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Abstract

We study the planar FitzHugh–Nagumo system with an attracting periodic orbit that
surrounds a repelling focus equilibrium. When the associated oscillation of the system
is perturbed, in a given direction and with a given amplitude, there will generally be a
change in phase of the perturbed oscillation with respect to the unperturbed one. This
is recorded by the phase transition curve (PTC), which relates the old phase (along
the periodic orbit) to the new phase (after perturbation). We take a geometric point
of view and consider the phase-resetting surface comprising all PTCs as a function of
the perturbation amplitude. This surface has a singularity when the perturbation maps
a point on the periodic orbit exactly onto the repelling focus, which is the only point
that does not return to stable oscillation. We also consider the PTC as a function of the
direction of the perturbation and present how the corresponding phase-resetting surface
changes with increasing perturbation amplitude. In this way, we provide a complete
geometric interpretation of how the PTC changes for any perturbation direction. Unlike
other examples discussed in the literature so far, the FitzHugh–Nagumo system is a
generic example and, hence, representative for planar vector fields.

2020 Mathematics subject classification: primary 34C15; secondary 37C27, 65L10,
92B25.

Keywords and phrases: Phase transition curve, isochrons, phase-resetting surface,
phase singularity.

1. Introduction

Phase resetting is a technique that is often applied in neuroscience to study the
behaviour and properties of neuronal firing patterns [4, 18]. In essence, given a stable
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oscillation, denoted Γ, a phase reset is the act of applying a perturbation of a particular
strength, in a particular direction, and recording the resulting phase shift upon return
to Γ with respect to the phase at which the perturbation was applied. Phase resetting
is strongly related to the notion of isochrons, which each comprise all points that
converge to Γwith a given phase: the phase reset maps a point on Γ to a perturbed point
that lies on a particular isochron and, hence, returns to Γwith the phase associated with
this isochron. Winfree devoted most of his career to the study of isochrons and the
properties of so-called phase-transition and phase-response curves, which relate the
“old” phase ϑo along Γ to the “new” phase ϑn and phase shift ϑn − ϑo, respectively,
that result from a given fixed perturbation [22]. Winfree defined the old and new phases
as fractions of the total time needed to complete one oscillation; hence, ϑo,ϑn ∈ [0, 1)
are defined on the circle S1 := R/Z.

Winfree’s classical paper on isochrons [20] defines a latent phase for each point
in the basin of attraction of Γ for a given system of first-order differential equations
(a vector field). Winfree made a series of conjectures regarding the properties of
isochrons that were later confirmed by Guckenheimer [7] who realized that isochrons
are, in fact, stable manifolds of fixed points given by the fixed-time return map
associated with the period TΓ of Γ. Normally hyperbolic invariant manifold theory
[10], which at the time was still being developed, implies that the family of isochrons,
parametrized by the phase ϑo ∈ [0, 1), foliates the basin of attraction of Γ; this means
that any point in the basin lies on exactly one isochron (of a specific phase) in the
family. Since isochrons are global invariant manifolds, they are not known analytically
(except in very special cases) and need to be computed with advanced numerical tools
[12, 16].

In this paper, we study instantaneous phase resets for the FitzHugh–Nagumo system
[5, 15], which is a planar, polynomial system that will be introduced in the next section;
see already system (2.1). More precisely, the perturbation applied at the moment of
resetting is a Dirac delta function that instantaneously and discontinuously shifts the
state to a different point in the plane, as given by the size and direction of the reset. The
parameters for the FitzHugh–Nagumo system are chosen such that it has an attracting
periodic orbit Γ and our interest lies in the possible behaviour of its phase transition
curves (PTCs) that relate the new phase ϑn to the old phase ϑo before the reset. Note
that, certainly for planar systems, not all points in the phase space converge to Γ and
phase resets are meant to involve only resets to points in the basin of attraction of Γ;
discontinuities arise when resets occur to points in the so-called phaseless set, which
consists of all points outside of the basin of attraction. For the FitzHugh–Nagumo
system, we encounter a phaseless set that is quite typical for planar vector fields
[12, 14, 16]: it comprises a single point, denoted x∗, which is a repelling focus
equilibrium.

Figure 1 illustrates three phase resets for the FitzHugh–Nagumo system. Panel
(a) shows Γ together with 50 isochrons Iϑ that are uniformly distributed in phase;
the isochrons are shaded in increasingly darker colours for increasing ϑ ∈ [0, 1). All
isochrons are transverse to Γ and accumulate on x∗ sufficiently slowly in a clockwise
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FIGURE 1. Phase resets for the FitzHugh–Nagumo system (2.1) in the x-direction for perturbation
amplitudes A = 0.2, A = Ac ≈ 0.4041 and A = 0.6. Panel (a) shows the periodic orbit Γ (black) overlayed
on 50 isochrons uniformly distributed in phase, coloured from phase 0 (cyan) to 1 (dark blue); also
shown are the shifted perturbation sets Γ0.2 (orange), Γ0.4041 (red), Γ0.6 (purple). Panel (b) shows, in
matching colours, the resulting three PTCs in the fundamental square where (ϑo,ϑn) ∈ [0, 1) × [0, 1)
(green shading).

spiralling fashion. A perturbation is applied to each point along Γ, in the horizontal
direction (parallel to the x-axis). Hence, Γ is effectively shifted horizontally by the
perturbation amplitude A, chosen as A = 0.2, A = Ac ≈ 0.4041 and A = 0.6, which
gives the shifted perturbation sets labelled Γ0.2 (orange curve), Γ0.4041 (red curve) and
Γ0.6 (purple curve), respectively. The resulting three PTCs are shown (with matching
colours) in panel (b) for (ϑo,ϑn) ∈ [0, 1) × [0, 1), which is the “fundamental square”
(green shading) in the (ϑo,ϑn)-plane representing the torus S1 × S1 (by identifying
the left and right, and top and bottom sides). The local maxima and minima of the
PTCs arise when the perturbation set is tangent to one of the isochrons in the family;
in Figure 1(a), such tangencies occur, for example, near the minimum of the shifted
perturbation sets (leading to a local maximum of the PTCs).

