
London Mathematical Society ISSN 1461–1570

COMPUTING MODULAR POLYNOMIALS

DENIS CHARLES and KRISTIN LAUTER

Abstract

This paper presents a new probabilistic algorithm to compute
modular polynomials modulo a prime. Modular polynomials
parameterize pairs of isogenous elliptic curves, and are useful in
many aspects of computational number theory and cryptography.
The algorithm presented here has the distinguishing feature that it
does not involve the computation of Fourier coefficients of modular
forms. The need to compute the exponentially large integral coeffi-
cients is avoided by working directly modulo a prime, and computing
isogenies between elliptic curves via Vélu’s formulas.

1. Introduction

The �th modular polynomial, φ�(x, y), parameterizes pairs of elliptic curves with a cyclic
isogeny of degree � between them. Modular polynomials provide the defining equations for
modular curves, and are useful in many different aspects of computational number theory
and cryptography. For example, computations with modular polynomials have been used
to speed elliptic curve point-counting algorithms [3, Chapter VII].

The standard method of computing modular polynomials consists of computing the
Fourier expansion of the modular j-function and solving a linear system of equations to
obtain the integral coefficients of φ�(x, y). According to Elkies (see [7, Section 3]), this
method has a running time of O(�4+ε) if one uses fast multiplication. However, our analysis
(given in Appendix A) shows that the running time of this method is, in fact, �(�9/2+ε)

using fast multiplication.
The object of the current paper is to compute the modular polynomial (for prime �)

directly modulo a prime p, without first computing the coefficients as integers. Once the
modular polynomial has been computed for enough small primes, our approach can also be
combined with the Chinese remainder theorem (CRT) approach as in [5] or [1] to obtain the
modular polynomial with integral coefficients, or with coefficients modulo a much larger
prime using explicit CRT. Our algorithm does not involve computing Fourier coefficients
of modular functions. The running time of our algorithm turns out to be O(�4+ε) using
fast multiplication. We believe our method is interesting as it is asymptotically faster; it
provides an essentially different approach to computing modular polynomials. Furthermore,
our algorithm also yields as a corollary a fast way to compute a random �-isogeny of an
elliptic curve over a finite field.

The idea of our algorithm is as follows. Mestre’s algorithm, Méthode des graphes [10],
uses the �th modular polynomial modulo p to navigate around the connected graph of
supersingular elliptic curves over Fp2 in order to compute the number of edges (isogenies
of degree �) between each node. From the graph, Mestre then obtains the �th Brandt matrix

Received 22 January 2005, revised 2 June 2005; published 6 September 2005.
2000 Mathematics Subject Classification 11G18, 11Y16 (primary), 14H52, 14G50 (secondary).
© 2005, Denis Charles and Kristin Lauter

LMS J. Comput. Math. 8 (2005) 195–204https://doi.org/10.1112/S1461157000000954 Published online by Cambridge University Press

http://www.lms.ac.uk
http://www.lms.ac.uk/jcm/
http://www.lms.ac.uk/jcm/8
https://doi.org/10.1112/S1461157000000954

Computing modular polynomials

giving the action of the �th Hecke operator on modular forms of weight 2. In our algorithm,
we do the opposite: we compute the �th modular polynomial modulo p by computing all
the isogenies of degree � between supersingular curves modulo p via Vélu’s formulae.
Specifically, for a given j-invariant, j (say), of a supersingular elliptic curve over Fp2 ,
Algorithm 1 computes φ�(x, j) modulo p by computing the � + 1 distinct subgroups of
order � and computing the j-invariants of the �+1 corresponding �-isogenous elliptic curves.
Algorithm 2 then uses the connectedness of the graph of supersingular elliptic curves over
Fp2 to move around the graph, calling Algorithm 1 for different values of j until enough
information is obtained to compute φ�(x, y) modulo p via interpolation.

There are several interesting aspects to Algorithms 1 and 2 . Algorithm 1 does not use
the factorization of the �-division polynomials to produce the subgroups of order �. Instead,
we generate independent �-torsion points by picking random points with coordinates in a
suitable extension of Fp and taking a scalar multiple which is the group order divided by �.
This turns out to be more efficient than factoring the �th division polynomial for large �.

