Introducing the EMS polyIII

the solution for
Evaporation-Controlled Automated Embedding and Polymerization

- Automates embedding
- Reduces hands-on time
- Minimizes exposure to hazardous and irritating chemicals
- Reduces solvent and resin use
- Facilitates the processing of up to 52 samples in one instrument run
- Prevents specimen loss

The EMS POLY III is an instrument for the embedding of specimens by the proper combination of pressure and temperature. Central to the instrument is a specimen chamber that is temperature controlled and which can be heated up from room temperature to 70°C. The pressure in the chamber can be reduced from ambient pressure to a controlled level with an inbuilt vacuum-pump. The instrument chamber accepts up to 52 BEEM specimen vials, and features preset programs which can be modified according to the user’s preference. In the presets pressure and temperature settings have been coordinated and optimized for an efficient removal of solvent from the specimens. Bulk removal of solvent is followed by steps for the thorough removal of trace amounts.

As a practical approach the instrument can be loaded by the end of a workday and (when using acetone or propylene oxide) by the next morning the vials are ready for polymerization after the vials have been topped up with pure resin.

A lengthy and sometimes tedious manual procedure now reduced to a few simple steps.

Yeast cells were fixed with glutaraldehyde in cacodylate buffer, washed in distilled water and postfixed with 1% KMnO4 in distilled water.

Facilitates the processing of up to 52 samples in one instrument run.

A choice of 3 embedding programs in the EMS POLY III for 3 different solvents. They have been pre-programmed for general use but the user can change the programs to fit specific specimens.

EMS has it!

CONTACT US FOR MORE INFORMATION...

Electron Microscopy Sciences

P.O. Box 550 • 1560 Industry Rd.
Hatfield, Pa 19440
Tel: (215) 412-8400
Fax: (215) 412-8450
email: sgkcck@aol.com
or stacie@ems-secure.com
www.emsdiasum.com
Editorial Board

Ralph Albrecht
Ilke Arslan
Grace Burke
Barry Carter
Wah Chiu
Niels de Jonge
Alberto Diaspro
Elizabeth Dickey
Mark Ellisman
Pratibha Gai
Marija Gajdardziska-Josifovska
Dale Johnson
Paul Kotula
William Landis
Eric Lifshin
Charles Lyman
Dale Newbury
Jean-Paul Revel
David Smith
Nan Yao
Nestor Zaluzec

University of Wisconsin, Madison, Wisconsin
Pacific Northwest Laboratory, Richland, Washington
University of Manchester, Manchester, England
University of Connecticut, Storrs, Connecticut
Baylor College of Medicine, Houston, Texas
INM Institute for New Materials, Saarbrücken, Germany
University of Genoa, Italy
North Carolina State University, Raleigh
University of California at San Diego, San Diego, California
University of York, United Kingdom
University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
University of South Florida, Tampa, Florida
SUNY at Albany, Albany, New York
Lehigh University, Bethlehem, Pennsylvania
National Institute of Standards and Technology, Gaithersburg, Maryland
California Institute of Technology, Pasadena, California
Arizona State University, Tempe, Arizona
Princeton University, Princeton, New Jersey
Argonne National Laboratory, Argonne, Illinois

Editorial Board Representatives from Affiliated Societies

Masashi Watanabe
Gautam Kumar Dey
Gema Gonzalez
Michael Robertson
Brendan Griffin
Guillermo Solorzano
Mike Matthews
Miguel Yacaman
Henrique Almeida

Lehigh University (MAS)
Bhabha Atomic Research Centre (EMSI)
Venezuelan Institute for Scientific Investigation (Venezuela)
Acadia University, Wolfville, Nova Scotia (Canada)
University of Western Australia (AMMS)
Pontificia Universidade Catolica, Rio de Janeiro (Brazil)
Atomic Weapons Establishment, Reading, Great Britain (EMAS)
Mexico Institute for Nuclear Research (Mexico)
Universidade do Porto (Portugal)

Founding Editor

Jean-Paul Revel
California Institute of Technology, Pasadena, California

Previous Editors-in-Chief

Dale Johnson
Charles Lyman
University of South Florida, Tampa, Florida
Lehigh University, Bethlehem, Pennsylvania

This journal is part of the Cambridge Journals Online service. Access to online tables of contents and article abstracts is available to all researchers at no cost. Access to full-text articles online is provided to those with online subscription. Online subscriptions must be activated. Once your subscription is activated, free access to past, present, and forthcoming articles is available at:

Microscopy and Microanalysis website: journals.cambridge.org/MAM.