Note that the perturbation set Γ0.4041 (red curve) in Figure 1(a) passes exactly
through the repelling focus x∗ around which the isochrons spiral; indeed, A = Ac is
the unique perturbation amplitude with this property, and we refer to it as the critical
amplitude Ac. Its relevance is the following. For the perturbation amplitude A = 0.2
well before Ac, the perturbation set ΓA crosses all isochrons, meaning that the PTC
covers the full range of ϑn ∈ [0, 1). Figure 1(b) shows that the PTC for A = 0.2 (orange
curve) can be viewed as a smooth deformation of the diagonal, which corresponds
to a phase reset with A = 0, that is, to Γ itself. Note that the PTC for A = 0.2 is a
continuous smooth curve on the torus S1 × S1, represented by the fundamental square
[0, 1] × [0, 1]. Similarly, when A = 0.6 past Ac, the perturbation set ΓA crosses only a
subset of the isochron family. The resulting PTC (purple curve) in Figure 1(b) is again a
smooth curve on the torus, but it is now topologically different. Indeed, for 0 ≤ A < Ac,
the PTC is a 1:1 torus knot, while for A > Ac, it is a 1 :0 torus knot [13, 17]; Winfree
called such resets Type-1 and Type-0 resets, respectively [22].
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Precisely at A = Ac, the PTC is singular: the point on Γ with phase ϑo ≈ 0.3484
resets to x∗. In Figure 1(b), the new phase ϑn approaches negative infinity in the
covering space R of ϑn as this value of ϑo is approached from either side. Winfree
referred to such an event as oscillator death [21] and he realized that it separates the
above topologically different cases of PTCs; see also [1, 6]. Remarkably, Winfree was
able to construct an idealized sketch of a surface in (ϑo, A,ϑn)-space [19, Figure 5],
based on approximately 300 experimental data points resulting from phase reset
experiments (on yeast cells) at varying phases ϑo and perturbation amplitudes A.
He observed that his sketch resembles a “spiral staircase rising counterclockwise”
and explained that the rotation axis points to an isolated singular stimulus in the
(ϑo, A)-plane; the singular stimulus is precisely the perturbation with amplitude A = Ac
that leads to an interaction with x∗. More precisely, Winfree’s surface is a helix with its
axis the vertical line through the point (ϑo, A) with A = Ac and ϑo the phase of the point
on Γ that resets to x∗ for this critical perturbation amplitude. Mathematically speaking,
Winfree’s spiralling staircase is a ruled surface, which requires that all isochrons are
straight rays and hence, do not spiral around the phaseless point. However, this is
not the typical situation for resets interacting with a single phaseless point, because it
requires that the period of the periodic orbit is exactly the time it takes to complete
a (small) rotation around the singularity. We suspect that the expansion rate near the
phaseless point (relative to the difference in rotation speed) was so strong in Winfree’s
experiment that the spiralling behaviour was very minimal and could not be resolved
in his experiment.

In this paper, we present the FitzHugh–Nagumo system as the typical case of phase
resetting in a planar system with a phaseless point. Specifically, the requirement is
that the isochrons spiral around this point because there is (generically) a difference
between the period of Γ and the rotational speed around the phaseless point. We
explained this in a previous work [14], where we studied a family of planar model
vector fields, also due to Winfree, for which the isochrons are known explicitly.
However, that example has rotational symmetry and, hence, is highly nongeneric. More
generally, studies to date of changes in the PTC for varying perturbation amplitudes
focused on similar simplified examples [3, 4, 12, 14, 20] that exhibit symmetries to
aid in the analysis, or on very realistic models [1, 6, 13, 16–18] with a complexity
that obscures the essential underlying mechanisms. In contrast, the FitzHugh–Nagumo
system has no symmetries and the difference in rotation speeds around Γ and x∗ is
sufficiently large to observe the details of the generic changes of the PTC, as the per-
turbation amplitude A is increased through Ac. This is in contrast to the example of the
Van der Pol system that was also studied in [14], but for which the difference in rotation
speed turned out to be too small—much like what we suspect was the case in Winfree’s
experiment [19]. Moreover, the Van der Pol system still has a symmetry; namely, it is
invariant under rotation by π around the origin, which is the phaseless point.

In this paper, we show that as A increases through Ac, there is an infinite sequence of
twin tangencies, where the phase reset is such that the shifted periodic orbit Γ has two
separate points of tangency with one and the same isochron. Each such twin tangency
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changes how many times the unit interval of ϑn is covered by the PTC, which increases
to infinity as A↗ Ac and then decreases again past A = Ac. We are able to identify
and illustrate clearly such twin tangencies of the FitzHugh–Nagumo system, which
is a representative for a generic planar vector field. Moreover, we discuss how these
changes of the PTC (for a given direction of perturbation) are encoded by the geometry
of the phase-resetting surface in (ϑo, A,ϑn)-space. Colloquially speaking, owing to
the spiralling nature of the isochrons near ϑn, this surface rolls up around a singular
vertical line at A = Ac and the corresponding value of ϑo, and this has the observed
consequences for the transition of the PTC. We also present a discussion of phase resets
with perturbations in different directions (given by an angle ϕd), which are associated
with different values of Ac and ϑo. To this end, we present the phase-resetting surface
in (ϑo,ϕd,ϑn)-space and show how it changes with the perturbation amplitude A. To
obtain these results, we compute isochrons and PTCs with a boundary-value problem
setup that was implemented within the package COCO [2] (see [9, 13, 16] for more
details).

