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Abstract
In this paper, we study sample size thresholds for maximum likelihood estimation for tensor normal models. Given
the model parameters and the number of samples, we determine whether, almost surely, (1) the likelihood function
is bounded from above, (2) maximum likelihood estimates (MLEs) exist, and (3) MLEs exist uniquely. We obtain a
complete answer for both real and complex models. One consequence of our results is that almost sure boundedness
of the log-likelihood function guarantees almost sure existence of an MLE. Our techniques are based on invariant
theory and castling transforms.
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1. Introduction

A family of probability distributions is called a statistical model. Maximum likelihood estimation is
a method of estimating the true probability distribution as the one that maximizes the likelihood of
the observed data. The probability distribution (or often the point in an associated parameter space)
that maximizes the likelihood is called a maximum likelihood estimate (MLE). One important problem
is to understand the minimal number of samples required such that, almost surely, (1) the likelihood
function is bounded from above, (2) MLEs exist, and (3) there is a unique MLE. Surprising connections
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between sample size thresholds for a class of models called Gaussian group models and stability notions
in invariant theory were recently discovered in [2]. In this paper, we study sample size thresholds for
tensor normal models, which fall under the purview of Gaussian group models and are hence amenable
to techniques from invariant theory. The setting of invariant theory that relates to tensor normal models
are the so-called tensor actions: that is, the natural action of the group SL𝑑1 × SL𝑑2 × · · · × SL𝑑𝑘 on
F𝑑1 ⊗ F𝑑2 ⊗ · · · ⊗ F𝑑𝑘 , where F is the underlying field (either R or C) and SL𝑑𝑖 denotes the group of
𝑑𝑖 × 𝑑𝑖 matrices with determinant one.

Tensor normal models are statistical models consisting of multivariate Gaussian distributions whose
concentration matrix is a Kronecker (or tensor) product of several matrices. These are particularly useful
in studying data that naturally occurs as multidimensional arrays. Examples include wood density in
given growth rings and directions at several heights in a tree trunk [24], monitoring of a vector of
physiological variables in different organs over multiple days [34] and 3-dimensional spatial glucose
content data [27]. Tensors are also ubiquitous in big data applications.

A special case of tensor normal models is the matrix normal model, where the concentration matrix
is a Kronecker product of exactly two matrices. Sample size thresholds for matrix normal models have
been investigated in [14, 32, 37, 13, 36, 2, 12]. In particular, a complete answer for matrix normal models
was obtained in [12] with techniques from quiver representations. We do not use quiver representations
in this paper; instead, we use castling transforms and results on stabilisers in general position. It is worth
mentioning that the invariant theory for tensor actions with two tensor factors (which corresponds to the
matrix normal models) is well understood, and we have efficient algorithms (see [18, 8, 19, 20, 9, 10,
1]), whereas the invariant theory becomes significantly more difficult for three and more tensor factors
(see [6, 7, 11] for more details).

To find the MLE, one can use the so-called flip-flop algorithm [14, 25, 26, 42] for matrix normal
models and its natural generalisations to tensor normal models; it is closely related to a recent alternating
minimisation algorithm in the invariant theory of tensor actions [2, 6, 16]. In general, MLEs for Gaussian
group models can be found using the geodesic optimisation algorithms in [7].

A separate motivation for studying the questions in this paper comes from quantum information.
Here tensors describe the states of a quantum mechanical system, and our invariant theoretic results
characterise the existence of states with certain prescribed marginals; see [22, 40, 41, 4, 5] for details.

1.1. Tensor normal models

Let F = R or C. Let PD𝑛 denote the cone of positive definite 𝑛 × 𝑛 matrices with entries in F. For
an n-dimensional centred Gaussian distribution (circularly symmetric when F = C) with concentration
matrix Ψ ∈ PD𝑛, the density function is defined as

𝑓Ψ (𝑦) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
det

(
Ψ
2𝜋

) 1
2
· 𝑒−

1
2 𝑦
†Ψ𝑦 , if F = R;

det
(
Ψ
𝜋

)
· 𝑒−𝑦

†Ψ𝑦 , if F = C.

Note that 𝑦† denotes the adjoint (conjugate transpose) of y.
Given a subset M ⊆ PD𝑛, we define the corresponding Gaussian model as the statistical model con-

sisting of the distributions with concentration matrixΨ ∈M. Then the likelihood function 𝐿𝑌 : M→ R

is, for m samples specified by an m-tuple 𝑌 = (𝑌1, . . . , 𝑌𝑚) ∈ (F
𝑛)𝑚, given by

𝐿𝑌 (Ψ) =
𝑚∏
𝑖=1

𝑓Ψ (𝑌𝑖) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
det

(
Ψ
2𝜋

)𝑚/2
· 𝑒−

1
2
∑𝑚

𝑖=1 𝑌
†
𝑖 Ψ𝑌𝑖 , if F = R;

det
(
Ψ
𝜋

)𝑚
· 𝑒−

∑𝑚
𝑖=1 𝑌

†
𝑖 Ψ𝑌𝑖 , if F = C.
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For both F = R and F = C, the log-likelihood function can be written as (up to an additive constant and
multiplicative constant)

𝑙𝑌 (Ψ) =
𝑚

2
log det(Ψ) −

1
2

Tr

(
Ψ

𝑚∑
𝑖=1

𝑌𝑖𝑌
†
𝑖

)
. (1.1)

A maximum likelihood estimate (MLE) given Y is a concentration matrix Ψ̂ ∈ M that maximises the
likelihood of observing the data Y: that is, 𝑙𝑌 (Ψ̂) ≥ 𝑙𝑌 (Ψ) for all Ψ ∈ M. For an MLE to exist, it is
therefore necessary (but not necessarily sufficient) that 𝑙𝑌 is bounded from above. Even when they exist,
MLEs need not be unique.

For 𝑑1, . . . , 𝑑𝑘 ∈ Z>0, the Gaussian modelM(𝑑1, . . . , 𝑑𝑘 ) = {Ψ1⊗Ψ2⊗· · ·⊗Ψ𝑘 |Ψ𝑖 ∈ PD𝑑𝑖 } ⊆ PD𝑛

(where 𝑛 = 𝑑1𝑑2 · · · 𝑑𝑘 ) is called a tensor normal model. When we want to differentiate between the
real and the complex model, we will write MR(𝑑1, . . . , 𝑑𝑘 ) and MC(𝑑1, . . . , 𝑑𝑘 ), respectively. For the
tensor normal model M(𝑑1, . . . , 𝑑𝑘 ), a sample can be thought of not only as a vector of size n but
also as a k-tensor with local dimensions 𝑑1, 𝑑2, . . . , 𝑑𝑘 . The latter viewpoint will be particularly useful.
Accordingly, we define F𝑑1 ,...,𝑑𝑘 � F𝑑1 ⊗ F𝑑2 ⊗ · · · ⊗ F𝑑𝑘 . Then a sample for the tensor normal model
M(𝑑1, . . . , 𝑑𝑘 ) is simply a point in the tensor spaceF𝑑1 ,...,𝑑𝑘 . We also writeF𝑑1 ,...,𝑑𝑘 ;𝑚 for (F𝑑1 ,...,𝑑𝑘 )⊕𝑚.

1.2. Main results on sample size thresholds

Generalising the quantity 𝑅(𝑑1, . . . , 𝑑𝑘 ) defined in [4], we consider

𝑅(𝑑1, . . . , 𝑑𝑘 ;𝑚) � 𝑚
𝑘∏
𝑖=1

𝑑𝑖 +
𝑘∑

𝑛=1
(−1)𝑛

∑
1≤𝑖1<...<𝑖𝑛≤𝑘

gcd(𝑑𝑖1 , . . . , 𝑑𝑖𝑛 )
2,

as well as the following two quantities:

Δ (𝑑1, . . . , 𝑑𝑘 ;𝑚) � 𝑚
𝑘∏
𝑖=1

𝑑𝑖 − 1 −
𝑘∑
𝑖=1
(𝑑2

𝑖 − 1), 𝑔max(𝑑1, . . . , 𝑑𝑘 ) � max
𝑖< 𝑗

gcd(𝑑𝑖 , 𝑑 𝑗 ).

By convention, 𝑔max(𝑑) = 1 for any 𝑑 ∈ Z>0. Then all three quantities are invariant under leaving out
dimensions equal to one. The following theorem shows that these quantities precisely predict the almost
sure behavior of the MLE. By almost sure, we mean the stated property holds for all Y away from a
subset of F𝑑1 ,...,𝑑𝑘 ;𝑚 � (F𝑛)𝑚 of Lebesgue measure zero.

Theorem 1.1. Let F = R or C. Consider m samples 𝑌 = (𝑌1, . . . , 𝑌𝑚) of the tensor normal model
M(𝑑1, . . . , 𝑑𝑘 ). Let 𝑅 = 𝑅(𝑑1, . . . , 𝑑𝑘 ;𝑚), Δ = Δ (𝑑1, . . . , 𝑑𝑘 ;𝑚) and 𝑔max = 𝑔max(𝑑1, . . . , 𝑑𝑘 ). Then

1. If 𝑅 > 0, then almost surely an MLE exists. Furthermore:
◦ If 𝑚 ≥ 2, the MLE is almost surely unique if and only if 𝑅 > 𝑔2

max or 𝑔max=1.
◦ If 𝑚 = 1, the MLE is almost surely unique if and only if Δ ≥ −1.

2. If 𝑅 = 0, then almost surely an MLE exists. It is almost surely unique if and only if 𝑔max=1.
3. If 𝑅 < 0, then the likelihood function is always unbounded from above.

Remark 1.2. It was conjectured in [13] and proved in [12] that for matrix normal models (tensor
normal models with 𝑘 = 2), almost sure boundedness of the log-likelihood function implies almost sure
existence of an MLE. Theorem 1.1 implies that the same holds for all tensor normal models.

From Theorem 1.1, we can extract the following result. Let us denote by mlt𝑏 (respectively mlt𝑒,
mlt𝑢) the smallest integer 𝑚0 such that, for all 𝑚 ≥ 𝑚0, the log-likelihood function for 𝑌 ∈ F𝑑1 ,...,𝑑𝑘 ;𝑚

is almost surely bounded from above (respectively MLEs exist, the MLE exists uniquely).
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Corollary 1.3. Let F = R or C. Consider the tensor normal model M(𝑑1, . . . , 𝑑𝑘 ). Without loss of
generality, assume 2 ≤ 𝑑1 ≤ 𝑑2 ≤ · · · ≤ 𝑑𝑘 , and assume 𝑘 ≥ 3. Let 𝑟 = 𝑑𝑘

𝑑1𝑑2 · · ·𝑑𝑘−1
. Then

	𝑟
 ≤ mlt𝑏 = mlt𝑒 ≤ mlt𝑢 ≤ 	𝑟
 + 1.

We note that for the case 𝑘 = 2, a complete answer is known [12]. The case 𝑘 = 1 is trivial.
Corollary 1.3 gives nearly tight bounds on sample size thresholds. However, we note that for any
particular choice of 𝑑1, . . . , 𝑑𝑘 , we can always use Theorem 1.1 to get exact sample size thresholds.

Example 1.4. Consider the tensor normal model for 3-tensors (i.e., 𝑘 = 3) with local dimensions
(𝑑1, 𝑑2, 𝑑3) = (3, 4, 5), which was used for simulation studies in [27]. Our Corollary 1.3 asserts that

1 ≤ mlt𝑏 = mlt𝑒 ≤ mlt𝑢 ≤ 2.

To determine the precise thresholds, we compute 𝑅 = Δ = 60𝑚 − 48 and 𝑔max = 1. For 𝑚 = 1, we
have 𝑅 > 0 and Δ ≥ −1. Thus part (1) of Theorem 1.1 shows that already for a single sample the MLE
almost surely exists uniquely. We conclude that mlt𝑏 = mlt𝑒 = mlt𝑢 = 1.

The preceding example also shows that the criterion in Equation (15) of [27] (which in the notation
of Corollary 1.3 claims that mlt𝑒 = 	𝑟
 +1) is in general not tight: that is, it only holds with an inequality.

1.3. Main results in invariant theory

Recently, Améndola, Kohn, Reichenbach and Seigal [2] established a connection between a class of
Gaussian models called Gaussian group models and the invariant theory of a corresponding group action
(see Theorem 2.3). We revisit this connection in Section 2. As mentioned previously, the group action that
corresponds to tensor normal models is the tensor action. Given natural numbers 𝑑1, . . . , 𝑑𝑘 , 𝑚 ∈ Z>0,
we denote by 𝜌𝑑1 ,...,𝑑𝑘 ;𝑚 the natural representation of 𝐺 = SL𝑑1 (F) × · · · × SL𝑑𝑘 (F) on 𝑉 = F𝑑1 ,...,𝑑𝑘 ;𝑚.
Theorem 1.1 is a consequence of the following invariant-theoretic result (see Section 2 for the definitions
of stability).

