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I should like to open my subject by attempting to answer the following 
question: how many parameters are necessary and sufficient for a complete 
specification of the form of both components in close binary systems? 
Their shape should, in principle, be specified by the nature of forces acting 
on their surfaces, and (provided that the free period non-radial oscillations 
of both components are short in comparison with that of their orbits) their 
distortion should be governed by the equilibrium theory of tides. The level 
surfaces of constant density then coincide with those of constant potential, 
and the boundary of zero density becomes a particular case of such 
equipotentials. 

A complete theory of the form of such surfaces for stars of arbitrary 
structure has not so far been developed. If, however, the density concen­
tration inside the components of close binary systems is so high that their 
gravitational potentials can be approximated by those of central mass-
points, the gravitational potential acting on any surface point P(r, 6, <j>) of 
the component of mass mx should be given simply by G{va1jr); the potential 
arising from its mate of mass m 2 should contribute a term G(m 2/r'), where 
r' denotes the distance of P from the centre of gravity of the disturbing 
star, and G is the constant of gravitation. The centrifugal force due to 
rotation with an angular velocity o) about an axis perpendicular to the 
orbital plane should, moreover, give rise to a contribution \u)2D2, where D 
denotes the distance of P from the axis of rotation of the distorted com­
ponent. The total potential W t̂hen becomes a sum of the three components 
just enumerated. In close binaries it seems, moreover, reasonable to 
identify a)2 with the Keplerian angular velocity G(m1 + m 2 )//2 3 , where R 
stands for the semi-major axis of the relative orbit of the two stars. Suppose 
now that we adopt the sum m1 + m 2 as our unit of mass, R as the unit of 
length, and choose the unit of time in such a way that G = i. If so, the 
desired equation of our equipotential surfaces can be shown to assume the 
neat form ~ 2(1 —q) I 

C = ^ T ^ + 2?[ 
I 

Vi — 2\r + r2 
- A r \+r2{i-v2)+q2, (1) 

123 

https://doi.org/10.1017/S0074180900018714 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900018714


where A, fi, v denote the direction cosines of an arbitrary radius vector 
r connecting P with the centre of mass of star i, and 

2RW _ m 2 . . 

are non-dimensional constants. 
The surfaces generated by setting C = constant on the left-hand side of 

equation (1) can be appropriately referred to as the Roche equipotentials, 
and the Cs themselves as Roche constants. If the latter are large, the corre­
sponding equipotentials are known to consist of two separate ovals enclos­
ing each one of the two mass-points, and differing but slightly from 
spheres. With diminishing values of C the ovals denned by (1) become 
increasingly elongated in the direction of the centre of gravity of the system 
until, for a certain critical value of C=C0 (characteristic of each mass-
ratio) [l], both ovals unite at a single point on the line joining the centres 
of the two stars. This limiting equipotential—the largest closed equi-
potential capable of containing the whole mass of the system—will here­
after be referred to as the Roche limit. For C< C0 we can no longer regard 
the respective equipotentials as models of binary systems consisting of 
detached components, but for each value of O C0 equation (1) defines the 
surfaces of two distinct configurations which should describe the forms of 
centrally-condensed components of close binary systems, to a high degree 
of accuracy, irrespective of their proximity or mass-ratio. Therefore, the minimum 
number of parameters sufficient for a complete geometrical specification 
of both components in the close binary systems is three, and consists of the 
values of Cl9 C2, and q* A properly determined trio of Cl9 C2 (^ C0) and q 
can describe the geometry of a system very much more simply and accur­
ately than any number of artificial semi-axes of the individual components. 
Moreover, the quantities C12 and q possess the additional advantage of a 
direct and simple physical meaning. 

A determination of q from the spectroscopic data is sufficiently straight­
forward, and so is the determination of C from an analysis of the light 
curves [2], Their values have recently been determined by the writer for all 
two-spectra eclipsing binaries of known light curves [3], and their discussion 
reveals that all systems possessing at least one (the more massive) compo­
nent of the main sequence can be naturally divided into three groups of the 
following characteristics: 

(a) Stable Systems. The volumes of both components are significantly 
* Each one of the values of C( ^ C 0) introduced in (i) defines, to be sure, a pair of such 

equipotentials for a given value of q, of which only the one enclosing the centre of gravity of the 
component under consideration is relevant. 
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smaller than their Roche limits, but their fractional dimensions and mass-
ratios are such as to render the values of C for both components sensibly 
equal (in spite of the fact that the absolute values of the potential over free 
surfaces of the components vary from system to system by a factor in excess 
of ten). Both components do not deviate significantly from the main 
sequence in the H-R diagram, and obey statistical mass-luminosity and 
mass-radius relations. 