This paper is organized as follows. In Section 2, we introduce the FitzHugh–Nagumo
system and state the specific parameter values we use. Section 3 then introduces its
PTC for a perturbation in the positive x-direction and how the PTC is defined as the
graph of a function that depends on the perturbation amplitude A. This includes a
discussion of the loss of invertibility of this function in Section 3.1 and its changes
due to twin tangencies in Section 3.2; the associated phase-resetting surface in
(ϑo, A,ϑn)-space is introduced and presented in Section 3.3. In Section 4, we discuss
the influence of the direction of the perturbation, as represented by the angle ϕd; the
five qualitatively different cases of the phase-resetting surface for fixed A are presented
and discussed in Section 4.1. We present in Section 5 a discussion and brief outlook
on possible future work, and include a short presentation of the computational setup
in Appendix A.

2. The FitzHugh–Nagumo system

Winfree [22] studied the FitzHugh–Nagumo system [5, 15] as a typical planar
example that cannot be analysed explicitly. He wrote the system as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ = c

(
y + x − 1

3
x3 + z

)
,

ẏ = −1
c

(x − a + b y),
(2.1)

and his interest was in the regime for which this system has an attracting periodic orbit
Γ with a repelling focus equilibrium x∗ as the single phaseless point. His numerical
explorations suggested that the isochron structure is extremely complicated, which
was later confirmed with more advanced computational methods [11]. An immediate
consequence of such a complex isochron structure is that the FitzHugh–Nagumo
system may feature complicated PTCs for phase resets well before the interaction
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TABLE 1. The values of the parameters of the FitzHugh–Nagumo system (2.1) that are used throughout.

Winfree’s values No time-scale separation Off-set from origin

a = 0.7 c = 1 z = −0.8
b = 0.8

with the phaseless point [13]. One particular reason for this complexity is a significant
difference in time scales between the evolutions of the x- and y-coordinates, as given
by the choice for the parameter c [12].

We consider system (2.1) in the same parameter regime as Winfree, but set
c = 1, so that there is effectively no time-scale separation; moreover, we introduce
the off-set z = −0.8 to move the equilibrium away from the origin. This choice of
parameter values is given in Table 1 and it results in the overall structure of isochrons
of the FitzHugh–Nagumo system as illustrated in Figure 1(a). More specifically,
the attracting periodic orbit Γ of system (2.1) has TΓ ≈ 10.8329 and it surrounds
the repelling focus x∗ ≈ (0.2729, 0.5339) with eigenvalues 0.0628 ± 0.5056 i, which
constitutes the only point in the phaseless set. As is the convention in the field, we
define the zero-phase point γ0 ≈ (0.9660, 0.1345) ∈ Γ as the point with the maximum
value of the x-coordinate. Since the motion along Γ is clockwise and the rotation
period around x∗ is larger than TΓ, the isochrons of Γ spiral around x∗ in the clockwise
direction [see Figure 1(a)].

3. PTCs for varying perturbation amplitude

The three PTCs illustrated in Figure 1 for the FitzHugh–Nagumo system (2.1) with
parameters as in Table 1 are only part of the story of the transition from a 1:1 to a 1:0
torus knot. As the perturbation amplitude A increases towards Ac, the PTC changes
dramatically. To aid the discussion, we define the phase-resetting function

PA : ϑo ∈ [0, 1)→ ϑn ∈ [0, 1) (3.1)

as the function from the old to the new phase, which has the PTC with given
perturbation amplitude A ≥ 0 as its graph, denoted as graph(PA). Throughout this
section, we consider exclusively perturbations in the fixed direction of increasing x,
in the form of an instantaneous reset that translates the x-coordinate to the value
at distance A in the positive direction, as was done in Figure 1. The phase-resetting
function P0 (in the absence of a perturbation) is the identity, meaning that the PTC for
A = 0 is the diagonal, labelled Γ in Figure 1(b) and similar figures. In particular, this
means that PA is invertible when A is sufficiently small. However, when A becomes
too large, invertibility of PA is lost.

3.1. Loss of invertibility Figure 2 illustrates the loss of invertibility in the style of
Figure 1 with the perturbation sets and PTCs for A = 0.09 (orange curves), A = 0.1793
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FIGURE 2. Transition through the cubic tangency at A ≈ 0.1793. Panel (a1) shows Γ (black), Γ0.09
(orange), Γ0.1793 (magenta) and Γ0.27 (purple), with the isochrons I0.0820 (olive), I0.0786 and I0.0030 (both light
blue); panel (b1) shows the corresponding three PTCs in matching colours in the fundamental square,
where the ϑn-values of tangencies are shown as horizontal lines. Panels (a2) and (b2) are respective
enlargements near the cubic tangency.

(magenta curves) and A = 0.27 (purple curves). Panels (a1) and (a2) of Figure 2 show
Γ with the three shifted perturbation sets together with three highlighted isochrons,
and panels (b1) and (b2) show the corresponding PTCs. The perturbation set ΓA for
A = 0.09 (orange curve) intersects all isochrons transversely and, consequently, PA is
invertible and the PTC is monotonically increasing. At A ≈ 0.1793, the perturbation set
(magenta curve) has a cubic tangency with the isochron I0.0820, which means that the
PTC has an inflection point at the value ϑn = 0.0820; see the enlargement panels (a2)
and (b2). For larger values of A, the perturbation set ΓA has quadratic tangencies with
two different isochrons; for the case A = 0.27 (purple curves) shown in Figure 2, these
are I0.0786 and I0.0030. As a consequence, the PTC is no longer invertible: for A = 0.27,
it has a local maximum at ϑn = 0.0786 and a local minimum at ϑn = 0.0030. Indeed,
Figure 2 clearly illustrates that the loss of invertibility of the PTC is due to the cubic
tangency of the perturbation set with an isochron; see also [13, 17].

3.2. First and last twin tangency As A is increased further towards Ac, the local
maximum of the PTC moves up in ϑn and its local minimum moves down. Since
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FIGURE 3. The first twin tangency at A ≈ 0.4032 < Ac. Panel (a1) shows Γ (black) with Γ0.4032 (magenta)
and the isochron I0.0881 (olive); and panel (a2) with its inset show successive enlargements near the twin
tangency points. The corresponding PTC is shown in panel (b) in the fundamental square (green shading)
and as a single smooth curve over the extended ϑn-range of [−1, 1].