Algorithm 2 computes φ�(x, y) modulo p by doing only computations with supersingular
elliptic curves in characteristic p, even though φ�(x, y) is a general object giving information
about isogenies between elliptic curves in characteristic 0 and ordinary elliptic curves in
characteristic p. The advantage that we gain by using supersingular elliptic curves is that
we can show that the full �-torsion is defined over an extension of degree O(�) of the base
field Fp2 , whereas in general the field of definition can be of degree as high as �2 − 1.

In this paper we provide a running-time analysis assuming fast multiplication implemen-
tation of field operations. For small values of �, however, fast multiplication is not usually
used in practice, and thus we also give the running time (without the analysis) assuming a
naïve implementation of field operations.

2. Local computation of φ�(x, j)

The key ingredient of the algorithm is the computation of the univariate polynomial
φ�(x, j) modulo a prime p, given a j-invariant j . We describe the method to do this here.

Algorithm 1.
Input: Two distinct primes p and �, and j the j-invariant of a supersingular elliptic curve

E over a finite field Fq of degree at most 2 over a prime field of characteristic p.
Output: The polynomial φ�(x, j) = ∏

E′ �-isogenous to E(x − j (E′)) ∈ Fp2 [x].
Step 1. Find the generators P and Q of E[�].

(a) Let n be such that Fq(E[�]) ⊆ Fqn .

(b) Let S = �E(Fqn), the number of Fqn rational points on E.

(c) Set s = S/�k , where �k is the largest power of � that divides S (note: k � 2).

(d) Pick two points P and Q at random from E[�], as follows.

(i) Pick two points U, V at random from E(Fqn).
(ii) Set P ′ = sU and Q′ = sV ; if either P ′ or Q′ equals O, then repeat step (i).

(iii) Find the smallest i1, i2 such that �i1P ′ �= O and �i2Q′ �= O but �i1+1P ′ = O
and �i2+1Q′ = O.
(iv) Set P = �i1P ′ and Q = �i2Q′.

(e) Using Shanks’s baby-steps-giant-steps algorithm, check if Q belongs to the group
generated by P . If so, repeat Step (d).

196https://doi.org/10.1112/S1461157000000954 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000954

Computing modular polynomials

Step 2. Find the j-invariants j1, . . . , j�+1 in Fp2 of the � + 1 elliptic curves that are
�-isogenous to E.

(a) Let G1 = 〈Q〉 and G1+i = 〈P + (i − 1)Q〉 for 1 � i � �.

(b) For each i, 1 � i � � + 1, compute the j-invariant of the elliptic curve E/Gi using
Vélu’s formulas.

Step 3. Output φ�(x, j) = ∏
1�i��+1(x − ji).

Remark 2.1. In Step 1(e), one could alternatively use the Weil pairing to check whether P

and Q generate the �-torsion. Doing so, however, does not lead to an asymptotic improve-
ment in the running time of the algorithm.

The following lemma gives the possibilities for the value of n in Step 1(a). We prove the
following result for all elliptic curves, not just supersingular ones.

Lemma 2.2. Let E/Fq be an elliptic curve, and let � be a prime not equal to the characteristic
of Fq . Then E[�] ⊆ E(Fqn), where n is a divisor of either �(� − 1) or �2 − 1.

Proof. The Weil-pairing tells us that if E[�] ⊆ Fqn , then µ� ⊆ Fqn [14, Corollary 8.1.1].
However, we are seeking an upper bound on n, and to do this we use the Galois representation
coming from the �-division points of E. Indeed, we have an injective group homomorphism
(see [14, Chapter III, Section 7])

ρ� : Gal(Fq(E[�])/Fq) −→ Aut(E[�]) ∼= GL2(F�).

The Galois group Gal(Fq(E[�])/Fq) is cyclic, and thus by ρ� the possibilities for
Gal(Fq(E[�])/Fq) are limited to cyclic subgroups of GL2(F�). In other words, we are
interested in the orders of the elements in GL2(F�). The elements of GL2(F�) are conjugate
to one of the following types of matrices:(

α 0
0 β

)
or

(
α 1
0 α

)
, for α, β ∈ F∗

�, α �= β,

or those corresponding to multiplication by an element of F∗
�2 on the two-dimensional F�

vector space F�2 . It is easy to see that the orders of these elements all divide �(� − 1) or
�2 − 1. Thus the degree of the field extension containing the �-torsion points on E must
divide either �(� − 1) or �2 − 1.