Theorem 1.5. Let F = R or C. Consider the tensor representation 𝜌 = 𝜌𝑑1 , · · · ,𝑑𝑘 ;𝑚. Let 𝑅 =
𝑅(𝑑1, . . . , 𝑑𝑘 ;𝑚), Δ = Δ (𝑑1, . . . , 𝑑𝑘 ;𝑚) and 𝑔max = 𝑔max(𝑑1, . . . , 𝑑𝑘 ). Then

1. If 𝑅 > 0, then 𝜌 is generically polystable. Furthermore:
◦ If 𝑚 ≥ 2, then 𝑅 ≥ 𝑔2

max, and 𝜌 is generically stable if and only if 𝑅 > 𝑔2
max or 𝑔max = 1.

◦ If 𝑚 = 1, then Δ ≥ −2, and 𝜌 is generically stable if and only if Δ ≥ −1.
2. If 𝑅 = 0, then 𝜌 is generically polystable. It is generically stable if and only if 𝑔max = 1.
3. If 𝑅 < 0, then 𝜌 is unstable.

While the preceding theorem gives a nice and uniform characterisation, it is essentially a reformulation
of the following result, which is recursive in nature, but more enlightening.

Theorem 1.6. Let F = R or C. Consider the tensor representation 𝜌 = 𝜌𝑑1 , · · · ,𝑑𝑘 ;𝑚. Without loss of
generality, assume 𝑑1 ≤ 𝑑2 ≤ · · · ≤ 𝑑𝑘 . Then

1. If 𝑑𝑘 > 𝑑1 · · · 𝑑𝑘−1𝑚, then 𝜌 is not generically semistable.
2. If 𝑑𝑘 = 𝑑1 · · · 𝑑𝑘−1𝑚, then 𝜌 is generically polystable. It is generically stable if and only if 𝑑1 = · · · =

𝑑𝑘−1 = 1.
3. If 𝑑1 · · ·𝑑𝑘−1𝑚

2 < 𝑑𝑘 < 𝑑1 · · · 𝑑𝑘−1𝑚, then 𝜌 is generically semistable (polystable, stable) if and only if
the same is true if we replace 𝑑𝑘 by 𝑑 ′𝑘 = 𝑑1 · · · 𝑑𝑘−1𝑚 − 𝑑𝑘 . Note that 1 ≤ 𝑑 ′𝑘 < 𝑑𝑘 .

4. If 𝑑𝑘 ≤ 𝑑1 · · ·𝑑𝑘−1𝑚
2 , then 𝜌 is generically polystable. Further, it is not generically stable if and only if

(𝑑1, . . . , 𝑑𝑘 ;𝑚) = (1, . . . , 1, 2, 𝑑, 𝑑; 1) or (1, . . . , 1, 1, 𝑑, 𝑑; 2) for some 𝑑 ≥ 2.

Moreover, if 𝜌 is not generically semistable, then it is unstable.
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Part (3) of Theorem 1.6 above is a reflection of the fact that the property of being generically semistable
(polystable, stable) is unchanged under an operation known as a castling transform. Castling transforms
played a crucial role in Sato and Kimura’s classification of prehomogeneous vector spaces [35] (see also
[39]). Its origins can be traced back to at least Elashvili’s paper [15].

As a corollary of Theorems 1.5 and 1.6, we can derive a formula for the dimension of the GIT
quotient (see Section 7 for a definition) of 𝑉 = F𝑑1 ,...,𝑑𝑘 ;𝑚 for the action of 𝐺 = SL𝑑1 × · · · × SL𝑑𝑘 . This
generalises the result of [4], where the dimension was computed in the case that 𝑚 = 1.
Theorem 1.7. Let F = C. Consider the natural action of 𝐺 = SL𝑑1 × · · · × SL𝑑𝑘 on 𝑉 = F𝑑1 ,...,𝑑𝑘 ;𝑚. Let
𝛿 denote the dimension of the GIT quotient P𝑉//𝐺.
1. If 𝑅 < 0, then the GIT quotient is empty.
2. If 𝑅 = 0, then 𝛿 = 0. In fact, the GIT quotient is a single point.
3. If 𝑅 > 0, then

𝛿 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max(𝑔max − 3, 0) if 𝑚 = 1 and Δ = −2,
𝑔max if 𝑚 = 2 and 𝑅 = 𝑔2

max > 1,
Δ otherwise.

Organisation of the paper

In Section 2, we revisit the general connection between Gaussian group models and invariant theory
and discuss the relevant notions of stability. In Section 3, we introduce castling transforms and discuss
how they preserve stability. In Section 4, this is used as the key ingredient to derive our recursive
characterisation (Theorem 1.6). In Section 5, we deduce our uniform characterisation (Theorem 1.5)
from the former. In Section 6, we prove our main results on sample size thresholds for tensor normal
models (Theorem 1.1 and Corollary 1.3). Finally, in Section 7, we compute the dimension of the GIT
quotient (Theorem 1.7).

2. Gaussian group models and invariant theory

In this section, we first discuss the general setup of invariant theory. Then we define Gaussian group
models and their connection to notions of generic stability in invariant theory. Finally, we discuss some
general criteria from the literature useful for characterising generic stability.

Let F = R or C. Let G be a group. A representation of G is an action of G on a (finite-dimensional)
vector space V (over F) by linear transformations. This is captured succinctly as a group homomorphism
𝜌 : 𝐺 → GL(𝑉). In particular, an element 𝑔 ∈ 𝐺 acts on V by the linear transformation 𝜌(𝑔). We write
𝑔 · 𝑣 or 𝑔𝑣 to mean 𝜌(𝑔)𝑣. The G-orbit of 𝑣 ∈ 𝑉 is the set of all vectors that you can get from v by
applying elements of the group: that is,

𝑂𝑣 � {𝑔𝑣 | 𝑔 ∈ 𝐺} ⊆ 𝑉.

Throughout this paper, we will only consider the setting where G is a linear algebraic group (over F)
and where the action is rational: that is, 𝜌 : 𝐺 → GL(𝑉) is a morphism of algebraic groups.

We denote by F[𝑉] the ring of polynomial functions on V (also known as the coordinate ring of V).
A polynomial function 𝑓 ∈ F[𝑉] is called invariant if 𝑓 (𝑔𝑣) = 𝑓 (𝑣) for all 𝑔 ∈ 𝐺 and 𝑣 ∈ 𝑉 . In other
words, a polynomial is called invariant if it is constant on orbits. The invariant ring is

F[𝑉]𝐺 � { 𝑓 ∈ F[𝑉] | 𝑓 (𝑔𝑣) = 𝑓 (𝑣) ∀ 𝑔 ∈ 𝐺, 𝑣 ∈ 𝑉}.

The invariant ring has a natural grading by degree: that is, F[𝑉]𝐺 = ⊕∞𝑑=0F[𝑉]
𝐺
𝑑 , where F[𝑉]𝐺𝑑 consists

of all invariant polynomials that are homogeneous of degree d. For 𝑣 ∈ 𝑉 , we define the stabiliser
subgroup 𝐺𝑣 � {𝑔 ∈ 𝐺 | 𝑔𝑣 = 𝑣}, and we denote by 𝑂𝑣 the closure of the orbit 𝑂𝑣 .

https://doi.org/10.1017/fms.2022.37 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.37


6 Harm Derksen et al.

Remark 2.1. To define the closure, we need to specify a topology on V. In this paper, we only use the
fields F = R or C. Hence, unless otherwise specified, we will use the standard Euclidean topology on
V for orbit closures. At times we will also need to use the Zariski topology, but we will be careful in
specifying it each time. For F = C, the orbit closure with regard to the Euclidean topology agrees with the
orbit closure with regard to the Zariski topology (in the setting of rational actions of reductive groups).

We make a few definitions, the significance of which will become clear in the following subsections.

Definition 2.2. Let F = R or C, and let G be an algebraic group (over F) with a rational action on a
vector space V (over F), given by 𝜌 : 𝐺 → GL(𝑉). Let K denote the kernel of the homomorphism 𝜌.
Give V the standard Euclidean topology. Then for 𝑣 ∈ 𝑉 , we say v is

◦ unstable if 0 ∈ 𝑂𝑣 ;
◦ semistable if 0 ∉ 𝑂𝑣 ;
◦ polystable if 𝑣 ≠ 0 and 𝑂𝑣 is closed;
◦ stable if v is polystable and the quotient 𝐺𝑣/𝐾 is finite.

2.1. Gaussian group models

For a subgroup 𝐺 ⊆ GL𝑛, we define an associated Gaussian group model by the following family of
concentration matrices:

M𝐺 � {𝑔†𝑔 | 𝑔 ∈ 𝐺},

where 𝑔† = �̄�𝑇 denotes the adjoint. So for a concentration matrix Ψ = 𝑔†𝑔 ∈ M𝐺 and an m-tuple of
samples 𝑌 = (𝑌1, . . . , 𝑌𝑚) ∈ (F

𝑛)𝑚, the log-likelihood function in equation (1.1) simplifies to

𝑙𝑌 (Ψ) =
𝑚

2
log(det(𝑔†𝑔)) −

1
2
‖𝑔 · 𝑌 ‖2,

where ‖·‖ denotes the ℓ2-norm on (F𝑛)𝑚 � F𝑛𝑚, and we note that G acts on (F𝑛)𝑚 by the diagonal
action 𝑔 · 𝑌 = (𝑔𝑌1, . . . , 𝑔𝑌𝑚).

The following result was proved in [2, Theorems 6.10 and 6.24]. It connects maximum likelihood
estimation in Gaussian group models to the stability notions introduced in Definition 2.2.

Theorem 2.3 [2]. Let F = R or C. Let 𝐺 ⊆ GL𝑛 be a Zariski-closed subgroup that is closed under
adjoints and nonzero scalar multiples. Let 𝐺SL = {𝑔 ∈ 𝐺 | det(𝑔) = 1} ⊆ 𝐺, and let 𝑌 ∈ (F𝑛)𝑚 be an
m-tuple of samples. Then for the diagonal action of 𝐺SL, we have

◦ Y is semistable⇐⇒ 𝑙𝑌 is bounded from above;
◦ Y is polystable⇐⇒ an MLE exists (i.e., 𝑙𝑌 has a maximum);
◦ Y is stable =⇒ there exists a unique MLE (i.e., 𝑙𝑌 has a unique maximum).If F = C, the converse

also holds: that is, there exists a unique MLE =⇒ 𝑌 is stable.

Moreover, if Ψ is an MLE given Y, then the set of all MLEs given Y is {𝑔†Ψ𝑔 | 𝑔 ∈ (𝐺SL)𝑌 }.

Remark 2.4. In the setting of the above theorem, for ℎ ∈ 𝐺SL, we also have{
MLEs given ℎ · 𝑌

}
= (ℎ−1)†

{
MLEs given 𝑌

}
ℎ−1.

Thus, for any ℎ ∈ 𝐺SL, the MLE given Y is unique if and only if the MLE given ℎ · 𝑌 is unique.

Now let F = R, and suppose Y is already a point with minimal norm in its orbit. Then for an
appropriate 𝜆 ∈ R>0, we have that 𝜆𝐼 is an MLE and the set of all MLEs is {𝜆𝑔†𝑔 | 𝑔 ∈ (𝐺SL)𝑌 }. In
particular, we have a unique MLE if and only if (𝐺SL)𝑌 ⊆ 𝑂𝑛, the orthogonal group. Further, since
(𝐺SL)𝑌 is closed, it must be compact. The stabiliser of any other point in its 𝐺SL-orbit is obtained by
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conjugation and remains compact. In particular, if Y is any tuple of samples such that the MLE exists
uniquely, then (𝐺SL)𝑌 is compact. This will be important to us, so we record the statement for later use:

Corollary 2.5. Suppose we are in the setting of Theorem 2.3, with F = R. If the MLE given Y exists
uniquely, then (𝐺SL)𝑌 is compact.

When F = C, the same hypothesis and argument shows that (𝐺SL)𝑌 is finite. However, we will only
need Corollary 2.5 in the case that F = R.

2.2. Notions of generic stability

Let G be an algebraic group (over F), and let V be a rational representation (over F). Then we define

𝑉 ss = {𝑣 ∈ 𝑉 | 𝑣 is 𝐺-semistable},
𝑉ps = {𝑣 ∈ 𝑉 | 𝑣 is 𝐺-polystable},
𝑉 st = {𝑣 ∈ 𝑉 | 𝑣 is 𝐺-stable}.

We call 𝑉 ss (respectively 𝑉ps, 𝑉 st) the semistable (respectively polystable, stable) locus. If the group is
not clear from context, then we write 𝑉𝐺-ss, 𝑉𝐺-ps, 𝑉𝐺-st.

Definition 2.6. Let F = R or C, and let G be an algebraic group (over F) with a rational action on a
vector space V (over F). Then we say V is generically G-semistable (respectively polystable, stable)
if 𝑉 ss (respectively 𝑉ps, 𝑉 st) contains a nonempty Zariski-open subset of V. Further, we say that V is
unstable if 𝑉 ss = ∅.