(b) Semi-Detached Systems. The primary (more massive) components are 
significantly smaller than their Roche limits (and therefore dynamically 
stable), but the secondaries appear to fill exactly the largest closed equi-
potentials capable of containing their whole mass (i.e. C2 — C0 within the 
limits of observational errors). Such components lie as a rule above the 
main sequence, and while their primaries conform to the same mass-
luminosity and mass-radius relations as stars of group (a), the secondary 
components are mostly overluminous sub-giants. 

A complementary type of semi-detached systems, with primaries at their 
Roche limits and secondaries well below it (i.e. characterized by Cx = C 0 

and C2 > C0) seems conspicuous by its absence. 
(c) Contact Systems. Both components appear to fill the respective loops 

of their Roche limits and are, therefore, probably in actual contact. Both 
stars lie (though not very closely) along the main sequence, but show— 
individually or statistically—no vestige of any relation between mass and 
radius or luminosity. 

A schematic representation of the geometry of these three types is shown 
on the accompanying Fig. i, drawn to scale for a mass-ratio nig/mi = o-6. 
The question of classification of eclipsing binary systems was discussed 
recently at a meeting of the I.A.U. Commission 27 (Variable Stars) in 
connexion with the continued practice by Kukarkin and Parenago to use 
Algol, /? Lyr, and W UMa as prototypes of such variables in their well-
known Catalogue. It would appear now that this older system of classifica­
tion has little to recommend it except tradition. The most common type 
of eclipsing binaries—the main sequence (stable) systems of our group (a) 
—is not recognized by it (ft Aur or U Oph could be regarded as suitable 
prototypes). Algol itself is a typical representative of variables of our 
group (b) (semi-detached systems), while W UMa does (and /? Lyr may) 
belong to our group (c). Algol and W UMa thus could be regarded as 
genuine prototypes of their groups, but /? Lyr represents too peculiar and 
unique a system to be suited for the prototype of any group of common 
eclipsing systems. Its use in this role so far could be justified only on histori­
cal grounds, and the principal distinguishing feature between ' Algol' and 
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' /? Lyr stars'—namely, the presence or absence of the effects of photometric 
ellipticity between minima—is only a matter of observational precision. 

From the dynamical point of view, systems of group (a) should be 
regarded as stable unless forces other than gravitational or centrifugal are 

(a) 

(c) 

Fig. i. A schematic view of the three principal types of close binary systems: (a) main sequence 
(stable) systems, (b) semi-detached systems, (c) contact binaries. The diagrams are drawn to scale 
for a mass-ratio of m 2 / m 1 = o-6. 

operative. Instability phenomena are, in principle, likely to occur among 
systems of group (b) as well as (c). In the present communication we shall 
not, however, be concerned with contact systems and propose to confine 
our attention to semi-detached systems whose existence is, in many respectŝ  
particularly thought-provoking. For, consider a group of well-known 
eclipsing systems of group (£), compiled in Table i, that have been 
selected to demonstrate the closeness with which their secondary com­
ponents cling to their Roche limits. Column 3 of this tabulation contains 
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the values of spectroscopic mass-ratios mjm^^ of both components 
together with their observational uncertainty, and column 4 gives the 
diametral semi-axes of their corresponding Roche limits, taken from a 
recent investigation by the writer [4], their uncertainty as given being due 
solely to that of the mass-ratios. The last column lists then the actual 
diametral semi-axes of the secondary components in these systems, as 
deduced from an analysis of the light curves. An inspection of the data 
in columns 4 and 5 demonstrates that the theoretical and observed semi-
axes are significantly the same in every single case, and their coincidence 
tends to become the closer, the smaller the uncertainty of the underlying 
observational data. Several other well-known systems could, moreover, be 
added to augment our list. 

Table 1. Fractional Dimensions of Secondary (Contact) Components 
in Semi-Detached Binary Systems 

Star Spectral type m 2 / m i (^2)comp. W o b s . 

R T And B K i 0-65 + 0-03 0-333 ±0-007 0*325 ± 0 - 0 0 4 

U C e p B g G 8 o-49 ± 0-31 ± 0-31 ±o-oi 
U C r B B g G o 0-38 + 0-01 0-290 + 0-003 0-28 ±0-01 
u Her B B ? o*35±o-02 0-28510-004 0-287 ±0-003 
V P u p B B 3 

0-58 + 0-02 0-324 + 0-004 0*327 ±0-004 
U S g e B .gG6 0-30 + 0-02 0-272 ±0-005 0-278 ±0-003 
V 356 Sgr B A 2 o-38±o-o3 0-292 ±|o-oo7 0-28 +0-01 
/i1 Sco B B6 0-66 + 0-02 0-337 ±0-004 0*347 ±0-004 
T X U M a B g G 4 

0-30 + 0-02 0-272 ±0-004 0-277 ±0-001 
Z V u l B (A2) 0-45 ±0-02 0-303 ± 0-003 0-301 + 0-002 
R S V u l B ( F 4 ) 0-31 ±0-03 0*274 ±0-007 0-26 ±0-01 