We will try Step 1 with n = �2 − 1; if Steps 1(d)–(e) do not succeed for some K many
trials (where K is a constant), then we repeat with n = �(� − 1). The analysis that follows
shows that a sufficiently large constant K will work.

For Step 1(b), we do not need a point-counting algorithm to determine S. Since E is a
supersingular elliptic curve, we have the following choices for the trace of Frobenius aq :

aq =
{

0 if E is over Fp,

0, ±p, ±2p if E is over Fp2 .

Not all the possibilities can occur for certain primes (see [12]), but we will not use this fact
here. If the curve is over Fp2 , we can determine the value of aq probabilistically, as follows.
Pick a point P at random from E(Fq) and check if (q + 1 + aq)P = O. Since the pairwise
gcd’s of the possible group orders divide 4, with high probability only the correct value
of aq will annihilate the point. Thus in O(log2+o(1) q) time we can determine with high
probability the correct value of aq . Once we know the correct trace aq , we can find (in Q)

197https://doi.org/10.1112/S1461157000000954 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000954

Computing modular polynomials

the roots, π and π , of the characteristic polynomial of the Frobenius φ2 − aqφ + q. Then
the number of points lying on E over the field Fqn is given by qn + 1 − πn − πn, and this
gives us S.

Note. We could have used a deterministic point-counting algorithm to find �E(Fq), but this
would have cost O(log6 q) field operations.

A lower bound on the probability that Step 1(d) will succeed is given by the following
lemma, the proof of which is straightforward.

Lemma 2.3. For a random choice of the points U and V in Step 1(d(i)), the probability
that Step 1(d(ii)) will succeed is at least(

1 − 1

�2

)2

.

At the end of Step 1(d) we have two random �-torsion points of E, namely P and Q. The
probability that Q belongs to the cyclic group generated by P is �/�2 = 1/�. Thus with
high probability we will find in Step 1(e) two generators for E[�].
Lemma 2.4. The expected running time of Step 1 is

O(�4+o(1) log2+o(1) q)

with fast multiplication, and

O(�6 log3 q)

if fast multiplication is not used.

Proof. The finite field Fqn can be constructed by picking an irreducible polynomial of de-
gree n.A randomized method that requires on average O((n2 log n+n log q) log n log log n)

operations over Fq is given in [13].Thus the field can be constructed inO(�4+o(1) log2+o(1) q)

time, since n � �2. Step 1(d) requires us to pick a random point on E. We can do this by
picking a random element in Fqn , treating it as the x-coordinate of a point on E, and solving
the resulting quadratic equation for the y-coordinate. Choosing a random element in Fqn can
be done in O(�2 log q) time. Solving the quadratic equation can be done probabilistically in
O(�2 log q) field operations. Thus to pick a point on E requires O(�4+o(1) log2+o(1) q) time.
The computation in Steps 1(d(i)–(iv)) computes integer multiples of a point on the elliptic
curve, where the integer is at most qn, and this can be done in O(�4+o(1) log2+o(1) q) time
using the repeated squaring method and fast multiplication. Shanks’s baby-steps-giant-steps
algorithm for a cyclic group G requires O(

√|G|) group operations. Thus Step 1(e) runs in
time O(�5/2+o(1) log1+o(1) q), since the group is cyclic of order �.

Let C be a subgroup of E. In [15], Vélu gives explicit formulas for determining the
equation of the isogeny E −→ E/C and the Weierstrass equation of the curve E/C.
We give the formulas when � is an odd prime. Let E be given by the equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

We define the following two functions in Fq(E). For Q = (x, y) a point on E −{O}, define

gx(Q) = 3x2 + 2a2x + a4 − a1y

gy(Q) = −2y − a1x − a3,

198https://doi.org/10.1112/S1461157000000954 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000954

Computing modular polynomials

and set

t (Q) = 2gx(Q) − a1g
y(Q),

u(Q) = (gy(Q))2,

t =
∑

Q∈(C−{O})
t (Q),

w =
∑

Q∈(C−{O})
(u(Q) + x(Q)t (Q)).