These notions are particularly well-behaved in the case that F = C, as we will see in the following.
We refer to [12, Corollary 2.15, Lemma 2.16] for a succinct proof of the following standard result:

Lemma 2.7. Suppose F = C. Let V be a rational representation of a complex reductive group G. Then
the subsets 𝑉 ss and 𝑉 st are Zariski-open and the subset 𝑉ps is Zariski-constructible: that is, it is a union
of Zariski-locally closed subsets. Moreover, V is generically semistable if and only if it is not unstable.

Zariski-open subsets of a vector space, whenever nonempty, are complements of lower-dimensional
subvarieties, which have Lebesgue measure zero. On the other hand, Zariski-constructible subsets of a
vector space have Lebesgue measure zero unless they contain a Zariski-open subset, in which case their
complement has Lebesgue measure zero. Hence, we can conclude the following:

Corollary 2.8. Suppose we are in the setting of Theorem 2.3, with F = C. Fix a number of samples m,
and let 𝑉 = (C𝑛)𝑚. Then for the diagonal action of 𝐺SL, we have

◦ V is generically semistable⇐⇒ 𝑙𝑌 is almost surely bounded from above;
◦ V is generically polystable⇐⇒ an MLE exists almost surely;
◦ V is generically stable⇐⇒ there exists a unique MLE almost surely;
◦ V is unstable⇐⇒ 𝑙𝑌 is always unbounded from above.

Moreover, the first and last conditions are complementary. Here we say a property holds almost surely
if it holds for all Y in V up to a set of Lebesgue measure zero.

Let us also mention one lemma that will be useful for us later:

Lemma 2.9. Suppose G is a complex algebraic group, and let V be a rational representation over C. If
𝑉 ⊕𝑚 is generically G-stable (respectively G-semistable), then 𝑉 ⊕𝑛 is generically G-stable (respectively
G-semistable) for all 𝑛 ≥ 𝑚 with respect to the diagonal actions of G.

Proof. Suppose 𝑉 ⊕𝑚 is generically G-stable. We have an inclusion (𝑉 ⊕𝑚)st ⊆ (𝑉 ⊕𝑛)st with respect to
the diagonal actions of G. So (𝑉 ⊕𝑛)st is nonempty, and further it is Zariski open by Lemma 2.7. Thus,
𝑉 ⊕𝑛 is generically G-stable. The argument for semistability is similar. �
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2.3. Stabilisers in general position

Let F = C for this section. Let V be a rational representation of a reductive group G. We say that H is
a stabiliser in general position (s.g.p.) if there is a nonempty Zariski-open subset 𝑈 ⊆ 𝑉 such that for
all 𝑣 ∈ 𝑈, the stabiliser 𝐺𝑣 is isomorphic to H. The s.g.p. is unique up to conjugation. Its existence is
far from obvious and follows from Luna’s slice theorem; see, for example, [38, Theorem 7.2]. Indeed,
when F = R, stabilisers in general position often do not exist.

Matsushima’s criterion tells us that if an orbit of a point is closed, then the stabiliser is reductive.
Hence, if V is generically polystable, then the s.g.p. must be reductive. The converse was proved by
Popov:

Theorem 2.10 [30]. Let 𝜌 : 𝐺 → GL(𝑉) be a rational representation of a reductive group. Then V is
generically polystable if and only if the stabiliser in general position is reductive.

Corollary 2.11. Let 𝜌 : 𝐺 → GL(𝑉) be a rational representation of a reductive group, and let K denote
the kernel of 𝜌. Let H be the stabiliser in general position. The following are equivalent:

1. V is generically stable;
2. dim(𝐻) = dim(𝐾);
3. dim(𝐺𝑣 ) = dim(𝐾) for some 𝑣 ∈ 𝑉 .

Proof. Clearly (1) =⇒ (2) =⇒ (3). For (2) =⇒ (1), observe that dim(𝐻) = dim(𝐾) implies
that 𝐺𝑣/𝐾 is finite for generic 𝑣 ∈ 𝑉 . The kernel of a morphism of (affine) algebraic groups between
reductive groups is reductive, so K is reductive. Since 𝐺𝑣/𝐾 is finite (for generic 𝑣 ∈ 𝑉), this means
𝐺𝑣 and K have the same identity component and hence 𝐺𝑣 is also reductive. In particular, it means H
is reductive. Hence V is generically polystable by Theorem 2.10 and, further, generically stable because
𝐺𝑣/𝐾 is finite for generic 𝑣 ∈ 𝑉 .

For (3) =⇒ (2), we observe that the set of points 𝑈 = {𝑣 ∈ 𝑉 | dim(𝐺𝑣 ) ≤ dim(𝐾)} is Zariski
open. Note that 𝑈 = {𝑣 ∈ 𝑉 | dim(𝐺𝑣 ) = dim(𝐾)} since 𝐾 ⊆ 𝐺𝑣 for all 𝑣 ∈ 𝑉 . Since U is nonempty
Zariski open, it follows that dim(𝐻) = dim(𝐾) as well. �

2.4. A criterion for generic (poly)stability

Let still be F = C for this section. Since the late 1960s, there has been an interest in classifying actions
that are generically polystable or stable; see, for example, [3, 15, 35, 29]. From this line of research, we
will recall a few results that will be important for us.

If S is a simple algebraic group, then the Killing form defined by (𝑋,𝑌 ) ↦→ tr(ad(X)ad(Y)) is a
nondegenerate symmetric S-invariant bilinear form on the Lie algebra 𝔰 of S. Up to a scalar, 𝔰 has only
one S-invariant symmetric bilinear form. If 𝜌 : 𝑆 → GL(𝑉) and 𝑑𝜌 : 𝔰 → End(𝑉) is the corresponding
representation of the Lie algebra, then (𝑋,𝑌 ) ↦→ tr(𝑑𝜌(𝑋)𝑑𝜌(𝑌 )) is a nonzero symmetric S-invariant
bilinear form on 𝔰. So there is a constant 𝜄𝑆 (𝑉), called the index of the representation, such that

tr(𝑑𝜌(𝑋)𝑑𝜌(𝑌 )) = 𝜄𝑆 (𝑉) tr(ad(X)ad(Y))

for all 𝑋,𝑌 ∈ 𝔰. The index is additive. Furthermore, we have 𝜄SL𝑛 (C
𝑛) = 1

2𝑛 for the defining representa-
tion of SL𝑛.

Andreev, Vinberg and Elashvili proved the following criterion for generic stability in [3, Theorem].

Theorem 2.12 [3]. Let 𝜌 : 𝐺 → GL(𝑉) be a rational representation of a connected semisimple1 group.
Let H be the stabiliser in general position. If 𝜄𝑆 (𝑉) > 1 for all simple normal subgroups 𝑆 ⊆ 𝐺, then
dim(𝐻) = 0. In particular, V is generically G-stable.

Elashvili proved a very similar criterion for generic polystability in [15, Theorem 2].

1Semisimple groups are reductive.
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Theorem 2.13 [15]. Let 𝜌 : 𝐺 → GL(𝑉) be a rational representation of a connected semisimple group.
Let H be the stabiliser in general position. If 𝜄𝑆 (𝑉) ≥ 1 for all simple normal subgroups 𝑆 ⊆ 𝐺, then
the Lie algebra of H is the Lie algebra of a torus. In particular, H is reductive, so V is generically
G-polystable.

Just to put these results in context, let us consider the tensor action: that is, the action of𝐺 =
∏𝑘

𝑖=1 SL𝑑𝑘

on C𝑑1 ,...,𝑑𝑘 ;𝑚. In this case, G is a connected semisimple group, and its simple normal subgroups are
just SL𝑑1 , SL𝑑2 , . . . , SL𝑑𝑘 and the index for each SL𝑑𝑖 is 𝑚

∏
𝑗≠𝑖 𝑑 𝑗

2𝑑𝑖 .
Finally, Elashvili has classified all irreducible representations that satisfy the hypotheses of Theo-

rem 2.13 but are not generically stable; see [15, Theorem 9] and Theorem 4.3 below.

3. Castling transforms

In this section, we take F = R or C. Let 𝜌 : 𝐺 → GL(𝑉) be an n-dimensional representation of an
algebraic group G. We will assume 𝜌(𝐺) ⊆ SL(𝑉). For 0 < 𝑘 < 𝑛, we have a natural action of 𝐺 ×SL𝑘

on 𝑉 ⊗ F𝑘 , where G acts on V and SL𝑘 acts on F𝑘 . Similarly, we have an action of G on 𝑉∗ and of
SL𝑛−𝑘 on F𝑛−𝑘 , which together gives an action of 𝐺 × SL𝑛−𝑘 on 𝑉∗ ⊗ F𝑛−𝑘 . We refer to the action of
𝐺 × SL𝑛−𝑘 on 𝑉∗ ⊗ F𝑛−𝑘 as a castling transform of the action of 𝐺 × SL𝑘 on 𝑉 ⊗ F𝑘 .

The main feature of castling transforms is that we get a bijection between the 𝐺 × SL𝑘 -orbits in
a nonempty Zariski-open subset of 𝑉 ⊗ F𝑘 and the 𝐺 × SL𝑛−𝑘 -orbits in a nonempty Zariski-open
subset of 𝑉∗ ⊗ F𝑛−𝑘 . Moreover, this bijection of orbits preserves stabilisers up to isomorphism. Hence,
when F = C, the stabiliser in general position is preserved under castling transforms. Moreover, generic
semistability/polystability/stability will also be preserved under castling transforms. We will now explain
all this in more detail, but first we need to recall Grassmannians.

3.1. Grassmannians

Let F = R or C. Suppose V is an n-dimensional vector space over F. Let Gr(𝑘,𝑉) denote the Grass-
mannian of k-planes in V. It is naturally embedded in P(

∧𝑘 (𝑉)) as a closed subvariety cut out by the
Plücker relations, where

∧𝑘 (𝑉) denotes the 𝑘 th exterior power of V.
This embedding is constructed as follows. Identify V with F𝑛 by choosing a basis 𝑒1, . . . , 𝑒𝑛. Then a

basis for
∧𝑘 (𝑉) is {𝑒𝑖1 ∧𝑒𝑖2 ∧· · ·∧𝑒𝑖𝑘 | 1 ≤ 𝑖1 < 𝑖2 < · · · < 𝑖𝑘 ≤ 𝑛}. For any subset 𝐼 ⊆ [𝑛] of size k, we

write 𝑒𝐼 to denote 𝑒𝑖1 ∧ 𝑒𝑖2 ∧ · · · ∧ 𝑒𝑖𝑘 , where 𝐼 = {𝑖1, . . . , 𝑖𝑘 } with the 𝑖 𝑗s in increasing order. We write
Δ 𝐼 to denote the coordinate corresponding to 𝑒𝐼 . Now, for any subspace L of V of dimension k, take
independent vectors 𝑙1, . . . , 𝑙𝑘 in L and consider the point [𝑙1 ∧ 𝑙2 ∧ · · · ∧ 𝑙𝑘 ] ∈ P(

∧𝑘 (𝑉)). This point is
independent of the choice of 𝑙𝑖 and only depends on the subspace L. Thus, we obtain an injective map
Gr(𝑘,𝑉) → P(

∧𝑘 (𝑉)) whose image is a closed subvariety. This map is called the Plücker embedding
and endows the Grassmannian with the structure of a projective variety. We refer to [17, 44, 31] for
more details on Grassmannians.

The affine cone over the Grassmannian Ĝr(𝑘,𝑉) is a closed subvariety of
∧𝑘 (𝑉). Note that Ĝr(𝑘,𝑉) =

{𝑣1 ∧ 𝑣2 ∧ · · · ∧ 𝑣𝑘 | 𝑣𝑖 ∈ 𝑉}. If the 𝑣𝑖s are linearly dependent, then 𝑣1 ∧ 𝑣2 ∧ · · · ∧ 𝑣𝑘 = 0; otherwise it
is nonzero. Let {𝑒1, . . . , 𝑒𝑘 } denote the standard basis for F𝑘 , and define

𝑈 =
{∑𝑘

𝑖=1𝑣𝑖 ⊗ 𝑒𝑖 ∈ 𝑉 ⊗ F
𝑘 | 𝑣1, . . . , 𝑣𝑘 are linearly independent

}
. (3.1)

Then we have a map

𝜋 = 𝜋𝑘,𝑉 : 𝑈 −→ Ĝr(𝑘,𝑉) \ {0},
∑𝑘

𝑖=1 𝑣𝑖 ⊗ 𝑒𝑖 ↦−→ 𝑣1 ∧ 𝑣2 ∧ · · · ∧ 𝑣𝑘 .