Instructions for authors submitting manuscripts may be found at journals.cambridge.org/MAM. Select “Further Information” then select “Instructions for Contributors.” An abbreviated version of these instructions will be published in the first issue (February) of each volume.
Bruker microCT

SKYSCAN 1272
Performance Beyond Researchers’ Imaginations

- More than 200 Megapixel (14450 x 14450 pixels) in every virtual slice through objects,
- More than 2600 such slices can be reconstructed after a single scan,
- Due to phase-contrast enhancement, object details down to 0.4μm can be detected,
- 20-100kV X-ray source, 6-position filter changer, integrated micropositioning stage,
- World’s fastest hierarchical 3D reconstruction (InstaRecon®) with 20x...100x speed-up,
- 2D/3D image analysis, task lists, user plug-ins, surface and volume rendering,
- 16-position sample changer with auto adjustment of magnification and scanning protocol,
- The results can be exported to iPhone / iPad / Androids for 3D rendering by supplied software.

Object: Mantis, an insect that is known for its aggressiveness: the females eat the males after mating.
Origin: Namibia
Preparation: air-dry, no staining
Micro-CT scanning and 3D volume rendering using SkyScan1272

Innovation with Integrity

https://doi.org/10.1017/S1431927615015718 Published online by Cambridge University Press
Microscopy and Microanalysis

Microscopy and Microanalysis publishes original research papers dealing with a broad range of topics in microscopy and microanalysis. These include articles describing new techniques or instrumentation and their applications, as well as papers in which established methods of microscopy or microanalysis are applied to important problems in the fields of biology or materials science. Microscopy and microanalysis are defined here in a broad sense, and include all current and developing approaches to the imaging and analysis of microstructure.

The criteria for acceptance of manuscripts are the originality and significance of the research, the quality of the microscopy or microanalysis involved, and the interest for our readership.

Four types of communications are published in the Journal. Regular Articles are of substantial length and describe the findings of an original research project that satisfies the aims and scope of the Journal, described above. Review Articles summarize the current status of an important area within the aims and scope of the Journal.

Letters to the Editor usually contain comments on recent articles that have appeared in the Journal. Book Reviews are also published, but these are solicited only through the Book Review Editor.

Instructions for Contributors

Instructi ons for authors contributing manuscripts may be found at http://mc.manuscriptcentral.com/mam under “Resources: Instructions and Forms.” Authors may also visit http://www.journals.cambridge.org/jid_MAM, select “Further Information,” and then select “Instructions for Contributors.” An abbreviated version of these instructions will be published in the first issue (February) of each volume.

Copyright Information

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, review, or thesis); that it is not under consideration for publication elsewhere; that its publication has been approved by all coauthors, if any, as well as by the responsible authorities at the institute where the work has been carried out; that, if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the Microscopy Society of America; that the manuscript will not be published elsewhere in any language without the consent of the copyright holders; and that written permission of the copyright holder is obtained by the authors for material used from other copyrighted sources.

All articles published in this journal are protected by copyright, which covers the exclusive rights to reproduce and distribute the article (e.g., offprints), as well as all translation rights. No material published in this journal may be reproduced photographically or stored on microfilm, in electronic data bases, video disks, etc., without first obtaining written permission from the publisher.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if not specifically identified, does not imply that these names lack protection by the relevant laws and regulation.

Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by Cambridge University Press, provided that the appropriate fee is paid directly to Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, USA (Tel: (508) 750-8400), stating the ISSN (1431-9276), the volume, and the first and last page numbers of each article copied. The copyright owner’s consent does not include copying for general distribution, promotion, new works, or resale. In these cases, specific written permission must first be obtained from the publisher.

Disclaimer

The Microscopy Society of America, the other societies stated, and Cambridge University Press cannot be held responsible for errors or for any consequences arising from the use of the information contained in this journal. The appearance of scientific reports and/or workshops, or any other material in Microscopy and Microanalysis does not constitute an endorsement or approval by The Microscopy Society of America of the quality or value of the products advertised or any of the claims, data, conclusions, recommendations, procedures, results, or any other aspect of the content of such articles. The appearance of advertising in Microscopy and Microanalysis does not constitute an endorsement or approval by The Microscopy Society of America of the quality or value of the products advertised or any of the claims, data, conclusions, recommendations, procedures, results, or any other information included in the advertisements.

While the advice and information in this journal is believed to be true and accurate at the date of its going to press, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may be made.

Subscription Information

Microscopy and Microanalysis is published bimonthly in February, April, June, August, October, and December by Cambridge University Press. Three supplements (Meeting Guide, Program Guide, and Proceedings) are published in June and August.

Society Rates: Members of the Microscopy Society of America should contact the MSA Business Office for all subscription inquiries: Microscopy Society of America, Hachero Hill, Inc., 11260 Roger Bacon Drive, Suite 402, Reston, VA 20190, Tel.: (703) 964-1240, Ext. 14, E-mail: nicolegy@ mindspring.com, URL: www.msa.microscopy.org. Members of other affiliated societies should contact their respective society business offices for all subscription inquiries.

Subscription Rates: Institutions print and electronic: US $1705.00 in the USA, Canada, and Mexico; UK £1025.00 + VAT elsewhere. Institutions online only: US $1264.00 in the USA, Canada, and Mexico; UK £765.00 + VAT elsewhere. Individuals print plus online: US $522.00 in the USA, Canada, and Mexico; UK £317.00 + VAT elsewhere. Prices include postage and insurance.

USA, Canada, and Mexico: Subscribers in the USA, Canada, and Mexico should send their orders, with payment in US dollars or the equivalent value in Canadian dollars, to: Cambridge University Press, Customer Services Department (Journals), 100 Brook Hill Drive, West Nyack, NY 10994-2133, USA. Tel: (845) 353-7500, Fax: (845) 353-4141. Orders may be phoned direct (toll free): (800) 872-7423. E-mail: journals_subscriptions@cup.org.

Outside North America: Subscribers elsewhere should send their orders, with payment in sterling, to: Customer Services Department (Journals), Cambridge University Press, The Edinburgh Building, Shaftesbury Road, Cambridge, CB2 8RU, UK, Tel: +44 (0)1223 326070. Fax: +44 (0)1223 325150. E-mail: journals@cambridge.org.

Change of Address: Allow six weeks for all changes to become effective. All communications should include both old and new addresses (with postal codes) and should be accompanied by a mailing label from a recent issue. Society members should contact their respective society business offices to inform them of address changes.

Editorial Office

Robert L. Price, Editor in Chief, Department of Cell and Developmental Biology and Anatomy, School of Medicine, University of South Carolina, 6439 Garner’s Ferry Road, Bldg. 1 B-60, Columbia, SC 29209, USA; Tel: (803) 216-3824; Fax: (803) 733-3212; E-mail: Bob.Price@uscmed.sc.edu.

Office of Publication

Cambridge University Press, 32 Avenue of the Americas, New York, NY 10013-2473, USA; Tel: (212) 337-5000; Fax: (212) 337-5959.

Advertising Sales & Production

Kelly Miller, M.J. Mrvica Associates, Inc., 2 West Taunton Avenue, Berlin, NJ 08009, USA; Tel: (856) 768-9360; Fax: (856) 753-0064.