Then the curve E/C is given by the equation

Y 2 + A1XY + A3Y = X3 + A2X
2 + A4X + A6,

where

A1 = a1, A2 = a2, A3 = a3,

A4 = a4 − 5t, A6 = a6 − (
a2

1 + 4a2
)
t − 7w.

From the Weierstrass equation of E/C, we can easily determine the j-invariant of E/C.
It is clear that this procedure can be done using O(�) elliptic curve operations for each of
the groups Gi , 1 � i � � + 1. Thus Step 2 can be done in O(�4+o(1) log1+o(1) q) time
steps. Step 3 requires only O(�) field operations, and so the running time of the algorithm
is dominated by the running time of Steps 1 and 2. Note that the polynomial obtained at the
end of Step 3, namely φ�(x, j), has coefficients in Fp2 [x], since all the curves �-isogenous
to E are supersingular and hence their j-invariants belong to Fp2 . In summary, we have the
following theorem.

Theorem 2.5. Algorithm 1 computes φ�(x, j) ∈ Fp2 [x] (in fact, the list of roots of φ�(x, j)),
and has an expected running time of

O
(
�4+o(1) log2+o(1) q

)
with fast multiplication and

O
(
�6 log3 q

)
if fast multiplication is not used.

For our application of Algorithm 1, we will need the dependence of the running time in
terms of the quantity n. We make the dependence explicit in the next theorem.

Theorem 2.6. With notation as above, Algorithm 1 computes φ�(x, j) ∈ Fp2 [x], together
with the list of its roots, and has an expected running time of

O
(
n2+o(1) log2+o(1) q + √

�n1+o(1) log1+o(1) q + �2n1+o(1) log q
)

with fast multiplication. If fast multiplication is not used, then Algorithm 1 has an expected
running time of

O
(
n3 log3 q + √

�n2 log2 q + �2n2 log2 q
)
.

In the case of ordinary elliptic curve, Step 1 of Algorithm 1 can still be used, once the
number of points on E/Fq has been determined. By Lemma 2.2 the degree of the extension,
n, is still O(�2). This leads to the following two results.

199https://doi.org/10.1112/S1461157000000954 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000954

Computing modular polynomials

Corollary 2.7. If E/Fq is an elliptic curve, we can pick a random �-torsion point on
E(Fq) in time

O
(
�4+o(1) log2+o(1) q + log6+o(1) q

)
with fast multiplication, and in time

O
(
�6 log3 q + log8 q

)
without fast multiplication.

Corollary 2.8. If E/Fq is an elliptic curve, we can construct a random �-isogenous curve
to E in time

O
(
�4+o(1) log2+o(1) q + log6+o(1) q

)
with fast multiplication, and in time

O
(
�6 log3 q + log8 q

)
without fast multiplication.

Factoring a degree-d polynomial over a finite field Fqn can be done in O(d2(n log q))

operations over Fqn . To factor the �-division polynomial, we need an extension of degree
of roughly �2. Thus, if we were to factor the �-division polynomial to generate the isogeny,
we would need O(�6 log q) operations over a field of degree �2 over Fq , which translates
to O(�8+o(1) log2+o(1) q) bit operations, even with fast multiplication.

3. Computing φ�(x, y) mod p

In characteristic p > 2, there are exactly

S(p) =
⌊ p

12

⌋
+ εp

supersingular j-invariants, where

εp = 0, 1, 1, 2 if p ≡ 1, 5, 7, 11 mod 12.

In this section we provide an algorithm for computing φ�(x, y) mod p, provided that
S(p) � � + 1. The description of the algorithm follows.

Algorithm 2.
Input: Two distinct primes � and p with S(p) � � + 1.
Output: The polynomial φ�(x, y) ∈ Fp[x, y].

