̃ k(·) is the offspring generating function of the subprocess {Zk(t), t ∈ N}
restricted to class Ck . Using exactly the same argument as in the proof of Proposition 3.1, we
see that q�

k is a solution of the equation s = P̃ k(s), whose minimal nonnegative solution is q
k

k .
If Mkk = 0 then q

k

k = 1, and, thus, q�
k = 1. If Mkk �= 0 then k ∈ Dk , so that Dk ∩ A� = {k};

thus, by assumption, sp(Mkk) ≤ 1, and we arrive at the same conclusion.
Now let K ∈ A� and assume that (3.5) holds for all k ∈ A� such that k < K (this is our

induction assumption). We need to show that it still holds for K , that is, if sp(Mhh) ≤ 1 for all
h ∈ A� ∩ DK then q�

K = 1. We can repeat exactly the same argument as for k and write (3.6)
for K , except that now if x ∈ EK then q�

x = 1 by the induction assumption because Dx ⊂ DK .
It remains to show that if there exists a class Ch such that k → h → � with sp(Mhh) > 1

then q�
k < 1.

First, since sp(Mhh) > 1, the subprocess {Zh(t), t ∈ N} is supercritical and the class Ch

survives with a positive probability if the initial individual belongs to Ch. Moreover, since
k → h, each type in Ck has a positive probability to generate a type in Ch. Therefore, it is clear
that, starting from a type in Ck , class Ch has a positive probability to survive.

Finally, survival of class Ch implies survival of class C� since h → � (see Proposition 3.3(i)).
As a consequence, starting from a type in Ck , class C� has a positive probability to survive, that
is, q�

k < 1, and the proof is complete.

A direct consequence of Proposition 3.2 is the following.

Corollary 3.1. For 1 ≤ � ≤ m,

q� = 1 ⇐⇒ sp(Mhh) ≤ 1 for all h ∈ A�.

Now, suppose that we ‘observe’ the extinction of some class C�. What can we conclude
about the extinction of other classes, on the basis of the structure of M?

We examine how, by virtue of the relations between classes, knowing the extinction of class
C� may inform us of the eventual extinction of class Ck , and even of the whole process.
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For two events A and B, we write A ⊆ B if P[A∩Bc] = 0, and A ≡ B if A ⊆ B and B ⊆ A.
With this notation, the inclusions E� ⊆ Ek and E� ⊆ E respectively imply that q� ≤ qk and
q� ≤ q, and the equivalences E� ≡ Ek and E� ≡ E respectively imply that q� = qk and
q� = q.

We first do not condition on the class of the initial individual, we merely assume that
P[ϕ0 = i] > 0 for all type i, and we give general criteria about the inclusion and equivalence
of extinction events.

We show below that if k → � then, given that class C� becomes extinct, class Ck almost
surely becomes extinct as well. On the other hand, the extinction of class Ck implies the
extinction of class C� if and only if each subprocess {Zh(t), t ∈ N} such that h → � and
h � k is subcritical.

Note that in the formulation of the second statement below k must not necessarily belong to
A� for Ek to imply E� (see Remark 3.1 below).

Proposition 3.3. For 1 ≤ k, � ≤ m,

(i) k ∈ A� implies that E� ⊆ Ek ,

(ii) sp(Mhh) ≤ 1 for all h ∈ A� \ Ak if and only if Ek ⊆ E�.

Statements (i) and (ii) actually provide the following sufficient condition for the equivalence of
extinction events: for k ∈ A� and all h ∈ A� \ Ak ,

sp(Mhh) ≤ 1 ⇒ Ek ≡ E�.

Proof. (i) Suppose that k ∈ A�. We have to show that E� ⊆ Ek , or, equivalently, that
Ec

k ⊆ Ec
� . Let V� be the total number of individuals born in class C�. Then, Ec

� ≡ [V� = ∞].
Let us show that Ec

k ⊆ [V� = ∞].
Let t1 ≤ t2 ≤ t3 ≤ · · · be the successive birth times of individuals in Ck . As we assume the

survival of class Ck , this sequence is almost surely infinite. Now, let Xn denote the indicator
of the event {there exists t > tn : Z�(t) �= 0}. The assumption that k ∈ A� implies that

P[Xn = 1 | Zk(tn) �= 0] > 0

for all n ≥ 1. Therefore, V� ≥ ∑
1≤n≤∞ Xn = ∞ almost surely, which proves that Ec

k ⊆ Ec
� .