With the ZEISS GeminiSEM family you get a flexible and reliable field emission SEM for your research, industrial lab or imaging facility. You always acquire excellent images from any real world sample. The GeminiSEM family stands for effortless imaging with sub-nanometer resolution and high detection efficiency, even in variable pressure mode.

www.zeiss.com/geminisem

https://doi.org/10.1017/S1431927615015718 Published online by Cambridge University Press
Have you seen Themis lately?

Schedule a visit to one of our NanoPorts to discover the all-in-one materials characterization and imaging performance of Themis. You’ll see more scientific data from one instrument, faster than ever before, without compromises to quality.

- Cleanest EDS spectra for optimal-quality tomography
- Atomic level characterization over the widest range of materials
- Highest resolution (60pm) with largest UHR pole gap
- Best resolution for in-situ and 3D microscopy

Explore.FEI.com/Themis

https://doi.org/10.1017/S1431927615015718 Published online by Cambridge University Press
Materials Applications and Techniques

Elemental Distribution in Multilayer Systems by Laser-Assisted Atom Probe Tomography with Various Analysis Directions
Masaki Kubota, Hisashi Takamizawa, Yasuo Shimizu, Yasuko Nozawa, Naoki Ebisawa, Takeshi Toyama, Yoichi Ishida, Katsuaki Yanaguchi, Koji Inoue, and Yasuyoshi Nagai

Development of Functional Surfaces on High-Density Polyethylene (HDPE) via Gas-Assisted Etching (GAE) Using Focused Ion Beams
Meltem Sezen, and Feray Bakan

Formation of Nanoporous Gold Studied by Transmission Electron Backscatter Diffraction
Leo T.H. de Jeer, Diego Ribas Gomes, Jorrit E. Nijholt, Rik van Bremen, Václav Ocelík, and Jeff Th.M. De Hosson

Observation of Fine Distribution of Minor Dopants in an Erbium-Doped Fiber Core using a Sample Thinning Technique for Field Emission Electron Probe Microanalysis
Yugo Kubo, and Koji Kuramochi

Determination of Mean Inner Potential and Inelastic Mean Free Path of ZnTe Using Off-Axis Electron Holography and Dynamical Effects Affecting Phase Determination
Zhaofeng Gan, Michael DiNezza, Yong-Hang Zhang, David J. Smith, and Martha R. McCartney

Effects of Long-Term Aging in Arsenical Copper Alloys
Filipa Pereira, Rui J. C. Silva, António M. Monge Soares, Maria F. Araújo, Maria J. Oliveira, Rui M. S. Martins, and Norberth Schell

Three-Dimensional Microstructure Reconstruction and Finite Element Simulation of Gas Pores in the High-Pressure Die-Casting AZ91 Mg Alloy
Wei Jiang, Zhanyi Cao, Xu Sun, and Haifeng Liu

Effect of Focused Ion Beam Imaging on the Crystallinity of InAs
Wei-Chieh Chen, Tien-Hao Huang, Kuan-Chao Chen, and Hao-Hsiung Lin

Microscopy Techniques for Analysis of Nickel Metal Hydride Batteries Constituents
Graham J.C. Carpenter, and Zbigniew Wronski

Measurement Uncertainty of Microscopic Laser Triangulation on Technical Surfaces
Thomas Mueller, Andreas Poesch, and Eduard Reithmeier

Speckle Suppression by Decoherence in Fluctuation Electron Microscopy

Correlative Light-Electron Fractography of Interlaminar Fracture in a Carbon-Epoxy Composite
Luis Rogerio de O. Hein, and Kamila A. de Campos

Biological Applications

Time-Dependent Resolution of Collagen Deposition During Skin Repair in Rats: A Correlative Morphological and Biochemical Study
Rômulo D. Novais, Marli C. Cupertino, Mariaurea M. Sarandy, André Souza, Evelise A. Soares, and Reggiani V. Gonçalves
Ex vivo Determination of an Estradiol Analogue-Induced Changes on Platelet Morphology and Angiogenic Biomarkers
Lisa Repsold, Etheresia Pretorius, and Annie M. Joubert