1. Find the smallest (in absolute value) discriminant D < 0 such that (D/p) = −1.

2. Compute the Hilbert class polynomial HD(x) mod p.

3. Let j0 be a root of HD(x) in Fp2 .

4. Set i = 0.

5. Compute φi = φ�(x, ji) ∈ Fp2 using Algorithm 1.

6. Let ji+1 be a root of φk for k � i which is not one of j0, . . . , ji .

7. If i < �, then set i = i + 1 and repeat Step 5.

8. Writing φ�(x, y) = x�+1 + ∑
0�k�� pk(y)xk , we have � + 1 systems of equations

of the form pk(ji) = vki for 0 � k, i � �. Solve these equations for each pk(y), 0 � k � �.

9. Output φ�(x, y) ∈ Fp[x, y].
200https://doi.org/10.1112/S1461157000000954 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000954

Computing modular polynomials

We argue that the above algorithm is correct, and we analyze the running time. For Step 1,
we note that if p ≡ 3 mod 4, then D = −4 works. Otherwise, −1 is a quadratic residue and
(without loss of generality) writing D as −4d , we are looking for the smallest d such that
(d/p) = −1. A theorem of Burgess [4] tells us that d � p1/4

√
e, and under the assumption

of GRH the estimate of Ankeny [2] gives d � log2 p. Computing HD(x) mod p can be
done in O(d2(log d)2) time [8, Section 5.10]. Thus Step 2 requires O(

√
p log2 p) time, and

under the assumption of GRH requires O(log4 p(log log p)2) time. Since (D/p) = −1, all
the roots of HD(x) are supersingular j-invariants in characteristic p. HD(x) is a polynomial
of degree h(

√−D), the class number of the order of discriminant D, and this is bounded
above by |D|1/2+ε. Finding a root of HD(x) ∈ Fp2 can be done in O(d1+ε log2+o(1) p) time
using probabilistic factoring algorithms, where d = |D|. The graph with supersingular j-
invariants over charactertistic p as vertices and �-isogenies as edges is connected (see [10]);
consequently, we will always find a j-invariant in Step 6 that is not one of the j0, . . . , ji .
Thus the loop in Steps (5)–(7) is executed exactly � + 1 times under the assumption that
S(p) � � + 1. Even though Algorithm 1 requires Õ(�4 log2 q) time in the worst case, we
will argue that, in fact, for all of the iterations of the loop it actually runs in Õ(�3 log2 q)

time. (Note that we use the ‘soft-Oh’ notation Õ when we ignore factors of the form log �

or log log p.)

Lemma 3.1. Let E be a supersingular elliptic curve defined over Fp2 . Then the extension
degree [

Fp2(E[�]) : Fp2
]

divides 6(� − 1).

Proof. Let E/Fp2 be a supersingular curve, and let t be the trace of Frobenius. Then the
Frobenius map φ satisfies

φ2 − tφ + p2 = 0,

with t equal to 0 or ±p or ±2p. Suppose that t = ±2p; then the Frobenius acts as
multiplication by ±p on the curve E. Thus φ�−1 acts trivially on E[�], and the �-torsion
points are defined over an extension of degree dividing �− 1. If t = 0, then φ2 = −p2, and
so φ2(�−1) acts trivially on the �-torsion. Thus E[�] is defined over an extension of degree
dividing 2(� − 1). If t = ±p, then φ3 = ±p3, and consequently φ3(�−1) acts trivially on
the �-torsion of the curve. Thus the �-torsion is defined over an extension of degree dividing
3(� − 1). Thus in all cases the �-torsion of the curve is defined over an extension of degree
dividing 6(� − 1).

Thus the loop in Steps 5–7 of Algorithm 1 can be run with the quantity n = 6(� − 1).
For this value of n, Algorithm 1 runs in an expected time of O(�3+o(1) log2+o(1) p), and so
the loop runs in an expected time of O(�4+o(1) log2+o(1) p).

Writing the modular polynomial φ�(x, y) as x�+1 + ∑
0�k�� pk(y)xk , we know that

p0(y) is monic of degree � + 1, and deg(pk(y)) � � for 1 � k � �. Thus, at the end
of the loop in Steps 5–7, we have enough information to solve for the pk(y) in Step 8.
We are solving � + 1 systems of equations, each requiring an inversion of a matrix of
size (� + 1) × (� + 1). This can be done in O(�4 log1+o(1) p) time. Since the polynomial
φ�(x, y) mod p is the reduction of the classical modular polynomial, a polynomial with
integer coefficients, the polynomial that we compute has coefficients in Fp. Thus we have
proved the following theorem.