We claim that U is a Zariski-locally trivial principal SL𝑘 -bundle over Ĝr(𝑘,𝑉) \ {0}. It is straightfor-
ward to see that it is a principal SL𝑘 -bundle, because 𝑣1∧𝑣2∧· · ·∧𝑣𝑘 = 𝑤1∧𝑤2∧· · ·∧𝑤𝑘 if and only if
there is a matrix 𝐴 = (𝑎𝑖 𝑗 ) ∈ SL𝑘 such that

∑
𝑖 𝑎𝑖 𝑗𝑣 𝑗 = 𝑤𝑖 for all i. To see that it is Zariski-locally trivial
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needs an explanation. A similar result, namely that U is a Zariski-locally trivial principal GL𝑘 -bundle
over Gr(𝑘,𝑉), is well known; see, for example, [31, pg. 511]. We modify their argument appropriately.

First, we note that Ĝr(𝑘,𝑉) \ {0} is covered by affine open subsets {𝑋𝐼 : 𝐼 ⊆ [𝑛], |𝐼 | = 𝑘},
where 𝑋𝐼 � {𝑝 | Δ 𝐼 (𝑝) ≠ 0}. If we identify V with F𝑛 as mentioned above, U can be viewed as
the 𝑘 × 𝑛 matrices of full rank. For a matrix 𝑀 ∈ Mat𝑘,𝑛 and a subset 𝐼 ⊆ [𝑛] of size k, let 𝑀𝐼

denote the 𝑘 × 𝑘 submatrix of M obtained by considering the columns labeled by elements in I, and let
𝑝𝐼 (𝑀) = det(𝑀𝐼 ). Then 𝜋−1 (𝑋𝐼 ) = {𝑀 ∈ Mat𝑘,𝑛 | 𝑝𝐼 (𝑀) ≠ 0}. Without loss of generality, we can take
𝐼 = {1, 2, . . . , 𝑘}, so we have an isomorphism 𝜋−1 (𝑋𝐼 ) → Mat𝑘,𝑛−𝑘 ×F∗×SL𝑘 given by 𝑀 = [𝐴 | 𝐵] ↦→
(𝐷𝐴−1𝐵, det(𝐴), 𝐴𝐷−1), where D is the diagonal matrix with diagonal entries (det(𝐴), 1, 1, . . . , 1). The
map in the reverse direction is (𝑃, 𝜆, 𝑄) ↦→ [𝑄𝐷 | 𝑄𝑃], where 𝐷 = diag(𝜆, 1, . . . , 1). Now, observing
that 𝑋𝐼 � Mat𝑘,𝑛−𝑘 ×F∗2 gives us an isomorphism 𝜋−1(𝑋𝐼 ) −→ 𝑋𝐼 × SL𝑘 .

Everything we said above also works if you consider the Euclidean topology because Zariski-open
subsets are open in the Euclidean topology and polynomial maps are continuous in the Euclidean
topology as well. Hence, U is also a locally trivial principal SL𝑘 -bundle over Ĝr(𝑘,𝑉) \ {0} in the
Euclidean topology.

The projection of a locally trivial bundle onto its base is an open map. One can check this condition
on a trivialising cover of the base. In other words, it suffices to check that projection of a trivial bundle
onto its base is open. For the Euclidean topology, it is well known that projection maps are open. For the
Zariski topology, projection maps are also open. When the underlying field is algebraically closed, this
follows from flatness, but the statement remains true even when the underlying field is not algebraically
closed:

Lemma 3.1. Suppose X and Y are affine F-varieties; then the projection map 𝜋 : 𝑋 ×𝑌 → 𝑋 is an open
map in the Zariski topology.

Proof. We have 𝑋 = V( 𝑓1, . . . , 𝑓𝑟 ) and 𝑌 = V(𝑔1, . . . , 𝑔𝑠), where V(. . .) denotes the zero locus of a
collection of polynomials. Now, suppose 𝑈 = V(𝑝1, . . . , 𝑝𝑡 )

𝑐 is a Zariski-open subset of 𝑋 × 𝑌 . Then

𝜋(𝑈) = {𝑎 | ∃𝑏 ∈ 𝑌 : (𝑎, 𝑏) ∈ 𝑈}
= {𝑎 | ∃𝑏 ∈ 𝑌, 1 ≤ 𝑖 ≤ 𝑡 : 𝑝𝑖 (𝑎, 𝑏) ≠ 0}
= V({𝑝𝑖,𝑏}𝑏∈𝑌 ,1≤𝑖≤𝑡 )

𝑐 ,

where 𝑝𝑖,𝑏 = 𝑝𝑖 (−, 𝑏). Thus 𝜋(𝑈) is Zariski-open. Note that even though 𝑝𝑖,𝑏 is an infinite collection of
polynomials, one can extract a finite subset with the same zero locus by the Hilbert basis theorem. �

To summarise, we get the following result:

Lemma 3.2. Let V, U and 𝜋𝑘,𝑉 be defined as above. Then U is a Zariski-locally trivial principal SL𝑘 -
bundle over Ĝr(𝑘,𝑉) \ {0} via the map 𝜋𝑘,𝑉 . In particular, 𝜋𝑘,𝑉 is an open map (and also a quotient
map) when considering either the Zariski or Euclidean topology.

3.2. Castling transforms

Let 𝜌 : 𝐺 → GL(𝑉) be a representation of an algebraic group G, and we will assume 𝜌(𝐺) ⊆ SL(𝑉).
Let dim(𝑉) = 𝑛. We have an action of 𝐺 ×SL𝑘 on𝑉 ⊗ F𝑘 and an action of 𝐺 ×SL𝑛−𝑘 on𝑉∗ ⊗ F𝑛−𝑘 . Let

𝑈 =
{∑𝑘

𝑖=1𝑣𝑖 ⊗ 𝑒𝑖 ∈ 𝑉 ⊗ F
𝑘 | 𝑣1, . . . , 𝑣𝑘 are linearly independent

}
⊆ 𝑉 ⊗ F𝑘 ,

as in equation (3.1), and let

𝑈 ′ =
{∑𝑛−𝑘

𝑖=1 𝑤𝑖 ⊗ 𝑒𝑖 ∈ 𝑉
∗ ⊗ F𝑛−𝑘 | 𝑤1, . . . , 𝑤𝑛−𝑘 are linearly independent

}
⊆ 𝑉∗ ⊗ F𝑛−𝑘 .

2It is well known in the projective setting that the locus where Δ 𝐼 (𝑝) ≠ 0 is isomorphic to Mat𝑘,𝑛−𝑘 , and we are just pulling
back to the affine cone.
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Since U is a principal SL𝑘 -bundle over Ĝr(𝑘,𝑉) \ {0}, we have a bijection between the SL𝑘 -orbits in
U and the points of Ĝr(𝑘,𝑉) \ {0}. This bijection is G-equivariant since 𝜋𝑘,𝑉 is G-equivariant and the
actions of G and of SL𝑘 on 𝑉 ⊗ C𝑘 commute. So, we have G-equivariant bijections:

SL𝑘 -orbits in 𝑈 ←→ Ĝr(𝑘,𝑉) \ {0} ←→ Ĝr(𝑛 − 𝑘,𝑉∗) \ {0} ←→ SL𝑛−𝑘 -orbits in 𝑈 ′. (3.2)

The first bijection was explained above, and the last bijection follows by the same argument. The middle
bijection comes from the well understood SL(𝑉)-equivariant isomorphism

∧𝑘 (𝑉) �
∧𝑛−𝑘 (𝑉∗). The

following result is implicit in [15], but we furnish a proof for completeness.

Lemma 3.3. Let 𝑇 ∈ 𝑈. Then we have an isomorphism of algebraic groups

Stab𝐺 (𝜋𝑘,𝑉 (𝑇)) � Stab𝐺×SL𝑘 (𝑇).

Proof. This holds since 𝜋𝑘,𝑉 is a G-equivariant principal SL𝑘 -bundle. Indeed, let 𝑝 : 𝐺 × SL𝑘 → 𝐺
denote the projection onto the first factor. It is easy to see that 𝑝(Stab𝐺×SL𝑘 (𝑇)) ⊆ Stab𝐺 (𝜋𝑘,𝑉 (𝑇)).
Now suppose 𝑔 ∈ Stab𝐺 (𝜋𝑘,𝑉 (𝑇)). Then 𝜋𝑘,𝑉 (𝑇) = 𝑔 · 𝜋𝑘,𝑉 (𝑇) implies that 𝜋𝑘,𝑉 (𝑇) = 𝜋𝑘,𝑉 (𝑔 · 𝑇)
by G-equivariance. Since 𝜋𝑘,𝑉 is a principal SL𝑘 -bundle, it follows that there exists a unique 𝐴 ∈ SL𝑘

such that 𝐴 · (𝑔 · 𝑇) = 𝑇 : that is, (𝑔, 𝐴) · 𝑇 = 𝑇 . Thus we have proved that every 𝑔 ∈ Stab𝐺 (𝜋𝑘,𝑉 (𝑇))
has a unique preimage under p in Stab𝐺×SL𝑘 (𝑇). We conclude that p restricted to Stab𝐺×SL𝑘 (𝑇) is a
(group) isomorphism onto its image, which is Stab𝐺 (𝜋𝑘,𝑉 (𝑇)).

To establish that this is an isomorphism of algebraic groups (over F), we need to establish that it
is an isomorphism of varieties. To do so, we give a map in the reverse direction as follows. Write
𝑇 =

∑𝑘
𝑖=1 𝑣𝑖 ⊗ 𝑒𝑖 . Let 𝑔 ∈ Stab𝐺 (𝜋𝑘,𝑉 (𝑇)). Since g stabilises the span of 𝑣1, . . . , 𝑣𝑘 , we get that

𝑔 · 𝑣𝑖 =
∑

𝑗 𝑐𝑖, 𝑗 (𝑔) 𝑣 𝑗 , where the 𝑐𝑖, 𝑗 (𝑔) are regular functions on Stab𝐺 (𝜋𝑘,𝑉 (𝑇)). Moreover, the matrix
𝐶 = (𝑐𝑖, 𝑗 (𝑔))1≤𝑖, 𝑗≤𝑘 is invertible. Then (𝑔, 𝐶−1) is the unique preimage of g in Stab𝐺×SL𝑘 (𝑇) under p.
Thus the map 𝑔 ↦→ (𝑔, 𝐶−1) is the inverse of p restricted to Stab𝐺×SL𝑘 (𝑇), and it is clearly a morphism
of algebraic varieties. �

As a consequence of the bijections in equation (3.2) and Lemma 3.3, we thus obtain the following
corollaries.

Corollary 3.4. We have a natural bijection between the 𝐺 × SL𝑘 -orbits in U and the 𝐺 × SL𝑛−𝑘 orbits
in 𝑈 ′ that preserves stabilisers (up to isomorphism).

Corollary 3.5. Let F = C. Then the stabiliser in general position for the action of 𝐺 × SL𝑘 on 𝑉 ⊗ C𝑘

is isomorphic to the stabiliser in general position for the action of 𝐺 × SL𝑛−𝑘 on 𝑉∗ ⊗ C𝑛−𝑘 .

In fact, the invariant ring is also preserved by castling transforms [35] (see also [21, Prop. 2.1]).

Lemma 3.6 [35]. Let F = C. Then the invariant ring for the action of 𝐺×SL𝑘 on𝑉 ⊗C𝑘 is (canonically)
isomorphic to the invariant ring for the action of 𝐺 × SL𝑛−𝑘 on 𝑉∗ ⊗ C𝑛−𝑘 .

The discussion above culminates in the following result that will be very important for us:

Corollary 3.7. Let F = R or C. Then 𝑉 ⊗ F𝑘 is generically 𝐺 × SL𝑘 -semistable (polystable, stable) if
and only if 𝑉∗ ⊗ F𝑛−𝑘 is generically 𝐺 × SL𝑛−𝑘 -semistable (polystable, stable).

Proof. By [12, Proposition 2.23], it suffices to prove the statement for F = C. So, let us assume that
F = C. Generic semistability is the same as having a nontrivial invariant ring. Hence, it follows from
Lemma 3.6 that castling transforms preserve generic semistability. The fact that castling transforms
preserve generic polystability follows from Corollary 3.5 and Theorem 2.10.