ϑn is taken modulo 1 on the fundamental square, the local maximum and minimum
eventually have equal values, which marks a transition in terms of how many times
the full range of ϑn ∈ [0, 1) is covered by PA and, hence, the PTC. Geometrically,
when viewed in the phase plane, this means that the perturbation set has (quadratic)
tangencies with two isochrons that lie increasingly further apart in the family, until
their phase difference reaches 0.5; these two isochrons at which the tangencies occur
then come closer together and eventually become one and the same isochron. We call
this a twin tangency and Figure 3 illustrates the first one as A is increased, which occurs
at A ≈ 0.4032. Panel (a1) shows that Γ0.4032 (magenta) is tangent to the single isochron
I0.0881 (olive) at two different points; note from the enlargements in panel (a2) that
one of these tangencies is very close to the phaseless point x∗. The representation in
Figure 3(b) of the PTC over the extended ϑn-range [−1, 1] illustrates that its maximum
and minimum have a difference of 1 in the covering space and, hence, have the
same ϑn-value in the fundamental square. Notice that Γ0.4032 intersects every isochron
precisely three times; equivalently, the PTC in Figure 3(b) covers the ϑn-range [0, 1) of
the torus precisely three times. The PTC remains a 1:1 torus knot, because the overall
increase of ϑn with ϑo ∈ [0, 1) is still 1.
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FIGURE 4. The last twin tangency at A ≈ 0.4168 > Ac. Panel (a1) shows Γ (black) with Γ0.4168 (cyan) and
the isochron I0.0892 (olive); and panel (a2) and its inset are successive enlargements near the twin tangency
points. The corresponding PTC is shown in panel (b) in the fundamental square (green shading) and as a
single smooth curve over the extended ϑn-range of [−1, 1].

As Winfree already pointed out [19, 22], the PTC changes topological type from a
1:1 torus knot (Type-1 reset) to a 1:0 torus knot (Type-0 reset) when A is increased
through A = Ac. For the general case where the isochrons spiral around the phaseless
point, as is the case here, the PTC covers the unit ϑn-interval of the fundamental square
ever more as A is increased further towards Ac [14]. Specifically for system (2.1), the
minimum of the PTC moves towards increasingly lower values of ϑn, such that there
is an infinite sequence of twin tangencies, each increasing the number of coverings of
the unit interval by 2. For A = Ac, the unit ϑn-interval is covered infinitely many times,
and for A past the critical value Ac, there is a sequence of twin tangencies in reverse
that reduces the number of times the ϑn-range [0, 1) is covered. The difference is that,
at each twin tangency for A > Ac, the perturbation set ΓA now crosses all isochrons
exactly an even number of times. Figure 4 illustrates the last twin tangency of this
reverse sequence in the style of Figure 3. As panels (a1) and (a2) of Figure 4 show,
the perturbation set Γ0.4168 (magenta) has two points of quadratic tangency with one
and the same isochron I0.0892 (olive). Note that, compared with the first twin tangency,
the perturbation set and the second tangency point is now “on the other side” of the
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phaseless point x∗. The PTC in Figure 4(b) is now a 1:0 torus knot that covers [0, 1)
exactly twice. After this last twin tangency, for A > 0.4168, the PTC loses surjectivity
and no longer covers the full range of ϑn: the transition through Ac is complete (see the
case for A = 0.6 in Figure 1(b)).

3.3. Phase-resetting surface near its singularity The entire transition of the
PTC through Ac can be represented geometrically by the phase-resetting surface
consisting of the PTCs for any A. More formally, we now consider the function
P(ϑo, A) := PA(ϑo) over the (ϑo, A)-plane, and the phase-resetting surface of system
(2.1) in (ϑo, A,ϑn)-space is graph(P) = {graph(PA) | A ∈ R≥0}. This surface is shown
in Figure 5(a). Specifically, we plot the phase-resetting surface over the extended
ϑn-range [−1, 2], so that, effectively, three copies or sheets are shown. Our focus here
is on a neighbourhood of the singular parameter point S given by A = Ac ≈ 0.4041 and
ϑo ≈ 0.3484, for which the corresponding point on the periodic orbit Γmaps exactly to
x∗. In (ϑo, A,ϑn)-space, this parameter point S gives rise to a singular vertical line, and
the phase-resetting surface spirals around it. To aid in its interpretation, Figure 5(a)
also shows two lifts each of three PTCs: the PTC for Γ0.35 (orange), which is a 1 :1
torus knot; the singular PTC for Γ0.4041 (red) with singularity at S; and the PTC for
Γ0.45 (purple), which is a 1 :0 torus knot.

Figure 5(b) shows a very different surface: the one that is swept out by the isochrons
when they are shown in (x, y,ϑ)-space in terms of their ϑ-value; here, we also show
three copies over the extended ϑ-range [−1, 2]. This isochron surface was generated
and rendered from the 50 computed isochrons, which are highlighted on the surface for
ϑ ∈ [0, 1). The focus is on a region near the phaseless point x∗, which similarly gives
rise to a singular vertical line around which the isochrons spiral. Observe the striking
similarity between the phase-resetting surface near S in Figure 5(a) and the isochron
surface near x∗ in panel (b). This is explained by the fact that points (ϑo, A) near S
are mapped smoothly and uniquely to points in the (x, y)-plane near x∗ by the “action”
of the perturbation map, given by (ϑo, A) 	→ γ(ϑo) + (A, 0) with γ(ϑo) ∈ Γ. Locally
near the singular point S and the phaseless set x∗, this perturbation map from the
(ϑo, A)-plane to the (x, y)-plane is a bijection [14]. Hence, the phase-resetting surface
in Figure 5(a) is the diffeomorphic image of the isochron surface in Figure 5(b) under
the local inverse of the perturbation map. In particular, it follows that the level set
of the phase-resetting surface for any fixed value of ϑn is a spiral that accumulates
on (but never reaches) the respective point on the vertical line S. In fact, the surface in
Figure 5(a) was rendered from a selection of such spirals, each of which was computed
as a curve for a fixed value of ϑn.