201https://doi.org/10.1112/S1461157000000954 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000954

Computing modular polynomials

Theorem 3.2. Given � and p distinct primes such that S(p) � �+1, Algorithm 2 computes
φ�(x, y) ∈ Fp[x, y] in an expected time of

O
(
�4+o(1) log2+o(1) p + log4 p log log p

)
under the assumption of GRH, and in

O
(
�5 log3 p

)
time without fast multiplication.

Hence we can compute φ�(x, y) modulo a prime p in Õ(�4 log2 p + log4 p) time if
p � 12� + 13. If p were less than 12� + 13, we could still use the algorithm with ordinary
elliptic curves, and this would lead to a running time with the dependence on � being
�5. Furthermore, we would not need the GRH, since it was needed only to determine a
supersingular curve in characteristic p. However, this is not very efficient.

Remark 3.3. If one were allowed to pick the prime p, as would be the case if we were
computing φ� over the integers using the Chinese Remainder Theorem combined with
this method, then one could eliminate the assumption of GRH in the above theorem. For
example, for primes p ≡ 3 mod 4, the j-invariant 1728 is supersingular. Thus in Step 3 of
Algorithm 2, we can start with j0 = 1728 for any such prime. Hence we do not need the
GRH to bound D in the analysis of the running time of the algorithm.

Acknowledgements. We would like to thank Igor Shparlinski and Steven Galbraith for
useful suggestions and comments on an earlier draft of the paper. We would also like to
thank the anonymous referee for suggestions that improved the presentation of the paper.
The first author would like to thank Microsoft Research for providing a stimulating research
environment for this work.

Appendix A.

Elkies claims (see [7, Section 3]) that the usual method of computing the �th modular
polynomial runs in time O(�4+ε). However, there is a subtle error in the analysis. We argue
that, in fact, the running time of this algorithm is �(�9/2+ε). The first stage of the algorithm
involves computing the first �2 + O(�) Fourier coefficients of the powers of the j-function,
namely j, . . . , j�. This (as Elkies points out) can be done in O(�3+ε) arithmetic operations.
The problem comes when we study the running time in terms of bit-operations. To analyze
this, we need to study the bit-sizes of the numbers that are handled by the algorithm. While
it is true that the nth Fourier coefficient of j grows as eO(

√
n), we also need to compute the

Fourier coefficients of powers of j, and they grow faster (essentially because they have a
higher-order pole at ∞). In [9] an upper bound of the form exp(4π(

√
(n + k)k) is proved

for the nth Fourier coefficient of jk . We show that the upper bound is quite close to the
true magnitude of the Fourier coefficients. Let c(n) denote the nth Fourier coefficient of the
j-function. It is well known that c(n) are all positive integers, and that (see [11])

c(n) ∼ e4π
√

n

√
2n3/4

.

The nth Fourier coefficient of jk is given by∑
a1+a2+...+ak=n

c(a1)c(a2) . . . c(ak).

202https://doi.org/10.1112/S1461157000000954 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000954

Computing modular polynomials

Clearly, there is at least one partition of n (into k parts) where each of the parts, ai , is at
least n/ck, where c > 1 is a constant. The asymptotic formula for c(n) gives us∑

a1+a2+...+ak=n

c(a1)c(a2) . . . c(ak) �
(
e
√

n/ck−O(log n)
)k = e
(

√
nk),

as long as k and n vary such that the ratio n/k goes to infinity. Thus a lower bound for
the rate of growth of the nth Fourier coefficient of jk(z) is e
(

√
kn). Hence to compute

the first �2 + O(�) Fourier coefficients of the powers jk , for 1 � k � �, the bit length of
the numbers involved is O(�

√
�) rather than the estimate of O(� log �) used in [7]. Thus

this stage of the algorithm already requires �(�9/2+ε) time using fast multiplication. The
dependence of the running time on � for our method, on the other hand, is O(�4+ε) if fast
multiplication is used. The error in [7] stems from the fact that a bound on the size of the
coefficients of φ�(x, y) was used to bound the bit sizes. These coefficients are somewhat
smaller, their absolute value being bounded by eO(� log �) (see [6]).