That castling transforms preserve generic stability follows similarly from Corollaries 3.5 and 2.11,
provided we can show that the kernels of the two actions have the same dimension. To see this, let
𝐾 = ker(𝜌), where 𝜌 : 𝐺 → GL(𝑉) is the action of G on V. Now, let us consider the kernel of
�̃� : 𝐺 × SL𝑘 → GL(𝑉 ⊗ C𝑘 ). For (𝑔, 𝐴) ∈ 𝐺 × SL𝑘 , we have �̃�(𝑔, 𝐴) = 𝜌(𝑔) ⊗ 𝐴. So, if (𝑔, 𝐴) is in the
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kernel, then 𝜌(𝑔) = 𝑐I and 𝐴 = 𝑐−1𝐼 for some 𝑐 ∈ C∗. But 𝐴 ∈ SL𝑘 , so c must be an 𝑘 th root of unity.
For each such c, the subvariety 𝐻𝑐 = {𝑔 ∈ 𝐺 | 𝜌(𝑔) = 𝑐𝐼} is either empty or a coset of K. Since the
kernel is a finite union of 𝐻𝑐 × {𝑐

−1𝐼}, its dimension equals the dimension of K. On the other hand, the
kernel for the action of G on 𝑉∗ is also K, so the same argument shows that the kernel for the action of
𝐺 × SL𝑛−𝑘 on 𝑉∗ ⊗ C𝑛−𝑘 also has the same dimension as K. �

For complex Gaussian group models, we saw in Theorem 2.3 that invariant-theoretic stability notions
characterise the boundedness of the log-likelihood function and the existence and uniqueness of MLEs
precisely. However, for real models, the relation between generic stability and almost sure existence of
a unique MLE is less tight. To bridge this gap, we will need the following results:

Lemma 3.8. Suppose 𝑃 ⊆ 𝑉 ⊗ F𝑘 is a nonempty open subset in the Euclidean (respectively Zariski)
topology. Then (𝜋𝑛−𝑘,𝑉 ∗ )−1𝜋𝑘,𝑉 (𝑃∩𝑈) is a nonempty open subset of𝑈 ′ in the Euclidean (respectively
Zariski) topology.

Proof. Let us first argue this for Euclidean topology. Observe that 𝑃 ∩𝑈 is an open subset of 𝑉 ⊗ C𝑘 .
Further, since 𝑈𝑐 is a proper subvariety and hence has empty interior, we know that 𝑃 ∩ 𝑈 must be
nonempty. Now the statement follows since 𝜋𝑘,𝑉 is an open map by Lemma 3.2. The argument for
Zariski topology is analogous. �

An immediate corollary of the above lemma is the following:

Corollary 3.9. Let 𝑃 = {𝑇 ∈ 𝑉 ⊗ F𝑘 | Stab𝐺×SL𝑘 (𝑇) is not compact}. Similarly, let 𝑃′ = {𝑆 ∈
𝑉∗ ⊗ F𝑛−𝑘 | Stab𝐺×SL𝑛−𝑘 (𝑇) is not compact}. Then P contains a nonempty Euclidean (respectively
Zariski) open subset of 𝑉 ⊗ F𝑘 if and only if 𝑃′ contains a nonempty Euclidean (respectively Zariski)
open subset of 𝑉∗ ⊗ F𝑘 .

Proof. It suffices to prove one direction. Suppose P contains a nonempty Euclidean (respectively Zariski)
open subset 𝑃. Then by Lemma 3.8, (𝜋𝑛−𝑘,𝑉 ∗ )−1𝜋𝑘,𝑉 (𝑃∩𝑈) is a Euclidean (respectively Zariski) open
subset of 𝑉∗ ⊗ F𝑛−𝑘 , and it is contained in 𝑃′ by Corollary 3.4. �

We need to give a technical clarification in the above corollary with respect to the notion of compact-
ness. There are two natural topologies one can give a Lie subgroup H of a Lie group G. The first is the
inherent topology on H by virtue of being a Lie group in itself, and the second is the subspace topology
by virtue of being a subspace of G. In the proof above, we are really using the inherent topology be-
cause the isomorphism of stabilisers furnished by Corollary 3.4 is an abstract isomorphism. However,
we will later need to use the lemma in the context of Corollary 2.5, which refers to the subspace topol-
ogy. While for immersed Lie subgroups, the inherent topology can differ from the subspace topology,
the two topologies coincide for embedded Lie subgroups. Since stabiliser subgroups are closed, they
are embedded Lie subgroups, and there is no ambiguity.

3.3. Castling transforms for tensor actions

We now discuss explicitly the relevance of castling transforms to tensor actions and hence to tensor
normal models. Here we are interested in the action of

∏𝑘
𝑖=1 SL𝑑𝑖 on F𝑑1 ,...,𝑑𝑘 ;𝑚, which we succinctly

denote by 𝜌𝑑1 ,...,𝑑𝑘 ;𝑚. The ground field F is assumed to be either R or C. If we need to specify it, we
will add a subscript.

Let 𝐺 =
∏𝑘−1

𝑖=1 SL𝑑𝑖 , and consider its natural action on 𝑉 = F𝑑1 ,...,𝑑𝑘−1;𝑚, which in our notation is
𝜌𝑑1 ,...,𝑑𝑘−1;𝑚. Then the action of 𝐺 × SL𝑑𝑘 on 𝑉 ⊗ F𝑑𝑘 is simply 𝜌𝑑1 ,...,𝑑𝑘 ;𝑚. It is well known that V and
𝑉∗ are related by an automorphism on the group G, which does not affect any of the notions of stability.
3Hence, we call 𝜌𝑑1 ,...,𝑁−𝑑𝑘 ;𝑚 the castling transform of 𝜌𝑑1 ,...,𝑑𝑘 ;𝑚, where 𝑁 = dim𝑉 = 𝑚𝑑1 · · · 𝑑𝑘−1,
and we assume that 𝑁 > 𝑑𝑘 . Thus Corollary 3.7 implies the following important result:

3If we compose a representation 𝜌 of SL(𝑑) with the automorphism 𝑔 ↦→ 𝑔−𝑇 , the result is isomorphic to the dual representation
of 𝜌, and similarly for the product group G.
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Corollary 3.10. Let 𝑑1, . . . , 𝑑𝑘 , 𝑚 ∈ Z>0, and suppose that 𝑁 = 𝑚
∏𝑘−1

𝑖=1 𝑑𝑖 > 𝑑𝑘 . Then 𝜌𝑑1 ,...,𝑑𝑘 ;𝑚
is generically semistable (polystable, stable) if and only if 𝜌𝑑1 ,...,𝑁−𝑑𝑘 ;𝑚 is generically semistable
(polystable, stable).

Given this result, we will make some definitions for later use. For positive integers 𝑑1, . . . , 𝑑𝑘 and
m, we call (𝑑1, . . . , 𝑑𝑘 ;𝑚) a datum and 𝜌𝑑1 ,...,𝑑𝑘 ;𝑚 the corresponding representation. Observe that
permuting the 𝑑𝑖 leaves the group and representation unchanged up to isomorphism and hence does not
change the generic stability properties of the representation.

Definition 3.11. We say two data (𝑑1, . . . , 𝑑𝑘 ;𝑚) and (𝑑 ′1, . . . , 𝑑
′
𝑘 ;𝑚) are castling-equivalent if

𝜌𝑑1 ,...,𝑑𝑘 ;𝑚 and 𝜌𝑑′1 ,...,𝑑
′
𝑘

;𝑚 are related by a sequence of castling transforms (of the form described
above) and permutations of the dimensions. We say the datum (𝑑1, . . . , 𝑑𝑘 ;𝑚) is minimal in its castling
equivalence class if it minimises

∏𝑘
𝑖=1 𝑑𝑖 .

Lemma 3.12. Consider the datum (𝑑1, . . . , 𝑑𝑘 ;𝑚). Without loss of generality, we assume that 𝑑1 ≤
𝑑2 ≤ · · · ≤ 𝑑𝑘 . Let 𝑁 = 𝑚 ·

∏𝑘−1
𝑖=1 𝑑𝑖 . Then if 𝑁

2 < 𝑑𝑘 < 𝑁 , the datum is not minimal in its castling
equivalence class.

Proof. We only need to show that if 𝑁
2 < 𝑑𝑘 < 𝑁 , then the datum is not minimal. To see this, observe

that we have a castling transform that takes (𝑑1, . . . , 𝑑𝑘 ;𝑚) to (𝑑1, . . . , 𝑑𝑘−1, 𝑁 − 𝑑𝑘 ;𝑚), and the latter
is smaller since 𝑁 − 𝑑𝑘 < 𝑑𝑘 . �

Remark 3.13. If 𝑑1 = 1, then 𝜌𝑑1 ,𝑑2 ,...,𝑑𝑘 ;𝑚 and 𝜌𝑑2 ,...,𝑑𝑘 ;𝑚 are equal up to isomorphism of the group
and representation, so we can often assume without loss of generality that 𝑑𝑖 ≥ 2.

Even though it will not be relevant to us, we observe that each castling equivalence class contains a
unique minimal datum (up to permutation). This follows from the fact that if any two data are related
by (minimal) sequence of castling transforms, then the sequence of dimensions of representations
produced by these transforms is monotonous, the proof of which is exactly the same as the proof of [28,
Proposition 29].

4. Stability for tensor actions

In this section, we will prove Theorem 1.6, which gives a recursive characterisation of the generic
stability properties for the tensor actions 𝜌𝑑1 , · · · ,𝑑𝑘 ;𝑚. Without loss of generality, we may assume that
𝑑1 ≤ 𝑑2 ≤ · · · ≤ 𝑑𝑘 . By Corollary 3.10, we know that the properties we are looking at are invariant
under the castling transform in part (3) of the theorem, so the majority of our work will be spent on the
terminal cases. We now prove each part of the theorem separately.

For the first part, we need a simple lemma. It follows from the first fundamental theorem of invariant
theory for the special linear group, a result that dates back to Weyl [43] but also has an elementary proof
(see also [23, p. 7, Example]).

Lemma 4.1. Consider the action of 𝐺 = SL𝑑 on 𝑉 = Mat𝑑,𝑟 by left multiplication. If 𝑑 > 𝑟 , then every
point 𝑣 ∈ 𝑉 is G-unstable. In contrast, if 𝑑 ≤ 𝑟 , then V is generically G-stable.

Proof. Suppose 𝑑 > 𝑟 . Then any 𝑣 ∈ Mat𝑑,𝑟 has rank at most r, so we can find 𝑔 ∈ SL𝑑 such that
the range of 𝑔𝑣 is a subspace of the span of the first 𝑟 < 𝑑 standard basis vectors. Then 𝜑(𝑡) :=
𝑔−1diag(𝑡𝑑−𝑟 , . . . , 𝑡𝑑−𝑟 , 𝑡−𝑟 , . . . , 𝑡−𝑟 )𝑔 ∈ SL𝑑 for all 𝑡 ≠ 0, and 𝜑(𝑡)𝑣 → 0 as 𝑡 → 0.

Now suppose that 𝑑 ≤ 𝑟 . By Lemma 2.9, it suffices to prove the claim in the case that 𝑑 = 𝑟 . Suppose
𝑣 ∈ Mat𝑑,𝑑 is invertible (a Zariski-open set). Then its SL𝑑-orbit is equal to det−1(det 𝑣), hence closed.
Since moreover its stabiliser is trivial, we conclude that V is generically stable.

Note that Lemma 2.9 was stated only for F = C. There are many ways to adapt the argument for
F = R: for example, one can use [12, Proposition 2.23]. �
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Proof of Theorem 1.6, part (1). As a representation of SL𝑑𝑘 , the tensor space F𝑑1 ,...,𝑑𝑘 ;𝑚 is isomorphic
to Mat𝑑𝑘 ,𝑚𝑑1𝑑2 · · ·𝑑𝑘−1 , and hence every point is unstable by Lemma 4.1 since 𝑑𝑘 > 𝑑1 · · · 𝑑𝑘−1𝑚. Hence
every point is also unstable for the action of the larger group 𝐺 =

∏𝑘
𝑖=1 SL𝑑𝑖 . �

For the second part, we will need the following result.

Lemma 4.2. Let 𝜋 : 𝐻 → SL𝑑 ⊆ GL𝑑 be a d-dimensional representation of an algebraic group H.
Consider the action of 𝐺 = 𝐻×SL𝑑 on Mat𝑑,𝑑 given by (ℎ, 𝑔) · 𝐴 = 𝜋(ℎ)𝐴𝑔−1. For any full-rank matrix
𝐴 ∈ Mat𝑑,𝑑 , the stabiliser is given by 𝐺𝐴 = {(ℎ, 𝐴−1𝜋(ℎ)𝐴) | ℎ ∈ 𝐻}. In particular, the stabiliser in
general position is isomorphic to H.

Proof. Straightforward. �

One point to note is that the kernel of the tensor action 𝜌 = 𝜌𝑑1 ,...,𝑑𝑘 ;𝑚 is finite. So stability is
equivalent to having a closed orbit and finite stabiliser. In particular, for F = C, Corollary 2.11 shows
that generic stability of 𝜌 is the same as the stabiliser in the general position being finite.

Proof of Theorem 1.6, part (2), for F = C. Let us define 𝐻 = SL𝑑1 × SL𝑑2 × · · · × SL𝑑𝑘−1 and 𝑊 =
C𝑑1 ,...,𝑑𝑘−1;𝑚. Then we can view 𝐺 � 𝐻 × SL𝑑𝑘 and C𝑑1 ,...,𝑑𝑘 ;𝑚 � 𝑊 ⊗ C𝑑𝑘 � Mat𝑑𝑘 ,𝑑𝑘 , since
𝑑𝑘 = 𝑑1 · · · 𝑑𝑘−1𝑚. So, the stabiliser in general position is H by Lemma 4.2, which is reductive. Hence,
𝜌 = 𝜌𝑑1 ,...,𝑑𝑘 ;𝑚 is generically polystable by Theorem 2.10. As discussed above, the kernel of 𝜌 is a finite
group, so 𝜌 is generically stable if and only if the stabiliser in general position H is finite. This happens
precisely when 𝑑1 = 𝑑2 = · · · = 𝑑𝑘−1 = 1. �

Proof of Theorem 1.6, part (2), for F = R. This follows from [12, Proposition 2.23]. �

We already proved the third part of the theorem when we discussed the castling transforms of tensor
actions.