The spiralling nature of the phase-resetting surface around the line S in
(ϑo, A,ϑn)-space is the “geometric encoding” of the fact that the transition of the
PTC, as A is increased through Ac, necessarily involves infinite sequences of twin
tangencies, as was discussed in Section 3.2. In turn, this is a direct consequence of the
spiralling of the isochrons around x∗ in the (x, y)-plane. The illustration of this insight
in Figure 5 for the FitzHugh–Nagumo system represents the generic case of a planar
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FIGURE 5. Geometry of the phase-resetting surface of system (2.1). Panel (a) shows graph(P) in
(ϑo, A,ϑn)-space near its singular vertical line S over the extended ϑn-range [−1, 2]; also shown are two
lifts each of the PTCs for Γ0.35 (orange), Γ0.4041 (red) and Γ0.45 (purple). Panel (b) shows, for comparison,
the surface swept out by the isochrons in (x, y,ϑ)-space near the phaseless set x∗, over the extended
ϑ-range [−1, 2]; the 50 computed isochrons from Figure 1(a) are highlighted for ϑ ∈ [0, 1].

vector field; a similar illustration is shown in [14, Figure 8] for a constructed example
due to Winfree with rotational symmetry and analytically known isochrons.

4. Varying the direction of perturbation

The application context of the FitzHugh–Nagumo system led us to consider only
perturbations in the direction of positive x. However, there is actually no mathematical
reason for taking the “traditional” point of view that the direction of the perturbation
is fixed. In fact, varying the direction of the perturbation is feasible in experiments,
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such as those with self-pulsing semiconductor lasers, where a short external input can
be applied to the electrical pump current and/or directly to the optical intensity; and
coupled oscillators of any sort, where a perturbation may enter at different strengths
for different oscillators. This realization motivates us to extend the earlier definition
(3.1) of the phase resetting function PA to include the direction of the perturbation as
an additional variable [14]. More precisely, we define the unit direction vector

d := d(ϕd) =

[
cos (2π ϕd)
sin (2π ϕd)

]

for any direction angle ϕd ∈ [0, 1). (Here and throughout, we consider Euclidean
distance.) The definition of PA can then be extended to the domain

PA : [0, 1) × [0, 1)→ [0, 1); (ϑo,ϕd) 	→ ϑn,

where the image ϑn is given by the phase of the isochron that contains the point
γ(ϑo) + A d(ϕd), resulting from a reset at the point γ(ϑo) ∈ Γ.

For ϕd = 0, the unit vector d(ϕd) is exclusively in the direction of positive x only,
which is the case we considered in Section 3. The entire transition scenario of the
PTC from 1:1 to 1:0 torus knot we presented is generated solely by the fact that
the perturbation set of the periodic orbit moves through the phaseless point x∗ as the
perturbation amplitude is increased through the critical amplitude Ac. For ϕd = 0, this
happens at A = Ac ≈ 0.4041 and at the unique point γ(ϑo) ∈ Γ of phase ϑo ≈ 0.3484.
However, since Γ surrounds x∗, this will also happen for an increasing perturbation
amplitude in any direction, albeit for a different value of the critical amplitude Ac and
at a different phase ϑo.

Figure 6 illustrates how the critical perturbation amplitude Ac depends on the
perturbation direction d(ϕd), with ϕd ∈ [0, 1), and the phase ϑo ∈ [0, 1) at which the
reset is applied. Panel (a) shows Γ together with 50 isochrons evenly distributed
in phase. We labelled four points on Γ, which are local extrema of the pointwise
distance between Γ and x∗. Observe that for any ϑo ∈ [0, 1), the point γ(ϑo) ∈ Γ
is shifted exactly to x∗ by the vector x∗ − γ(ϑo); in other words, γ(ϑo) resets to
x∗ for the perturbation with amplitude Ac = ||x∗ − γ(ϑo)|| in the unique direction
d = (x∗ − γ(ϑo))/||x∗ − γ(ϑo)||. In particular, the critical perturbation amplitude Ac

achieves a local maximum or minimum when viewed as a function of ϑo or,
alternatively, as a function of the angle ϕd of d as defined above. These two graphs
are also shown in Figure 6: Ac as a function of ϑo ∈ [0, 1) in panel (b) and Ac as a
function of ϕd ∈ [0, 1) in panel (c). The extrema of each graph have the same Ac-values
and we first discuss how they divide the Ac-axis into five different ranges. Section 4.1
then presents and discusses the corresponding five phase-resetting surfaces, which are
shown in Figures 7–11.

The critical perturbation amplitude has a global minimum of Ac ≈ 0.2805, at ϑo ≈
0.2981 and at ϕd ≈ 0.1324, given by the points labelled f1 in panels (a), (b) and (c)
of Figure 6. Hence, any phase reset, in any direction, with perturbation amplitude
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FIGURE 6. Determining the critical perturbation amplitude Ac. Panel (a) shows Γ (black curve) with 50
isochrons evenly distributed in phase and the points labelled f1, f ∗1 (blue) and f2, f ∗2 (red) marked on Γ
that lie respectively at (locally) minimal and maximal distances from the source x∗. Panels (b) and (c)
show the graphs of Ac as a function of ϑo and ϕd, respectively, with the branches labelled s1, s∗1, s2 and
s∗2 giving the values of ϑo and ϕd that achieve singular phase resets for a chosen Ac; the three horizontal
lines at A = 0.35, A = 0.6 and A = 0.95 thus identify the singular points shown in Figures 8, 9 and 10,
respectively.