References

1. A. Agashe, K. Lauter and R. Venkatesan, ‘Constructing elliptic curves with a
known number of points over a prime field’, Lectures in honour of the 60th birthday
of Hugh Cowie Williams, Fields Inst. Commun. 42 (Amer. Math. Soc., Providence,
RI, 2003) 1–17. 195

2. N. C. Ankeny, ‘The least quadratic non-residue’, Ann. of Math. (2) 55 (1952) 65–72.
201

3. I. Blake, G. Seroussi and N. Smart, Elliptic curves in cryptography, London Math.
Soc. Lecture Note Ser. 265 (Cambridge Univ. Press, 1999). 195

4. D. A. Burgess, ‘On character sums and primitive roots’, Proc. London Math. Soc. (3)
12 (1962) 179–192. 201

5. J. Chao, O. Nakamura, K. Sobataka and S. Tsujii, ‘Construction of secure elliptic
cryptosystems using CM tests and liftings’, Advances in cryptology, ASIACRYPT’98
(Beijing), Lecture Notes in Comput. Sci. 1514 (Springer, Berlin, 1998). 195

6. P. Cohen, ‘On the coefficients of the transformation polynomials for the elliptic mod-
ular function’, Math. Proc. Cambridge Philos. Soc. 95 (1984) 389–402. 203

7. Noam Elkies, ‘Elliptic and modular curves over finite fields and related computa-
tional issues’, Computational perspectives on number theory: Proceedings of a Con-
ference in Honor of A. O. L. Atkin (ed. D. A. Buell and J. T. Teitelbaum, Amer. Math.
Soc./International Press, 1998) 21–76. 195, 202, 203

8. A. K. Lenstra and H. W. Lenstra, Jr., Algorithms in number theory, Handbook of
Theoret. Comput. Sci. A (Elsevier, Amsterdam, 1990) 673–715. 201

9. K. Mahler, ‘On the coefficients of transformation polynomials for the modular func-
tion’, Bull. Austral. Math. Soc 10 (1974) 197–218. 202

10. J.-F. Mestre, ‘La méthode des graphes. Exemples et applications’, Proc. Internl Conf.
on Class Numbers and Fundamental Units of Algebraic Number Fields, Nagoya Univ.,
Nagoya (Katata, Japan, 1986) 217–242. 195, 201

11. H. Petersson, ‘Über die Entwicklungskoeffizienten der automorphen formen’, Acta
Math. 58 (1932) 169–215. 202

203https://doi.org/10.1112/S1461157000000954 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000954

Computing modular polynomials

12. R. Schoof, ‘Nonsingular plane cubic curves over finite fields’, J. Combin. Theory 46
(1987) 183–208. 197

13. V. Shoup, ‘Fast construction of irreducible polynomials over finite fields’, J. Symbolic
Comput. 17 (1994) 371–391. 198

14. J. H. Silverman, The arithmetic of elliptic curves, Grad. Texts in Math. 106 (Springer,
New York, 1986). 197

15. J. Vélu, ‘Isogénies entre courbes elliptiques’, C. R. Acad. Sci. Paris 273 (1971) 238–
241. 198

Denis Charles cdx@cs.wisc.edu
http://www.cs.wisc.edu/˜cdx

Department of Computer Science
University of Wisconsin-Madison
Madison, WI - 53706
USA

Kristin Lauter klauter@microsoft.com
http://research.microsoft.com/˜klauter

Microsoft Research
One Microsoft Way
Redmond, WA - 98052
USA

204https://doi.org/10.1112/S1461157000000954 Published online by Cambridge University Press

mailto:cdx@cs.wisc.edu
http://www.cs.wisc.edu/~cdx
mailto:klauter@microsoft.com
http://research.microsoft.com/~klauter
https://doi.org/10.1112/S1461157000000954

	Introduction
	Local computation of $phi_ell(x,j)$
	Computing $phi_ell(x,y) mod p$