Proof of Theorem 1.6, part (3). This follows from Corollary 3.10. �

We now prove the fourth and last part of the theorem, which is perhaps the most complicated. Here
we wish to apply Theorems 2.12 and 2.13. Recall from Section 2.4 that the simple normal subgroups of
𝐺 = SL𝑑1 × SL𝑑2 × · · · × SL𝑑𝑘 are just SL𝑑1 , SL𝑑2 , . . . , SL𝑑𝑘 . To compute the index of 𝑉 = C𝑑1 ,...,𝑑𝑘 ;𝑚

with respect to some SL𝑑𝑖 , note that𝑉 � (C𝑑𝑖 )⊕𝑀 as an SL𝑑𝑖 -representation, where 𝑀 = 𝑚𝑑1 · · ·𝑑𝑘

𝑑𝑖
. Now,

the index of C𝑑𝑖 with respect to SL𝑑𝑖 is 1
2𝑑𝑖 and is additive. It follows that the index of C𝑑1 ,...,𝑑𝑘 ;𝑚 with

respect to SL𝑑𝑖 is given by 𝑀
2𝑑𝑖 =

𝑚𝑑1𝑑2 · · ·𝑑𝑘

2𝑑2
𝑖

. Since by assumption 𝑑1 ≤ 𝑑2 ≤ · · · ≤ 𝑑𝑘 , the smallest of
these indices is the one for SL𝑑𝑘 , given by 𝑚𝑑1𝑑2 · · ·𝑑𝑘−1

2𝑑𝑘
. When 𝑑𝑘 ≤

1
2𝑚𝑑1𝑑2 · · · 𝑑𝑘−1, as we assume in

part (4) of the theorem, all indices therefore are at least one, so Theorems 2.12 and 2.13 are applicable.
When 𝑚 = 1, then the representation of G on V is irreducible. Elashvili has classified all irreducible
representations of semisimple groups that are generically polystable but not generically stable. From
the classification, one can extract the following (see [15, Theorem 9] and also [4, p. 9]).

Theorem 4.3 [15]. Consider the irreducible representation 𝑉 = C𝑑1 ,...,𝑑𝑘 ;1 of 𝐺 = SL𝑑1 (C) × · · · ×

SL𝑑𝑘 (C). Assume that 2 ≤ 𝑑1 ≤ · · · ≤ 𝑑𝑘 ≤
𝑑1 · · ·𝑑𝑘−1

2 . Then V satisfies the hypotheses of Theorem 2.13,
hence is generically G-polystable. Moreover, V is not generically G-stable if and only if 𝑘 = 3 and
(𝑑1, 𝑑2, 𝑑3) = (2, 𝑑, 𝑑) for some 𝑑 ≥ 2.

Note that this result proves part (4) of the theorem when F = C and 𝑚 = 1. To deal with the case that
𝑚 ≥ 2, we will still make use of this theorem, together with a knowledge of the s.g.p.s.

For (𝑑1, 𝑑2, 𝑑3) = (2, 2, 2), the stabiliser of 𝑣 = 𝑒⊗3
1 + 𝑒

⊗3
2 is a s.g.p. It includes and has the same Lie

algebra as the two-dimensional torus {(𝑠, 𝑡, 𝑢) ∈ 𝐺 : 𝑠, 𝑡, 𝑢 diagonal, 𝑠𝑡𝑢 = 1}.
For (𝑑1, 𝑑2, 𝑑3) = (2, 𝑑, 𝑑), 𝑑 > 2, the stabiliser of 𝑣 = 𝑒1 ⊗ 𝐼 + 𝑒2 ⊗ 𝐴, where I denotes the 𝑑 × 𝑑

identity matrix and A is a generic 𝑑 × 𝑑 diagonal matrix, is a s.g.p. It includes and has the same Lie
algebra as the (𝑑 − 1)-dimensional torus {(1, 𝑡, 𝑡−1) ∈ 𝐺 : 𝑡 diagonal}.
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Proof of Theorem 1.6, part (4) for F = C. Since 𝑑𝑘 ≤
𝑑1 · · ·𝑑𝑘−1𝑚

2 , the index of 𝑉 = C𝑑1 ,...,𝑑𝑘 ;𝑚 with
respect to any simple normal subgroup of G is greater than or equal to one (as discussed above). When
the inequality is strict, then 𝜌 is generically stable by Theorem 2.12. Now suppose that 𝑑𝑘 = 𝑑1 · · ·𝑑𝑘−1𝑚

2 .
Then 𝜌 is still generically polystable by Theorem 2.13. We now characterise when the representation is
generically stable. If 𝑑1 = · · · = 𝑑𝑘−1 = 1, then 𝑑𝑘 ≤

𝑚
2 < 𝑚, so 𝜌 is generically stable by Lemma 4.1.

Now assume that 𝑑𝑘−1 ≥ 2. Then 𝑑𝑘 = 𝑚𝑑1 · · ·𝑑𝑘−1
2 ≥ 𝑚. This means that if we consider the action of the

larger group 𝐻 = SL𝑑1 × · · · × SL𝑑𝑘 × SL𝑚 on 𝑉 = C𝑑1 ⊗ · · · ⊗ C𝑑𝑘 ⊗ C𝑚, then the dimension 𝑑𝑘 is
still the largest among the dimensions 𝑑1, 𝑑2, . . . , 𝑑𝑘 , 𝑚. Accordingly, we can apply Theorem 4.3 to find
that V is generically H-stable (hence also generically G-stable4), except if (𝑑1, . . . , 𝑑𝑘 ;𝑚) is one of the
following cases:
(a) (1, . . . , 1, 2, 𝑑, 𝑑; 1) for some 𝑑 ≥ 2,
(b) (1, . . . , 1, 2, 2; 2),
(c) (1, . . . , 1, 𝑑, 𝑑; 2) for some 𝑑 > 2,
(d) (1, . . . , 1, 2, 𝑑; 𝑑) for some 𝑑 > 2.
In case (a), we have 𝑚 = 1 and hence 𝐺 � 𝐻, so V is not generically G-stable either. To deal with the
case that 𝑚 = 2, we observe that an s.g.p. for G can be obtained by intersecting a generic H-conjugate
of an s.g.p. for H with the subgroup G. From the description of the s.g.p.s above, we can observe the
following. In case (b), the s.g.p. for G has dimension one (the dimension drops by one compared to H),
while in case (c) it has dimension 𝑑 − 1 (same as for the H-action). Thus we see that in either case, V is
not generically G-stable. In contrast, in case (d), the s.g.p. for G is finite, so V is generically G-stable. �

Proof of Theorem 1.6, part (4) for F = R. This follows from [12, Proposition 2.23]. �

Finally, we need to prove that if 𝜌 is not generically semistable, then it is unstable. For F = C, this
statement is contained in Lemma 2.7. For F = R, it then follows from [12, Corollary 2.22 and Proposition
2.23]. This concludes the proof of Theorem 1.6.

5. A uniform characterization

In this section we prove Theorem 1.5, which gives a nonrecursive characterisation. Following [4], we
define the following quantities for positive integers k, 𝑑1, . . . , 𝑑𝑘 , and m:

𝑅(𝑑1, . . . , 𝑑𝑘 ;𝑚) � 𝑚
𝑘∏
𝑖=1

𝑑𝑖 +
𝑘∑

𝑛=1
(−1)𝑛𝐺𝑛 (𝑑1, . . . , 𝑑𝑘 ),

where

𝐺𝑛 (𝑑1, . . . , 𝑑𝑘 ) �
∑

1≤𝑖1<...<𝑖𝑛≤𝑘
gcd(𝑑𝑖1 , . . . , 𝑑𝑖𝑛 )

2,

as well as

𝑔max(𝑑1, . . . , 𝑑𝑘 ) � max
𝑖< 𝑗

gcd(𝑑𝑖 , 𝑑 𝑗 ).

and

Δ (𝑑1, . . . , 𝑑𝑘 ;𝑚) � 𝑚
𝑘∏
𝑖=1

𝑑𝑖 − 1 −
𝑘∑
𝑖=1
(𝑑2

𝑖 − 1).

By convention, we define 𝑔max(𝑑) = 1 for any 𝑑 ∈ Z>0, and we always assume that 𝑘 ≥ 1.

4One way to see this is by using Corollary 2.11.
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We saw earlier that generic semistability (polystability, stability) for tensor actions is symmetric in
the 𝑑𝑖s and invariant under the castling transform in part (3) of Theorem 1.6. It is also invariant under
removing dimensions 𝑑𝑖 equal to one.

It is not hard to verify that the quantities 𝑅(𝑑1, . . . , 𝑑𝑘 ;𝑚), 𝑔max(𝑑1, . . . , 𝑑𝑘 ) and Δ (𝑑1, . . . , 𝑑𝑘 ;𝑚)
have the same invariance properties. Hence, to prove Theorem 1.5, it suffices to consider the case when
(𝑑1, . . . , 𝑑𝑘 ;𝑚) is a minimal datum, and we may also assume that the 𝑑𝑖 are sorted. Our analysis follows
the same lines as the proof of [4, Proposition 5.3].

Lemma 5.1. Suppose (𝑑1, . . . , 𝑑𝑘 ;𝑚) is a minimal datum, and 𝑑1 ≤ 𝑑2 ≤ · · · ≤ 𝑑𝑘 . Then

1. 𝑅 < 0 if and only if 𝑑𝑘 > 𝑚𝑑1𝑑2 · · · 𝑑𝑘−1;
2. 𝑅 = 0 if and only if 𝑑𝑘 = 𝑚𝑑1𝑑2 · · · 𝑑𝑘−1;
3. 𝑅 > 0 if and only if 𝑑𝑘 ≤ 1

2𝑚𝑑1𝑑2 · · · 𝑑𝑘−1.

Proof. According to Lemma 3.12, any minimal datum satisfies 𝑑𝑘 > 𝑚𝑑1𝑑2 · · · 𝑑𝑘−1, 𝑑𝑘 =
𝑚𝑑1𝑑2 · · · 𝑑𝑘−1 or 𝑑𝑘 ≤ 1

2𝑚𝑑1𝑑2 · · · 𝑑𝑘−1. If 𝑑1 = · · · = 𝑑𝑘 = 1, then the lemma is immediate, since
𝑅 = 𝑚 − 1. Otherwise, we may assume that 𝑑1 ≥ 2 by removing all dimensions equal to one. We may
also assume that 𝑚 ≥ 2, since when 𝑚 = 1 the lemma is already proved in [4, Proposition 5.3]. Finally,
observe that if we prove the ‘if’ directions for all three statements, then the ‘only if’ directions are au-
tomatic. Hence, we proceed to prove the ‘if’ directions in all three cases under the assumptions that
𝑑1 ≥ 2 and 𝑚 ≥ 2.

Let us write 𝐵𝑛 for the terms in 𝐺𝑛 that involve 𝑑𝑘 and 𝐴𝑛 = 𝐺𝑛 (𝑑1, . . . , 𝑑𝑘−1) for all other terms.
Note that 𝐴𝑘 = 0 and 𝐵1 = 𝑑2

𝑘 . Thus

𝑅(𝑑1, . . . , 𝑑𝑘 ;𝑚) = 𝑚
𝑘∏
𝑖=1

𝑑𝑖 − 𝑑
2
𝑘 +

𝑘−1∑
𝑛=1
(−1)𝑛 (𝐴𝑛 − 𝐵𝑛+1). (5.1)

Case (1): Suppose 𝑑𝑘 > 𝑑1 · · · 𝑑𝑘−1𝑚. Then 𝑑𝑘 = 𝑑1 · · · 𝑑𝑘−1𝑚 + 𝛼 for some 𝛼 ≥ 1, and using
equation (5.1),

𝑅 = −𝛼𝑑𝑘 +
𝑘−1∑
𝑛=1
(−1)𝑛 (𝐴𝑛 − 𝐵𝑛+1)

= −𝛼2 − 𝛼𝑑1 · · · 𝑑𝑘−1𝑚 +
𝑘−1∑
𝑛=1
(−1)𝑛 (𝐴𝑛 − 𝐵𝑛+1).