0 ≤ A < 0.2805, leads to a PTC that is a 1 :1 torus knot, because the effect is a small
shift of Γ that involves no interaction with x∗. Similarly, Ac has a global maximum
of Ac ≈ 1.3051, labelled f2 in Figure 6, at ϑo ≈ 0.5971 and at ϕd ≈ 0.8702. Any phase
reset, in any direction, with perturbation amplitude A > 1.3051 leads to a PTC that is
a 1 :0 torus knot, because the perturbed orbit no longer encloses x∗. However, for any
perturbation amplitude A in the range [0.2805, 1.3051], there exists a direction angle
ϕd ∈ [0, 1) such that PTC has a discontinuity; this direction angle is generically not
unique.

The existing pairs (ϑo,ϕd) that lead to a singular phase reset are given by the
intersection points of the graphs in Figures 6(b) and 6(c) with a horizontal line at
the selected value of Ac; each such intersection point lies on one of four branches
labelled s1, s2, s∗1 and s∗2. How many there are depends on the level of Ac relative to
the two other extremal points f ∗1 and f ∗2 : a local minimum and a local maximum of
the distance from x∗ of Ac ≈ 0.4134 and Ac ≈ 0.8519, respectively. For any phase reset
with perturbation amplitude A in the range (0.2805, 0.4134), the horizontal line with
Ac = A intersects only the branches s1 and s2; for A ∈ (0.4134, 0.8519), it intersects all
four branches; and for A ∈ (0.8519, 1.3051), it intersects only the branches s2 and s∗1.
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FIGURE 7. Three copies of the phase-resetting surface graph(PA) of system (2.1) shown in
(ϑo,ϕd,ϑn)-space for ϑn ∈ [−0.5, 2.5] with A = 0.2.

Hence, in these ranges, there are two, four and again two particular phases along Γ that
reset to x∗, provided the associated specific direction angle ϕd ∈ [0, 1) is selected. Each
such reset to x∗ corresponds to a singularity where the phase reset is not defined; the
three horizontal lines indicate the representative values of A we chose in Figures 8–10
to present the corresponding phase-resetting surfaces with singularities.

4.1. Phase-resetting surface for fixed A To illustrate the influence of the direction
d of the perturbation, we now consider graph(PA) in (ϑo,ϕd,ϑn)-space for different
values of the perturbation amplitude A. As we discussed above, there are five different
generic cases, corresponding to the five A-ranges generated by the values of Ac at the
four extrema f1, f ∗1 , f2 and f ∗2 . They are presented in Figures 7–11, where we show three
copies or sheets of graph(PA) over the extended ϑn-range [−0.5, 2.5].

Figure 7 shows the phase-resetting surface graph(PA) for A = 0.2, representing the
A-interval [0, 0.2805). Here, the PTC for any ϕd is a 1 :1 torus knot, which means that
the three sheets of graph(PA) are tilted so that the value of ϑn increases by 1 as ϑo

varies from 0 to 1.
Figure 8 shows the situation for A = 0.35, representing A ∈ (0.2805, 0.4134). Panel

(a) shows three sheets of graph(PA) in (ϑo,ϕd,ϑn)-space with the PTCs for the
ϕd-values 0.2 and 0.5, panel (b) provides a “top-down” view in projection onto the
(ϑo,ϕd)-plane, and the two PTCs are shown in panel (c) on the fundamental square.
As Figure 8(a) shows, the three sheets of graph(PA) now all wrap around two singular
vertical lines labelled s1 and s2; these singularities are at (ϑo,ϕd) ≈ (0.2585, 0.2372)
and (ϑo,ϕd) ≈ (0.3346, 0.0258), and they are created, for increasing A, when the
global minimum f1 at Ac ≈ 0.2805 is passed in Figures 6(b) and 6(c), so that the
branches s1 and s2 are intersected. As Figure 8(b) illustrates with a top view, there
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FIGURE 8. Panel (a) shows three copies of the phase-resetting surface graph(PA) of system (2.1) in
(ϑo,ϕd,ϑn)-space for ϑn ∈ [−0.5, 2.5] with A = 0.35, featuring two singularities s1 and s2 (grey vertical
lines); also shown are the two PTCs for ϕd = 0.2 (purple) and ϕd = 0.5 (orange). Panel (b) is a projection
of panel (a) onto the (ϑo,ϕd)-plane and panel (c) shows the two PTCs on the fundamental square (green
shading) of the (ϑo,ϑn)-plane.

is now the “window” (0.0258, 0.2372) of ϕd-values in between their “singular” values
corresponding to s1 and s2, for which the PTC is already a 1:0 torus knot; for the
complement ϕd ∈ [0, 1) \ [0.0258, 0.2372], the PTC is still a 1 :1 torus knot. The PTCs
for ϕd = 0.2 and ϕd = 0.5 in panel (c) are representative examples of these two cases.
Exactly for the ϕd-values of the singularities s1 and s2, the PTC has a discontinuity as
the one for A = Ac shown in Figure 1(b).

Figure 9 shows the phase-resetting surface graph(PA) for A = 0.6, which is
representative for the A-interval (0.4134, 0.8519), where one finds the four singularities
s1, s2, s∗1 and s∗2. Consequently, PTCs without discontinuities for this A-range are found
in four ϕd-ranges. The singularities s1 and s2 are now at (ϑo,ϕd) ≈ (0.1857, 0.3188)
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FIGURE 9. Panel (a) shows three copies of the phase-resetting surface graph(PA) of system (2.1) in
(ϑo,ϕd,ϑn)-space for ϑn ∈ [−0.5, 2.5] with A = 0.6, featuring four singularities s1, s2, s∗1 and s∗2 (grey
vertical lines); also shown are the four PTCs for ϕd = 0.2 (orange), ϕd = 0.4 (purple), ϕd = 0.55 (red) and
ϕd = 0.8 (blue). Panel (b) is a projection of panel (a) onto the (ϑo,ϕd)-plane and panel (c) shows the four
PTCs on the fundamental square (green shading) of the (ϑo,ϑn)-plane.