1491

Evaluating the Use of Synthetic Replicas for SEM Identification of Bloodstains (with Emphasis on Archaeological and Ethnographic Artifacts)
Policarp Hortolà

1504

Ultrastructure of the Salivary Glands of the Stink Bug Predator Podisus distinctus
Luis C. Martínez, José C. Zanuncio, Wagner C.C. Morais, Angelica Plata-Rueda, Pedro E. Cedeño-Loja, and José E. Serrão

1514

Assessment of Self-Adhesive Resin Composites: Nondestructive Imaging of Resin-Dentin Interfacial Adaptation and Shear Bond Strength
Patricia Makishi, Rafael R. Pacheco, Alireza Sadr, Yasushi Shimada, Yasunori Sumi, Junji Tagami, and Marcelo Giannini

1523

Improved Sealing and Remineralization at the Resin-Dentin Interface After Phosphoric Acid Etching and Load Cycling
Manuel Toledano, Inmaculada Cabello, Fátima S. Aguilera, Estrella Osorio, Manuel Toledano-Osorio, and Raquel Osorio

1530

Anatomy, Histochemistry, and Antifungal Activity of Anacardium humile (Anacardiaceae) Leaf
Vanessa de A. Royo, Maria Olivia Mercadante-Simões, Leonardo M. Ribeiro, Dario A. de Oliveira, Marcela Magda R. Aguiar, Ellenhise R. Costa, and Perácio Rafael B. Ferreira

1549

Anatomical and Topochemical Aspects of Japanese beech (Fagus crenata) Cell Walls After Treatment with the Ionic Liquid, 1-Ethylpyridinium Bromide
Toru Kanbayashi, and Hisashi Miyafuji

1562

Equipment and Techniques Development
A New Image Analysis Method Based on Morphometric and Fractal Parameters for Rapid Evaluation of In Situ Mammalian Mast Cell Status

1573

A Quantitative Method for Microtubule Analysis in Fluorescence Images
Xiaodong Lan, Lingfei Li, Jiongyu Hu, Qiong Zhang, Yongming Dang, and Yuosheng Huang

1582

Marker Detection in Electron Tomography: A Comparative Study
Patrick Trampert, Sviatoslav Bogachev, Nico Marniok, Tim Dahmen, and Philipp Slusallek

1591

Total Variation-Based Reduction of Streak Artifacts, Ring Artifacts and Noise in 3D Reconstruction from Optical Projection Tomography
Jan Michálek

1602

Large Area Cryo-Planing of Vitrified Samples Using Broad-Beam Ion Milling
Irene Y. T. Chang, and Derk Joester

1616

Temperature Calibration for In Situ Environmental Transmission Electron Microscopy Experiments
Jonathan P. Winterstein, Pin Ann Lin, and Renu Sharma

1622

High-Resolution Imaging and Spectroscopy at High Pressure: A Novel Liquid Cell for the Transmission Electron Microscope
Mihaela Tanase, Jonathan Winterstein, Renu Sharma, Vladimir Aksyuk, Glenn Holland, and James A. Liddle

1629

Direct-Writing of Cu Nano-Patterns with an Electron Beam
Shih-En Lai, Ying-Jhan Hong, Yu-Ting Chen, Yu-Ting Kang, Pin Chang, and Tri-Rung Yew

1639

Comprehensive Comparison of Various Techniques for the Analysis of Elemental Distributions in Thin Films: Additional Techniques
Daniel Abou-Ras, Raquel Caballero, Cornelius Streeck, Burkhard Beckhoff, Jung-Hwan In, and Sungho Jeong

1644

A Meshless Algorithm to Model Field Evaporation in Atom Probe Tomography
Nicolas Rolland, François Vurpillot, Sébastien Duguay, and Didier Blavette

1649
Isn’t it about time you had your own Digital Microscope?

Now you can with the portable, affordable uScopeMXII!