Clearly, 𝐴𝑛 ≥ 𝐵𝑛+1 for all n, so we can leave out the terms for odd n and obtain the bound

𝑅 ≤ −𝛼2 − 𝛼𝑑1 · · · 𝑑𝑘−1𝑚 +
∑

𝑛≥2 even
(𝐴𝑛 − 𝐵𝑛+1)

≤ −𝛼2 − 𝛼𝑑1 · · · 𝑑𝑘−1𝑚 +
∑

𝑛≥2 even
𝐴𝑛

< −2𝑑1 · · · 𝑑𝑘−1 +
∑

𝑛≥2 even
𝐴𝑛,

using that 𝑚 ≥ 2 and 𝛼 ≥ 1. Now we are in the same situation as in [4, Eq. (9)] and find that 𝑅 < 0.
Case (2): Suppose 𝑑𝑘 = 𝑑1 · · · 𝑑𝑘−1𝑚. Here we have 𝐵𝑛+1 = 𝐴𝑛 for all n, so using equation (5.1),

𝑅 = 𝑚
𝑘∏
𝑖=1

𝑑𝑖 − 𝑑
2
𝑘 = 0.
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Case (3): Suppose 𝑑𝑘 ≤
1
2𝑑1 · · · 𝑑𝑘−1𝑚. If 𝑘 = 1, then 𝑑1 ≤

𝑚
2 and

𝑅 = 𝑚𝑑1 − 𝑑
2
1 = 𝑑1(𝑚 − 𝑑1) ≥

𝑚𝑑1
2

> 0.

We now discuss the case that 𝑘 ≥ 2. Here,

𝑅 = 𝑚
𝑘∏
𝑖=1

𝑑𝑖 − 𝑑
2
𝑘 +

𝑘−1∑
𝑛=1
(−1)𝑛 (𝐴𝑛 − 𝐵𝑛+1)

=
1
4
𝑑2

1 · · · 𝑑
2
𝑘−1𝑚

2 −

(
1
2
𝑑1 · · · 𝑑𝑘−1𝑚 − 𝑑𝑘

)2
+

𝑘−1∑
𝑛=1
(−1)𝑛 (𝐴𝑛 − 𝐵𝑛+1)

≥
1
4
𝑑2

1 · · · 𝑑
2
𝑘−1𝑚

2 −

(
1
2
𝑑1 · · · 𝑑𝑘−1𝑚 − 𝑑𝑘−1

)2
+

𝑘−1∑
𝑛=1
(−1)𝑛 (𝐴𝑛 − 𝐵𝑛+1)

= 𝑑2
𝑘−1(𝑑1 · · · 𝑑𝑘−2𝑚 − 1) +

𝑘−1∑
𝑛=1
(−1)𝑛 (𝐴𝑛 − 𝐵𝑛+1),

where the inequality follows because 𝑑𝑘−1 ≤ 𝑑𝑘 ≤
1
2𝑑1 · · · 𝑑𝑘−1𝑚. Leaving out the even terms, which

are nonnegative since 𝐴𝑛 ≥ 𝐵𝑛+1, we obtain

𝑅 ≥ 𝑑2
𝑘−1(𝑑1 · · · 𝑑𝑘−2𝑚 − 1) +

𝑘−1∑
𝑛=1
(−1)𝑛 (𝐴𝑛 − 𝐵𝑛+1)

≥ 𝑑2
𝑘−1(𝑑1 · · · 𝑑𝑘−2𝑚 − 1) −

∑
𝑛≥1 odd

(𝐴𝑛 − 𝐵𝑛+1)

> 𝑑2
𝑘−1(𝑑1 · · · 𝑑𝑘−2𝑚 − 1) −

∑
𝑛≥1 odd

𝐴𝑛.

Each of the
(𝑘−1

𝑛

)
GCDs contributing to 𝐴𝑛 are ≤ 𝑑𝑘−1, so∑

𝑛≥1 odd
𝐴𝑛 ≤ 𝑑2

𝑘−1

∑
𝑛≥1 odd

(
𝑘 − 1
𝑛

)
= 𝑑2

𝑘−12𝑘−2

and hence

𝑅 > 𝑑2
𝑘−1

(
𝑑1 · · · 𝑑𝑘−2𝑚 − 1 − 2𝑘−2

)
≥ 𝑑2

𝑘−1

(
2𝑘−2𝑚 − 1 − 2𝑘−2

)
. (5.2)

For 𝑚 ≥ 2 and 𝑘 ≥ 2, it holds that

2𝑘−2𝑚 − 1 − 2𝑘−2 ≥ 2𝑘−2 − 1 ≥ 0, (5.3)

and hence we conclude that 𝑅 > 0. �

Remark 5.2. Write Z(𝑑1, . . . , 𝑑𝑘 ) :=
∑

𝑛 (−1)𝑛+1
∑

𝑖1<𝑖2< · · ·<𝑖𝑛 gcd(𝑑𝑖1 , 𝑑𝑖2 , . . . , 𝑑𝑖𝑛 ). Then for
𝑑1, . . . , 𝑑𝑘 ∈ Z≥1, one can interpret Z(𝑑1, . . . , 𝑑𝑘 ) as the cardinality of

⋃𝑘
𝑖=1

(
Z[ 1

𝑑𝑖
]/Z

)
in Q/Z. In

particular, Z(𝑑1, . . . , 𝑑𝑘 ) ≥ 0. Further, observe that 𝑅(𝑑1, . . . , 𝑑𝑘 ;𝑚) = 𝑚
∏𝑘

𝑖=1 𝑑𝑖 − Z(𝑑2
1 , . . . , 𝑑

2
𝑘 ).

An alternate and short proof of the ‘if” statements in cases (1) and (2) in the above theorem
is as follows. Observe that the quantity R is invariant under the transformation (𝑑1, . . . , 𝑑𝑘 ;𝑚) →
(𝑑1, . . . , 𝑑𝑘−1, 𝑑

∗
𝑘 ;𝑚), where 𝑑∗𝑘 = 𝑚

∏𝑘−1
𝑖=1 𝑑𝑖 − 𝑑𝑘 even in the case when some of the entries are

negative or zero. Thus in case (1) we get 𝑅(𝑑1, . . . , 𝑑𝑘 ;𝑚) = 𝑅(𝑑1, . . . , 𝑑𝑘−1, 𝑑
∗
𝑘 ;𝑚) < 0 since
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𝑚𝑑1 . . . 𝑑𝑘−1𝑑
∗
𝑘 < 0 and Z(𝑑2

1 , . . . , 𝑑
2
𝑘−1, (𝑑

∗
𝑘 )

2) ≥ 0. In case (2), using that Z(𝑑2
1 , . . . , 𝑑

2
𝑘−1, 0) = 0,

one can deduce 𝑅(𝑑1, . . . , 𝑑𝑘 ;𝑚) = 𝑅(𝑑1, . . . , 𝑑𝑘−1, 0;𝑚) = 0.
Now we can prove Theorem 1.5.

Proof of Theorem 1.5. Generic semistability (polystability, stability) for tensor actions is invariant under
the castling transform in part (3) of Theorem 1.6 and under permuting the dimensions 𝑑𝑖 . The same is true
for the quantities R, Δ , and 𝑔max. So, we can assume that 𝑑1 ≤ 𝑑2 ≤ · · · ≤ 𝑑𝑘 and that (𝑑1, . . . , 𝑑𝑘 ;𝑚)
is a minimal datum.

Case (1): Suppose 𝑅 > 0. Then we know from Lemma 5.1 that 𝑑𝑘 ≤ 1
2𝑚𝑑1𝑑2 · · · 𝑑𝑘−1. If 𝑘 = 1,

then 𝑑1 ≤
𝑚
2 , so we must have 𝑚 ≥ 2. Further, 𝑔max = 1, so 𝑅 > 0 implies that 𝑅 ≥ 𝑔2

max. Finally, 𝜌 is
always generically stable because the action of SL𝑑1 on (C𝑑1 )⊕𝑚 is generically stable as long as 𝑚 ≥ 𝑑1
(we have 𝑚 ≥ 2𝑑1). This concludes the proof in the case that 𝑘 = 1.

Now we deal with 𝑘 ≥ 2. We may assume that 𝑑1 ≥ 2 by removing all dimensions equal to one (if
all 𝑑𝑖 = 1, then we can reduce to the case 𝑘 = 1 discussed above). We distinguish two cases:

◦ 𝑚 ≥ 2: In this case, we show that 𝑅 ≥ 𝑔2
max and characterise equality. If 𝑘 > 2, then equation (5.3) is

not tight, and we see from equation (5.2) that

𝑅 > 𝑑2
𝑘−1 ≥ 𝑔2

max.

For 𝑘 = 2, we are in the matrix case. Since 2 ≤ 𝑑1 ≤ 𝑑2 ≤
1
2𝑚𝑑1, we find that

𝑅(𝑑1, 𝑑2;𝑚) = 𝑚𝑑1𝑑2 − 𝑑
2
1 − 𝑑

2
2 + gcd(𝑑1, 𝑑2)

2 = (𝑚𝑑1 − 𝑑2)𝑑2 − 𝑑
2
1 + 𝑔

2
max

≥
1
2
𝑚𝑑2

1 − 𝑑
2
1 + 𝑔

2
max =

(𝑚
2
− 1

)
𝑑2

1 + 𝑔
2
max ≥ 𝑔2

max,

with equality if and only if 𝑑1 = 𝑑2 and 𝑚 = 2, in which case also 𝑔max = 𝑑1 = 𝑑2 ≥ 2.
Thus we have proved that 𝑅 ≥ 𝑔2

max, with equality if and only if 𝑘 = 2, 𝑚 = 2 and (𝑑1, 𝑑2) = (𝑑, 𝑑)
for some 𝑑 ≥ 2. By part (4) of Theorem 1.6, this is precisely the case where 𝜌 is generically
polystable but not generically stable (when 𝑑𝑘 ≤

1
2𝑚𝑑1𝑑2 · · · 𝑑𝑘−1 and 𝑚 ≥ 2).

◦ 𝑚 = 1: [4, Proposition 6.1] shows that in this case Δ ≥ −2, with equality precisely in the case that
𝑘 = 3 and (𝑑1, 𝑑2, 𝑑3) = (2, 𝑑, 𝑑) for some 𝑑 ≥ 2. (If Δ > −2, then in fact Δ ≥ 2, but we do not need
this.) By part (4) of Theorem 1.6, this is precisely the case where 𝜌 is generically polystable but not
generically stable (when 𝑑𝑘 ≤

1
2𝑚𝑑1𝑑2 · · · 𝑑𝑘−1 and 𝑚 = 1).

Case (2): Suppose 𝑅 = 0. Then we know from Lemma 5.1 that 𝑑𝑘 = 𝑚𝑑1𝑑2 · · · 𝑑𝑘−1. By part (2) of
Theorem 1.6, 𝜌 is generically polystable, and it is generically stable if and only if 𝑑1 = · · · = 𝑑𝑘−1 = 1.
When 𝑘 = 1, we have 𝑔max = 1 (by definition), and this condition is always satisfied. Otherwise,
𝑑𝑘 = 𝑚𝑑1𝑑2 · · · 𝑑𝑘−1 means 𝑔max = max𝑖< 𝑗 gcd(𝑑𝑖 , 𝑑 𝑗 ) = max𝑖<𝑘 𝑑𝑖 . Thus, we find that in either case,
𝑔max = 1 if and only if 𝜌 is generically stable.

Case (3): Suppose 𝑅 < 0. By Lemma 5.1, we know that 𝑑𝑘 > 𝑚𝑑1𝑑2 · · · 𝑑𝑘−1. Hence 𝜌 is unstable
by part (1) of Theorem 1.6. �

6. Maximum likelihood estimation for tensor normal models

In this section, we will prove Theorem 1.1, which characterises the boundedness of the likelihood
function and the existence and uniqueness of MLEs for the tensor normal models.

The tensor normal models are the Gaussian group models corresponding to the tensor action. Thus
the results on generic stability for tensor actions translate directly to results on maximum likelihood
estimation for tensor normal models via Theorem 2.3. This connection is perfect for F = C, whereas
more effort is required for F = R.

A technical point to note is that 𝐺 =
∏𝑘

𝑖=1 SL𝑑𝑖 is not a subset of GL(𝑉), 𝑉 = F𝑑1 ,...,𝑑𝑘 ;𝑚, which is
needed to apply Theorem 2.3 verbatim. However, this is a small issue, as we may simply replace G by
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its homomorphic image 𝜌𝑑1 ,...,𝑑𝑘 ;𝑚(𝐺) and note that notions of semistability, polystability and stability
are the same for both groups.

Proof of Theorem 1.1. We first consider the case of F = C. Consider the action of 𝐺 =
∏𝑘

𝑖=1 SL𝑑𝑖 (C)

on C𝑑1 ,...,𝑑𝑘 . The associated Gaussian group model is MC(𝑑1, . . . , 𝑑𝑘 ). Thus, Corollary 2.8 implies
that Theorem 1.5 translates precisely to Theorem 1.1.