and (ϑo,ϕd) ≈ (0.3883, 0.9508), respectively. Moreover, there are two additional
singularities s∗1 and s∗2 at (ϑo,ϕd) ≈ (0.7651, 0.8135) and (ϑo,ϕd) ≈ (0.9368, 0.4768),
respectively. The phase-resetting surface graph(PA) in Figure 9(a) now wraps around
all four singular vertical lines s1, s2, s∗1 and s∗2. Resets in directions corresponding
to the associated singular ϕd-values lead to discontinuous PTCs. As the top view in
panel (b) shows, there are now two “windows” of ϕd-values for which the PTC is
already a 1:0 torus knot: the one between s1 and s2 for ϕd ∈ (0.9508 − 1, 0.3188),
which is wider than in Figure 7, and there is also a second window between s∗1 and
s∗2 for ϕd ∈ (0.4768, 0.8135). The PTCs for ϕd = 0.2 and ϕd = 0.55 in Figure 9(c)
are representative examples for these two ϕd-ranges of 1 :0 torus knots. In the two
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FIGURE 10. Panel (a) shows three copies of the phase-resetting surface graph(PA) of system (2.1) in
(ϑo,ϕd,ϑn)-space for ϑn ∈ [−0.5, 2.5] with A = 0.95, featuring two singularities s∗1 and s2 (grey vertical
lines); also shown are the two PTCs for ϕd = 0.5 (red) and ϕd = 0.85 (blue). Panel (b) is a projection of
panel (a) onto the (ϑo,ϕd)-plane and panel (c) shows the two PTCs on the fundamental square (green
shading) of the (ϑo,ϑn)-plane.

complementary ϕd-ranges, however, the PTC is still a 1 :1 torus knot, such as the
PTCs for ϕd = 0.4 and ϕd = 0.8 in panel (c).

As A is increased, the singular points s1 and s∗2 move closer together, and
they merge and disappear at the local maximum f ∗2 at Ac ≈ 0.8519. Figure 10(a)
shows the phase-resetting surface graph(PA) for A = 0.95, which is representative
for the A-interval (0.8519, 1.3051). Again, only two singularities remain, namely, s∗1
and s2 at (0.7445, 0.8236) and (0.4559, 0.9126), respectively. The geometry of the
phase-resetting surface graph(PA) in panel (a) looks again like that in Figure 8(a), but
the difference is that the PTC is now a 1:0 torus knot for almost all values of ϕd, except
for the ϕd-range (0.8236, 0.9126) in between s∗1 and s2; see Figures 10(b) and 10(c) for
the two PTCs for the ϕd-values 0.5 and 0.85 that are representatives of these two cases.
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FIGURE 11. Three copies of the phase-resetting surface graph(PA) of system (2.1) shown in
(ϑo,ϕd,ϑn)-space for ϑn ∈ [−0.5, 2.5] with A = 0.95.

As A is increased further through the global maximum f2 at Ac ≈ 1.3051, also s∗1
and s2 disappear and graph(PA) is as shown in Figure 11 for the representative value
A = 1.4. Here, the three sheets shown are such that there is no increase of ϑn when ϑo

varies from 0 to 1 and, hence, all PTCs are 1 :0 torus knots. Notice, however, that the
three sheets are just tilted differently compared with the three sheets in Figure 7, for
which all PTCs are 1 :1 torus knots. In Figure 11, the value of ϑn increases by one as
the direction angle ϕd, rather than the old phase ϑo, varies from 0 to 1.

5. Conclusion and outlook

We studied phase resetting in the FitzHugh–Nagumo system (2.1), with a stable
periodic orbit Γ surrounding a repelling focus x∗, which is the only point not in the
basin of attraction. Perturbations at phase ϑo, with amplitude A and in the direction
d(ϕd), result in a new phase ϑn. We considered first the perturbations in the direction
of increasing x, which is “standard” for the FitzHugh–Nagumo system. The phase
transition curve is the graph of the function PA(ϑo) that “records” the phase ϑn

after a perturbation at the point γ(ϑo) ∈ Γ of strength A. The information of all
PTCs can be represented by the phase-resetting surface, which is the graph of the
function P(ϑo, A) = PA(ϑo), where A is also viewed as an input. This surface in
(ϑo, A,ϑn)-space effectively provides an atlas of phase resetting: each PTC is a “slice”
through graph(P) for the corresponding amplitude A. The phase-resetting surface has a
singularity S when the perturbation moves a point on Γ exactly to the phaseless set x∗.
As Winfree already pointed out, moving the PTC across such a singularity changes it
from being a 1:1 to a 1:0 torus knot, or vice versa, while at the critical amplitude Ac,
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the PTC is discontinuous. Owing to the spiralling nature of the isochrons near x∗,
the phase-resetting surface graph(P) wraps around a vertical line at the singular
point S. This explains the existence of twin tangencies during the transition through
such a “spiralling” singularity, whereby the number of coverings of the fundamental
ϑn-interval [0, 1) by the PTC first increases and then decreases; we identified and
illustrated such twin tangencies of the FitzHugh–Nagumo system.

We also considered the influence of the direction angle ϕd on the PTC. To this end,
we computed the phase-resetting surface graph(PA) of the FitzHugh–Nagumo system
(2.1) as a function of both ϑo and ϕd, which we showed for five representative values of
the perturbation amplitude A. The transition with increasing A of the phase-resetting
surface graph(PA) in (ϑo,ϕd,ϑn)-space, which we illustrated in Figures 7–11, is typical
for the situation where a convex periodic orbit Γ of a planar vector field surrounds a
single phaseless point x∗ in the form of a repelling focus equilibrium. The aspects of
what we mean by typical are: (1) the speed of rotation around Γ and locally around
x∗ are different, so that the isochrons spiral into x∗; (2) there are two minima and two
maxima of the distance ||x∗ − γ(ϑo)|| of x∗ from any point on Γ; and (3) these are in
general position (do not have the same values). The FitzHugh–Nagumo system (2.1)
is also typical in that its isochrons and PTC are not known analytically and need to
be found numerically. By solving suitably formulated multi-segment boundary value
problems, we computed a sufficient number of “slices”, from which the respective
phase-resetting surfaces were then rendered (see the Appendix and [13, 14] for more
details on the computational setup).