(ii) Now, assume that, for all h ∈ A� \ Ak , sp(Mhh) ≤ 1. We have to show that Ek ⊆ E�,
that is, Ec

� ∩ Ek ≡ ∅.
Note that if � ∈ Ak then A� \ Ak = ∅ and, from (i), Ek ⊆ E�. Let us assume from now

on that � /∈ Ak , and that both events Ec
� and Ek occur simultaneously with positive probability.

We have to show that we obtain a contradiction.
We either have M�� = 0 or � ∈ A� \ Ak , so that, by assumption, sp(M��) ≤ 1. As

a consequence, since, by assumption, C� survives and Ck becomes extinct with positive
probability, Ā� \ Ak �= ∅, where Ā� = A� \ {�}, and there is at least one h ∈ Ā� \ Ak

such that Vh = ∞ almost surely. Let

h̄ = max
h

{h ∈ Ā� \ Ak : Vh = ∞}.

Then Vh̄ = ∞ and Vx < ∞ almost surely for all x ∈ Āh̄ ⊆ A�. This implies that sp(Mh̄h̄) > 1,
which contradicts the assumptions. We thus have Ec

� ∩ Ek ≡ ∅.
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Finally, let us show that, if there exists h ∈ A�\Ak such that sp(Mhh) > 1, P[Ek ∩Ec
�] > 0.

Let us fix h in A� \ Ak such that sp(Mhh) > 1. We have, for any i ∈ Ch,

P[Ek ∩ Ec
�] ≥ P[ϕ0 = i] P[Ek ∩ Ec

� | ϕ0 = i]. (3.7)

The second factor on the right-hand side of (3.7) is such that

P[Ek ∩ Ec
� | ϕ0 = i] ≥ P[Ec

h | ϕ0 = i] P[Ek ∩ Ec
� | ϕ0 = i, Ec

h]. (3.8)

But, by assumption, sp(Mhh) > 1; thus, P[Ec
h | ϕ0 = i] > 0, and, as h /∈ Ak , P[Ek | ϕ0 = i,

Ec
h] = 1, so that

P[Ek ∩ Ec
� | ϕ0 = i, Ec

h] = P[Ec
� | ϕ0 = i, Ec

h].
Now, since h ∈ A�, by (i) we know that P[Ec

� | Ec
h] = 1, so P[Ec

� | ϕ0 = i, Ec
h] > 0, and

the right-hand side of (3.8) is strictly positive, which implies that the right-hand side of (3.7) is
strictly positive as well, and, thus, P[Ek ∩ Ec

�] > 0.

The extinction of class C� is equivalent to the extinction of the whole process if all classes
Ck such that k � � eventually become extinct with probability 1, or if k → � for all k (and,
thus, � = 1).

Proposition 3.4. The following sufficient conditions hold for the extinction of a class to be
equivalent to the total extinction.

(i) For 1 ≤ � ≤ m, if, for all k /∈ A�, qk = 1 then E� ≡ E.

(ii) If A1 = {1, 2, . . . , m} then E1 ≡ E.

Proof. We already know from Proposition 2.1 that E ⊆ E� for all 1 ≤ � ≤ m.
(i) If k ∈ A� then, by Proposition 3.3(i), E� ⊆ Ek . If k /∈ A� then, by assumption, qk = 1,

which implies that P[Ec
k] = 0, so that P[E� ∩ Ec

k] = 0, and E� ⊆ Ek .
We thus have E� ⊆ Ek for all 1 ≤ k ≤ m, and, therefore, E� ⊆ E, which implies that

E� ≡ E.
(ii) If A1 = {1, 2, . . . , m}, we know from Proposition 3.3(i) that E1 ⊆ Ek for all 1 ≤ k ≤ m,

so that E1 ⊆ E, and, thus, E1 ≡ E.

Remark 3.1. Propositions 3.3(i) and 3.4 only give sufficient conditions. Let us show with an
example that they are not necessary conditions. Take the mean offspring matrix

M =
⎡
⎣M11 0 0

0 M22 0
M31 M32 M33

⎤
⎦ ,

and assume that sp(M22) ≤ 1 and sp(M33) > 1. By definition, A1 = {1, 3}, A2 = {2, 3}, and
A3 = {3}. We have 2 /∈ A1, but E1 ⊆ E2 since E1 ⊆ E3 by Proposition 3.3(i), and E3 ⊆ E2
by Proposition 3.3(ii). Thus, we may have E� ⊆ Ek with � < k, even if k is not in A�.

Furthermore, E1 ≡ E, but 2 /∈ A1 and q2 �= 1, since q2
3 < 1 by Proposition 3.2. Thus,

Proposition 3.4 does not provide necessary conditions either.
Note that if, in addition, sp(M11) ≤ 1 then, by Proposition 3.3(ii), E2 ⊆ E1, even if 2 /∈ A1

and E3 ⊆ E by Proposition 3.4. Thus, E1 ≡ E2 ≡ E3 ≡ E in that case.