We now discuss the relation between the real and the complex case. For both F = R and C,
Theorem 1.5 shows that generic semistability is equivalent to generic polystability. Further, generic
semistability (respectively, polystability) over C is equivalent to generic semistability (respectively,
polystability) over R; see [12, Proposition 2.23]. Finally, for both F = R and C, generic semistability is
equivalent to almost sure boundedness of log-likelihood function because the semistable locus (over F)
is either empty or a (nonempty) Zariski-open subset (in particular, the complement of a measure zero
subset); see [12, Corollary 2.15, Proposition 2.21, Corollary 2.22]. In fact, we claim that the following
are equivalent:

1. 𝜌𝑑1 ,...,𝑑𝑘 ;𝑚 is generically semistable for F = C.
2. 𝜌𝑑1 ,...,𝑑𝑘 ;𝑚 is generically semistable for F = R.
3. 𝜌𝑑1 ,...,𝑑𝑘 ;𝑚 is generically polystable for F = C.
4. 𝜌𝑑1 ,...,𝑑𝑘 ;𝑚 is generically polystable for F = R.
5. For the tensor normal model MC (𝑑1, . . . , 𝑑𝑘 ), we have almost sure boundedness of log-likelihood

function for m samples.
6. For the tensor normal model MR (𝑑1, . . . , 𝑑𝑘 ), we have almost sure boundedness of log-likelihood

function for m samples.
7. For the tensor normal model MC (𝑑1, . . . , 𝑑𝑘 ), an MLE exists almost surely for m samples.
8. For the tensor normal model MR (𝑑1, . . . , 𝑑𝑘 ), an MLE exists almost surely for m samples.

The equivalence of (1)–(6) was discussed above. The implications (3) =⇒ (7) and (4) =⇒ (8)
follow from Theorem 2.3 since the complement of a Zariski-open subset has Lebesgue measure zero.
Further, it is also immediate that (7) =⇒ (5) and (8) =⇒ (6). This shows the equivalence of all
eight statements.

Moreover, 𝜌𝑑1 ,...,𝑑𝑘 ;𝑚 is generically stable over F = C if and only if the same holds for F = R;
see again [12, Proposition 2.23]. In either case, generic stability implies the almost sure existence of a
unique MLE by Theorem 2.3. However, the converse is not necessarily true when F = R, and this is
what needs to be investigated.

To summarise, the only cases we need to study further are those in which 𝜌𝑑1 ,...,𝑑𝑘 ;𝑚 is generically
polystable but not generically stable. According to Theorem 1.6, these are the castling equivalence
classes of the minimal data below:

1. 𝑑𝑘 = 𝑚𝑑1𝑑2 · · · 𝑑𝑘−1 and 𝑑1 · · · 𝑑𝑘−1 > 1.
2. (𝑑1, . . . , 𝑑𝑘 , 𝑚) = (1, 1, . . . , 1, 𝑑, 𝑑; 2) with 𝑑 ≥ 2.
3. (𝑑1, . . . , 𝑑𝑘 , 𝑚) = (1, 1, . . . , 1, 2, 𝑑, 𝑑; 1) with 𝑑 ≥ 2.

To conclude the proof of Theorem 1.1, we need to show for these that we do not have the almost sure
existence of a unique MLE also over F = R. By Corollary 2.5 and Corollary 3.9, it suffices to prove that in
any of these three minimal cases, there is a Euclidean open subset consisting of points with noncompact
stabilisers for each of the above minimal data. Note that Euclidean open subsets have positive Lebesgue
measure.

For case (1), observe that the proof of Lemma 4.2 works even when the underlying field is R. So, in
fact, there is a nonempty Zariski-open subset of V (in particular, a set of positive measure) where the
stabiliser is isomorphic to

∏𝑘−1
𝑖=1 SL𝑑𝑖 (R), which is noncompact unless 𝑑1 = · · · = 𝑑𝑘−1 = 1.

We now address case (2) and distinguish two cases:

◦ 𝑑 ≥ 3: For generic 𝑣 ∈ Mat2𝑑,𝑑 = (R𝑑 ⊗ R𝑑)⊕2, we give a sequence of elements in the stabiliser with
no convergent subsequence (hence proving that the stabiliser is not compact). It was proved in [12,
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Lemma 6.2] that for generic 𝑣 ∈ Mat2𝑑,𝑑 , there exists (𝑔, ℎ) ∈ 𝐺𝑣 such that g and h have eigenvalues
with absolute value not equal to 1. Since 𝐺𝑣 ⊆ SL𝑑 × SL𝑑 , this means {(𝑔𝑛, ℎ𝑛)}𝑛∈Z>0 is a
sequence of elements in 𝐺𝑣 with no convergent subsequence. Hence 𝐺𝑣 is not compact. This gives
a Zariski open subset consisting of points with noncompact stabiliser.

◦ 𝑑 = 2: It is easy to see that the stabiliser of 𝑣𝑎,𝑏 =
( ( 1 0

0 1
)
,
(
𝑎 0
0 𝑏

) )
∈ Mat22,2 is not compact for any

𝑎, 𝑏 ∈ R (compare the discussion below Theorem 4.3). Now, let us consider
𝑊 = {(𝐴, 𝐵) ∈ Mat22,2 | det(𝐴) ≠ 0, det(𝑡 𝐼 − 𝐴−1𝐵) has distinct real roots}. Then it is easy to see
that every 𝑤 ∈ 𝑊 is in the SL𝑑 × SL𝑑 orbit of 𝑣𝑎,𝑏 for an appropriate choice of a and b (indeed, just
the eigenvalues of 𝐴−1𝐵). Next, observe that W is a full-dimensional semialgebraic set; indeed, it is
described by one Zariski-open conditions (det(𝐴) ≠ 0) and one inequality (the discriminant of
det(𝑡 𝐼 − 𝐴−1𝐵) is larger than zero). Thus, W is an Euclidean-open subset (hence, a set of positive
Lebesgue measure), and every point in W has a noncompact stabiliser.

Finally, case (3) follows from case (2) in view of Lemma 6.1 below. �

Lemma 6.1. Let 𝐻 ⊆ 𝐺 be a closed subgroup of an algebraic group, and let V be a rational represen-
tation of G. Let 𝑣 ∈ 𝑉 . If 𝐺𝑣 is compact, then so is 𝐻𝑣 .

Proof. 𝐻𝑣 = 𝐺𝑣 ∩ 𝐻 is a closed subset of 𝐺𝑣 and hence compact if 𝐺𝑣 is compact. �

We end this section with a proof of Corollary 1.3.

Proof of Corollary 1.3. Since Theorem 1.1 does not differentiate between F = R and F = C, it suffices
to prove this in the case of F = C. Here, statistical notions correspond precisely to stability notions
by Corollary 2.8, so we will make our arguments in the language of stability. First, observe that
	𝑟
 ≤ mlt𝑏 (= mlt𝑒) because 𝜌𝑑1 ,...,𝑑𝑘 ;𝑚 is unstable unless 𝑚 ≥ 𝑟 by part (1) of Theorem 1.6.

Now, let 𝑐 = 	𝑟
, so 𝑑𝑘 = 𝑐𝑑1 · · · 𝑑𝑘−1 − 𝛼 for some 0 ≤ 𝛼 < 𝑑1𝑑2 · · · 𝑑𝑘−1. To show mlt𝑢 ≤ 𝑐 + 1, it
suffices to show that 𝜌𝑑1 ,...,𝑑𝑘 ,𝑐+1 is generically stable by Lemma 2.9.

We see that 𝜌𝑑1 ,...,𝑑𝑘 ;𝑐+1 is castling equivalent to 𝜌𝑑1 ,...,𝑑𝑘−1 ,𝑑1𝑑2 · · ·𝑑𝑘−1+𝛼;𝑐+1. It suffices to show that
one of them is generically stable. Observe that both 𝐴 = 𝑑𝑘 and 𝐵 = 𝑑1𝑑2 · · · 𝑑𝑘−1 + 𝛼 are larger than
𝑑𝑘−1, so the dimensions are already in order. Since 𝐴 + 𝐵 = (𝑐 + 1)𝑑1 · · · 𝑑𝑘−1, we get that either A or B
is ≤ 1

2 (𝑐+1)𝑑1 · · · 𝑑𝑘−1. Hence, we get generic stability for 𝜌𝑑1 ,...,𝑑𝑘 ;𝑐+1 by parts (3) and (4) of Theorem
1.6 unless (𝑑1, . . . , 𝑑𝑘 ; 𝑐 + 1) (or (𝑑1, . . . , 𝑑𝑘−1, 𝐵; 𝑐 + 1)) is one of (2, 𝑑, 𝑑; 1) or (𝑑, 𝑑; 2). The former
is not possible because 𝑐 + 1 ≥ 2, and the latter is not possible because 𝑘 ≥ 3 by assumption. �

7. Dimension of the GIT quotient

In this section, let the underlying field be F = C. Let V be a rational representation of a reductive group
G. Then the GIT quotient P𝑉//𝐺 is defined as Proj(C[𝑉]𝐺), the projective variety associated to the ring
of invariants (with its natural grading).

Given what we have computed, we can also compute the dimension of the GIT quotient for the action
of 𝐺 =

∏
𝑖 SL𝑑𝑖 on 𝑉 = F𝑑1 ,...,𝑑𝑘 ;𝑚. This relies on Rosenlicht’s theorem [33, Theorem 2] (see also the

proof of [4, Lemma 3.1]).

Theorem 7.1 (Rosenlicht). Let V be a rational representation of a connected semisimple group G.
Let H be the stabiliser in general position. Then dim(P𝑉//𝐺) = dim(P𝑉) − dim(𝐺) + dim(𝐻), where
dim(P𝑉//𝐺) = −1 if and only if P𝑉//𝐺 = ∅.

For the tensor action, this means

dim(P𝑉//𝐺) = Δ (𝑑1, . . . , 𝑑𝑘 ;𝑚) + dim𝐻, (7.1)

where Δ = Δ (𝑑1, . . . , 𝑑𝑘 ;𝑚) = 𝑚
∏𝑘

𝑖=1 𝑑𝑖 − 1 −
∑𝑘

𝑖=1(𝑑
2
𝑖 − 1) as defined above and where H is the

stabiliser in general position.
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Proof of Theorem 1.7. By Lemma 3.6, the dimension of the GIT quotient is invariant under castling
transforms, so we may assume that (𝑑1, . . . , 𝑑𝑘 ;𝑚) is minimal. We handle each case separately.

Case (1): Suppose 𝑅 < 0. Then 𝜌 is unstable by Theorem 1.5. This means the invariant ring is given
by C[𝑉]𝐺 = C and P𝑉//𝐺 is empty.

Case (2): Suppose 𝑅 = 0. Then 𝑚𝑑1𝑑2 · · · 𝑑𝑘−1 = 𝑑𝑘 by Lemma 5.1. We identify 𝑉 � Mat𝑑𝑘 ,𝑑𝑘 . For
the left-right action of SL𝑑𝑘 × SL𝑑𝑘 , the ring of invariants is C[det], where det denotes the determinant
polynomial. The same is true when we restrict to the second SL𝑑𝑘 , say. Since {1} × SL𝑑𝑘 ⊆ 𝐺 ⊆
SL𝑑𝑘 × SL𝑑𝑘 , the ring of invariants for 𝜌, is also C[det]. Thus, P𝑉//𝐺 is a single point.

Case (3): Suppose 𝑅 > 0. Whenever 𝜌 is generically stable, equation (7.1) implies that the dimension
of the GIT quotient is Δ (recall that the kernel of 𝜌 is zero-dimensional), while if 𝜌 is only generically
polystable, we need to add the dimension of the stabiliser in general position. There are two cases to
consider:

◦ 𝑚 = 1 and Δ = −2: In this case, 𝑘 = 3 and (𝑑1, 𝑑2, 𝑑3) = (2, 𝑑, 𝑑) for some 𝑑 ≥ 2, as we saw in the
proof of Theorem 1.5. If 𝑑 = 2, then the s.g.p. is two-dimensional, while if 𝑑 > 2, it is
(𝑑 − 1)-dimensional (see the proof of Theorem 1.6, part (4)). Thus, since 𝑔max = 𝑑,

dim(P𝑉//𝐺) = Δ + dim𝐻 = −2 +

{
2 if 𝑔max = 2

𝑔max − 1 if 𝑔max > 2

}
= max(𝑔max − 3, 0),

which is also contained in [4, Theorem 1.2].
◦ 𝑚 = 2 and 𝑅 = 𝑔2

max > 1: In this case, similarly, 𝑘 = 2 and (𝑑1, 𝑑2) = (𝑑, 𝑑) for some 𝑑 ≥ 2, again
by the proof of Theorem 1.5. If 𝑑 = 2, then the s.g.p. is one-dimensional, while if 𝑑 > 2, then the
s.g.p. is (𝑑 − 1)-dimensional (see proof of Theorem 1.6, part (4)). Thus dim𝐻 = 𝑔max − 1 in either
case, and hence

dim(P𝑉//𝐺) = Δ + dim𝐻 = 1 + (𝑔max − 1) = 𝑔max. �
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