We remark that the example of the Van der Pol system we discussed in [14] is
not typical or generic: due to its invariance under rotation by π, the two minima and
the maxima of the distance from the phaseless set are identical. Hence, one does
not encounter the intermediate cases with just two singularities that we showed in
Figures 8 and 10. Moreover, we found that the rotation of the isochrons near x∗, while
nonzero, is not pronounced enough in the Van der Pol system to observe properly
the wrapping of the phase-resetting surface around vertical lines of singularities.
This can be considered a “shortcoming” of the Van der Pol example, which the
FitzHugh–Nagumo system does not have. While we focused on how the PTC changes,
we mention that one can also consider the directional transition curve (DTC), obtained
by considering ϑn as a function of ϕd for fixed ϑo and A. There is an interesting duality
between the PTC and the DTC in terms of its properties near the singularity, which is
discussed in considerable detail in [14].

The results we presented here for the FitzHugh–Nagumo system (2.1) are typical,
but there are other generic scenarios one may encounter in planar vector fields.
First of all, when the phaseless point x∗ is very close to a convex periodic orbit Γ
surrounding it, the distance ||x∗ − γ(ϑo)||may only have a single minimum and a single
maximum. Moreover, Γ might not be convex, which could lead to the existence of
more than two pairs of (local) minima and maxima of the distance, which are again,
generically, in general position. The transition for increasing A of the phase-resetting
surface graph(PA) in (ϑo,ϕd,ϑn)-space through such different sequences of minima
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and maxima follows immediately from the arguments we presented here. A more
interesting situation is that the phaseless set inside Γ no longer consists of a single
point. For example, it could be a disk bounded by a repelling periodic orbit or
be the closure of the stable manifold of a saddle equilibrium (see [8, 9] for such
examples). In either case, the PTC will be discontinuous at more than just a single
point. The associated consequences for the phase-resetting surface can be investigated
in the geometric spirit we adopted here, but this remains an interesting subject for
future research. Finally, a challenging subject of our ongoing research concerns phase
resetting in higher-dimensional systems. The issue here is that the basin boundary
of the attracting periodic orbit under consideration may be very complicated; in
particular, it will contain the (generally higher-dimensional) stable manifolds of any
saddle equilibria and periodic orbits.
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Appendix A. Boundary value problem formulation for isochrons and phase
resets

Isochrons and phase-resetting curves cannot be derived analytically for a typical
system and, hence, need to be computed numerically. We employ a multi-segment
boundary value problem (BVP) approach to compute different objects as outlined
below. The code for the computation of isochrons of planar systems, implemented in
the Matlab-based package COCO [2], is freely available with a detailed tutorial in the
Supplementary Material of [9]. Details of the related computation of phase resetting
curves can be found in [13].

The key idea of the BVP approach is to implement the relationship between ϑo

and ϑn given by the phase-resetting function PA from (3.1) for given amplitude A
and perturbation direction d = d(ϕd) from (4). Our computational setup is illustrated
in Figure 12 for the FitzHugh–Nagumo system (2.1) with d = d(0) = (1, 0)T . Its
key ingredient is an orbit segment u = {u(s) | s ∈ [0, 1]} that satisfies the differential
equation

u′ = K TΓ F(u), (A.1)

where F : R2 → R2 is sufficiently smooth and time is rescaled by a multiple K ∈ N of
the period TΓ of the attracting periodic orbit Γ under consideration. Note that Γ with
its period TΓ, zero-phase point γ0 and stable Floquet bundle can be obtained with a
standard BVP setup [9, 16]. Hence, we assume here that they are known.

The orbit segment u is subject to the boundary conditions

u(0) = γϑo + A d(ϕd) = γϑo + A [cos (ϕd), sin (ϕd)], (A.2)

u(1) = γϑn + η vϑn , (A.3)

https://doi.org/10.1017/S1446181125000082 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181125000082


[21] Generic planar phase resetting near a phaseless point 21

FIGURE 12. The BVP setup with the orbit segments u (magenta) and w (grey) relating ϑo and ϑn,
illustrated for the FitzHugh–Nagumo system (2.1) with ϕd = 0, givingPA(0.5) = 0.6 for A ≈ 0.3899. Also
shown are the periodic orbit Γ (black) with the points γ0, γϑo and γϑn , the stable unit Floquet vector vϑn

(olive), and 50 isochrons (light grey) uniformly distributed in phase, where the respective branch of Iϑn

(blue) is highlighted.

where vϑn is the stable unit Floquet vector at γϑn ∈ Γ and the distance η ∈ R from γϑn is
small. While γϑo is taken as input here, the point γϑn is given by its phase shift ϑn from
γ0, as determined by the auxiliary orbit segment w with w(0) = γ0 and w(1) = γϑn ;
finding γϑn in this way also means that vϑn is known; see [13] for further details.

When η in (A.3) is sufficiently small, u(1) lies on the isochron Iϑn to good
approximation; this can be achieved by choosing K in (A.1) large enough. Since
the integration time is a multiple of TΓ, the point u(0) also lies on Iϑn to good
approximation. In Figure 12, we show the case K = 1 with a rather large η for
illustrative purposes; specifically, we have that PA(0.5) = 0.6 for A ≈ 0.3899.

The BVP (A.1)–(A.3) for u is very flexible and allows the computation of different
kinds of objects of interest. The isochron Iϑn (of a planar system) for fixed ϑn is traced
out by u(0) as an arclength parametrized curve by performing a continuation in η; here,
we ensure that η is always sufficiently small by increasing K as necessary [9, 11, 16].
Moreover, when choosing ϑo as the continuation parameter for fixed ϕd and A, one
generates the PTC as the graph (ϑo,PA(ϑo)). Finally, a phase-resetting surface can
be constructed and rendered from a sequence of PTCs computed for a suitable set of
values of either A or ϕd; it is also possible to construct it from curves at given “heights”,
which can be found by fixing ϑn at a suitable set of values.
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