Sometimes, the effect of the extinction of a class on another class depends on the type of
the initial individual; if we know that it belongs to some class Ch then the assumptions of
Propositions 3.3 and 3.4 must be verified for the classes in Dh only.
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Corollary 3.2. For all 1 ≤ �, k, h ≤ m,

(i) if C�, Ck , and Ch are three classes such that

• k ∈ A�,

• (A� \ Ak) ∩ Dh �= ∅, and

• sp(Mxx) ≤ 1 for all x ∈ (A� \ Ak) ∩ Dh,

then Ek ∩ [ϕ0 = i] ≡ E� ∩ [ϕ0 = i] for all i ∈ Ch,

(ii) if Dh ⊆ A� or, for all x ∈ Dh \ A�, qx
h = 1, then E� ∩ [ϕ0 = i] ≡ E ∩ [ϕ0 = i] for all

i ∈ Ch.

The proof is very similar to those of Propositions 3.3 and 3.4, and is thus omitted.

4. Partial extinction

Now that we have established necessary and sufficient criteria for the almost-sure extinction
of classes, we characterize the vector q� of extinction probabilities of class C� as one particular
solution of a fixed point equation.

Theorem 2.2 asserts that in the irreducible case, for any 0 ≤ a ≤ 1 with a �= 1, we have

lim
n→∞ P (n)(a) = q,

and, as a consequence, the only solutions of the extinction equation s = P (s) in the unit cube
are 1 and q (see [5, Chapter 2, Corollary 1]). In the reducible case, this is no longer the case,
each q� is also a solution of the extinction equation, which may thus have up to m + 1 distinct
solutions. The limit of P (n)(a) when n tends to ∞ actually depends on the vector a.

Theorem 4.1. For each 1 ≤ � ≤ m, the vector of extinction probabilities q� of class C� is the
smallest nonnegative solution of the extinction equation s = P (s) such that q�

k = 1 for each
k � �.

Proof. We follow the same arguments as in [10, Theorem 7.1]. Let q�(n) denote the
probability that all classes in A� become extinct no later than the nth generation. We have
q�(n) ≤ q�(n + 1) and q� = limn→∞ q�(n). The probabilities q�(n) may be computed recur-
sively, i.e.

q�(1) = P (f �),

where f � is the indicator vector of the classes which do not lead to class C�, that is, f �
k = 1

for k � �, and f �
k = 0 for k → �. Indeed, for all classes in A� to become extinct at the first

generation, the initial individual must not produce any individual in a class belonging to A�.
For n ≥ 2,

q�(n) = P (q�(n − 1)).

Since the sequence {q�(n)}n≥1 is nondecreasing in n and the generating functions are
continuous in each variable, we obtain

q� = P (q�),

which shows that q� is a solution of s = P (s) with the property that q�
k = 1 for each k � �.
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It remains to show that q� is the minimal nonnegative solution of s = P (s) under the specific
constraint q�

k = 1 for each k � �. Let q∗ be any other such vector. We have q∗ ≥ f �, and,
thus,

q∗ = P (q∗) ≥ P (f �) = q�(1),

by the monotonicity of P (·), and we finally get q∗ ≥ P (q�(n)) for all n ≥ 1. Then, letting n

tend to ∞, we obtain q∗ ≥ q�, completing the proof.

This shows again that q ≤ q� for all 1 ≤ � ≤ m, since q is the minimal nonnegative solution
of s = P (s) without any constraint.

Theorem 4.1 opens the way for algorithmic developments, as we show in the sequel, but
before doing so, we observe that it may be interpreted as follows: the extinction probability
vector q� of class C� also corresponds to the total extinction probability vector q̂ of a modified
branching process {Ẑ(t), t ∈ N}, in which we fix at 0 the birth rate of an individual which is
not able to generate individuals in class C�. In terms of processes, we thus have the following
property.

Proposition 4.1. The extinction probability vector q� is the minimal nonnegative solution of the
extinction equation s = P̂ (s), where P̂ (s) is the offspring generating function of the modified
branching process {Ẑ(t), t ∈ N}, in which we set P̂k(s) := 1 for all k � �.

Proof. We have

q� = P[there exists T1 > 0 : Zk(T1) = 0 for all k → � | ϕ0]
= P[there exists T1 > 0 : Ẑk(T1) = 0 for all k → � | ϕ0],

and, as the individuals unable to generate individuals in class C� eventually die without any
offspring in the modified branching process,

P[there exists T1 > 0 : Ẑk(T1) = 0 for all k → � | ϕ0]
= P[there exists T2 ≥ T1 : Ẑik(T2) = 0 for all k → �

and Ẑk(T2) = 0 for all k � � | ϕ0]
= P[there exists T2 > 0 : Ẑ(T2) = 0 | ϕ0]
= q̂.