The uScopeMXII is a small digital desktop microscope you can use in your workplace or home office. It captures images from standard glass slides and sends them to your PC.

You can interactively browse slides with full control of focus, image processing, and location. You can also scan regions of interest creating fully focused image sets.

The industry-standard USB interface makes it simple to plug in and get started. It easily interfaces with your desktop or laptop PC and allows you to view and capture slide images in a wide variety of environments.

The uScopeMXII is designed and manufactured in the United States.

Isn’t it about time you had your own Digital Microscope?

Call us today for a quote or to schedule a demonstration

http://www.uscopes.com/dz1
http://www.uscopes.com/dz2
http://www.uscopes.com/dz3
Contents continued

Book Reviews

High-Resolution Electron Microscopy
Jian-Min Zuo

Optical Probes in Biology
Yi Shen
4 Techniques – 1 Workflow.

ESPRIT 2, the only software which combines 4 microanalysis methods.

- Comprehensive management of analysis and results from EDS, WDS, EBSD and Micro-XRF with one software
- Complementary techniques provide you the most accurate and reliable results
- Zeta factor quantification for characterization of thin layers

Someone has to be first.

www.bruker.com/esprit2

Innovation with Integrity
Free customer service
Sectioning tests with biological and material research specimens of all kinds. We send you the sections along with the surfaced sample, a report on the results obtained and a recommendation of a suitable knife. Complete discretion when working with proprietary samples.

Re-sharpening and reworking service
A re-sharpened Diatome diamond knife demonstrates the same high quality as a new knife. Even knives purchased in previous years can continue to be re-sharpened. The knives can be reworked into another type of knife for no extra charge, e.g. ultra to cryo or 45° to 35°.

Exchange service
Whenever you exchange a knife we offer you a new DiATOME knife at an advantageous price.

DiATOME U.S.
P.O. Box 550 • 1560 Industry Rd. • Hatfield, Pa 19440
Tel: (215) 412-8390 • Fax: (215) 412-8450
email: sgkcck@aol.com • www.emsdiasum.com

Over 40 years of development, manufacturing, and customer service
NEW!
JSM-7200F —
10X to 1,000,000X, compact
nanolaboratory, ultrahigh
resolution FE SEM

NEW!
JSM-IT100 —
up to 300,000X, SE-BSE-EDS,
LV/HV, versatile compact SEM

NEW!
JCM-6000Plus NeoScope —
10X-60,000X, SE-BSE-EDS, LV/HV

Call us for a demo today!
See our full suite of JEOL SEMs.

* Courtesy of José R. Almodóvar Rivera, University of Puerto Rico Mayagüez Campus

https://doi.org/10.1017/S1431927615015718 Published online by Cambridge University Press
Your small contamination is our big priority.

GV10x
Downstream Plasma Cleaner

www.ibssgroup.com

THE NEW DESK V
THE GOLD STANDARD IN SAMPLE PREPARATION

Now upgraded with storage for up to ten recipes and a color touch screen display, the Desk V HP delivers breakthrough electron microscopy sample preparation.

DENTON VACUUM
BARRIERS BECOME BREAKTHROUGHS

Visit us at:
www.dentonvacuum.com/mt
Reveal unique insights into the chemical and electronic properties of materials at the microscopic level using cathodoluminescence. See how the ChromaCL2™ system unearths geochemical processes, including crystalline growth, mineral dissolution, plus sedimentary and metasedimentary rock provenance.

Epoxy mount of heavy-mineral separates acquired with a Gatan ChromaCL2 system; image courtesy of Dr. Clayton Loehn, the Arizona LaserChron Imaging Facility, University of Arizona.
https://doi.org/10.1017/S1431927615015718 Published online by Cambridge University Press
Octane Elite - A New Breed of Silicon Drift Detector (SDD)

- Light element sensitivity increased up to 60% using new Si$_3$N$_4$ window
- Highest throughput SDD on the market
- Unparalleled resolution stability
- Highly reliable and moisture tolerant
- Safe for plasma cleaning