This shows that q� = q̂.

The extinction criteria of a class C� are thus equivalent to the total extinction criteria of the
modified branching process (still reducible).

One can interpret these two results in light of Sewastjanow [13, Chapter 4, pp. 100–101].
Defining a regular set of types S as a set such that if i, j ∈ S, where type i → k, and k → j

for some intermediate type k, then k ∈ S, Sewastjanow showed that the process obtained
by restricting the branching process to types belonging to a regular set S is a new branching
process. In our case, the classes belonging to A� form a regular set of types, and we observe
that the extinction of class C� is equivalent to the extinction of the set of types in A�, that is,
E� ≡ {⋂k∈A�

Ek}. Indeed, we already know from Proposition 3.3 that E� ⊆ Ek for all k ∈ A�,
and it is clear that the extinction of all ancestors of C� implies the extinction of C�.

In the rest of the paper we discuss computational issues. In order to prove the next result, we
need the following dichotomy property: assuming that there is a path to extinction from each
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type of individual, that is, qi > 0 for all 1 ≤ i ≤ n, a nonsingular branching process {Z(t),

t ∈ N} either grows to ∞, or goes to 0:

P
[

lim
t→∞ |Z(t)| = +∞

]
+ P

[
lim

t→∞ |Z(t)| = 0
]

= 1. (4.1)

It does not remain positive and bounded [5, Chapter 2, Theorem 6.1].
The counterpart of Theorem 2.2 in the present case is then provided by the following theorem.

Theorem 4.2. For all 1 ≤ � ≤ m and every vector a(�) such that

a
(�)
k

{
= 1 for all k � �,

< 1 for all k → �,

we have
lim

n→∞ P (n)(a(�)) = q�.

Proof. Let us fix �. For clarity of exposition, we reorder the n types of the branching
process into two classes: L• = ⋃

k∈A�
Ck and L◦ = {1, 2, . . . , n} \ L•. Hence, we may

rewrite a(�) = [a•, a◦]� with a• < 1 and a◦ = 1.
As in the proof of Theorem 4.1, we consider successive generations and we define Zn to be

the population size at the nth generation. We have, for any finite N ∈ N0,

P (n)(a(�)) =
∑
y≥0

P[Zn = (0, y) | ϕ0] +
∑
y≥0

x≥0, x �=0
‖x‖≤N

P[Zn = (x, y) | ϕ0]ax•

+
∑
y≥0

x≥0, x �=0
‖x‖>N

P[Zn = (x, y) | ϕ0]ax• .

The first term approaches q� as n tends to ∞. The second term tends to 0 as n tends to ∞.
Indeed, for all i ∈ L◦, ∑

y≥0
x≥0, x �=0
‖x‖≤N

P[Zn = (x, y) | ϕ0 = i] = 0,

since if the initial individual belongs to L◦ then it is unable to generate an individual in C�,
which implies that it is not able to generate an individual in L• either. For all i ∈ L•,

lim
n→∞

∑
y≥0

x≥0, x �=0
‖x‖≤N

P[Zn = (x, y) | ϕ0 = i] = 0,

since if the first individual belongs to L• then (Zn)• is the restriction of the branching process
limited to the types in L•, which is another branching process, itself exploding or becoming
extinct by the dichotomy property stated in (4.1). In the limit, ‖x‖ can thus not be both nonzero
and less than or equal to N .

Finally, the third term tends to 0 since it is dominated by P[‖Zn‖ > N | ϕ0] times the N th
power of a quantity strictly less than 1, and N is arbitrary.
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Theorems 4.1 and 4.2 suggest a method to numerically compute q� for each class C� in a
reducible multitype branching process: starting with the initial vector x�(0) = a(�) such that

a
(�)
k =

{
1 for all k � �,

Pk(0) < 1 for all k → �,

the functional iteration x�(n) = P (x�(n − 1)), n ≥ 1, converges to the vector q�.
Another more efficient way to compute partial extinction probabilities would be to use Propo-

sition 4.1 and to compute q� as the total extinction probability of the branching process modified
such that P̂k(s) = 1 for all k � �. This allows for the direct use of any available algorithm.
For instance, in some special cases of multitype branching processes called Markovian trees,
several linear and quadratic algorithms have been developed to compute the total extinction
probability; see [1], [6], and [7].
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