What is the significance of this clustering of secondary components in 
systems of this type around their Roche limits? The fact is certainly not the 
result of chance, for the probability of so peculiar a random distribution of 
fractional dimensions in so large a sample is negligibly small. It indicates 
rather that these stars have reached their limits by non-equilibrium pro­
cesses. If they were contracting, there is no reason why any number of 
them should cluster around the Roche limit, but if they expand, the reason 
for such a clustering becomes compelling, since no larger closed equipoten-
tial exists which would contain their whole mass. Therefore, the growth of 
an expanding component of a close binary system is bound to be arrested 
at its Roche limit, and if this tendency is latent in such stars as a group, 
they should indeed be expected to cluster around this limit. 

The observed facts just discussed can, therefore, scarcely be accounted 
for otherwise than by a hypothesis that the sub-giant components in close 
binary systems are secularly expanding [5]. Once the maximum distension 
permissible on dynamical grounds has been attained, however, a 
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continuing tendency to expand is bound to bring about a secular loss of mass, 
by the streaming of material out of the conical end of the critical equi-
potential (at which the previously closed surface begins to open up). What 
should be the kinematic behaviour of the ejected matter once it has left 
the secondary component? If we ignore minor perturbations arising from 
the finite degree of central condensation of both components and retain 
the same system of units as used previously, the motion of a gas particle of 
negligible mass in the gravitational dipole field generated by the finite 
masses m1 and m 2 (separated by constant distance), and referred to a 
rotating rectangular frame of reference whose x-axis coincides with the line 
joining m1 and m 2 and whose j-axis lies in the plane of the orbit, should be 
governed by the well-known equations of the restricted problem of three 
bodies. Moreover, if we limit our attention to orbits in the orbital (xy-) 
plane, the respective equations assume the form 

where 

d*x__ dy_dU 
dt2 27t~~dx> 

d2y dx _dU 
~di2 + 2aTi==~ty> 

f / = I ( * 2 + y ) + i ^ + i 

( 3 ) 

(4 ) 

stands for the potential energy of our system. It also, incidentally, represents 
the rectangular-co-ordinate version of equation (i) and, at the same time, 
a Jacobian surface of zero velocity [6] of the moving gas particle. 

The actual form of trajectories governed by the foregoing equations 
depends, of course, on the initial conditions of escape, and these are not yet 
known with any uniqueness. The locus of ejection is no doubt the conical 
point of the critical equipotential enclosing the less massive component 
(see again Fig. i (6)), identical in fact with the inner Lagrangian point L x 

at which both the velocity and acceleration of any mass particle vanish in 
the ay-plane. If this particle were subject to no exterior force, it would 
remain permanently at rest there (relative to our moving frame of 
reference). Conversely, an application of exterior force would require less 
energy to remove the particle from L x than from any other point on the 
star's surface. Concerning the nature of this force, in what follows we wish 
to explore the consequences of a hypothesis that the ejection is caused by a 
difference between the actual angular velocity OJE of rotation at the 
equator of the secondary component in semi-detached binary systems, and 
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their Keplerian angular velocity o)K. If (oE^o)Ky matter should keep 
moving along the equator in the ^-plane (clockwise if (oE< a)K> counter­
clockwise if the converse is true) and, on arriving at L l 9 should be ejected 
towards the primary (more massive) component in the direction subtend­
ing an angle with the #-axis equal to that of the osculating cone with 
vertex at L ^ l ] , The velocity of ejection should depend on the magnitude of 
\ 0 ) E ~ 0 ) K \

 a R d may be arbitrary within wide limits. 
In order to explore the topological properties of gas streams ejected 

under these conditions, numerical integrations of several hundred trajec­
tories have recently been undertaken at Manchester, for different mass-

Pig. 2 . Trajectories of particles ejected from Lx with thirteen different values of the initial velocity 
V0 ranging from 0-5 to 3*0, for the case of toE>o)K (direct orbits). The values of V0 are given in 
Table 2 . The mass-ratio 1 1 1 2 / 1 1 1 ! is i-o. 

'atios and diverse velocities of ejection when (oE>G)K. These integrations 
lave been carried out with the aid of the University of Manchester's Elec-
:ronic Computers (Marks II and III) and have been programmed by my 
:olleague R. A. Brooker of the Computing Machine Laboratory, assisted 
3 y Miss Vera Hewison of the Department of Astronomy (who is also 
-esponsible for graphical presentation of all results to be given below). 
The technical aspects of automatization of the differential equations of the 
problem ofthree bodies will be described by Brooker elsewhere. The aim of the 
:>resent communication will be to survey the principal astronomical results 
)btained so far, and to give a preliminary discussion of their significance. 
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The accompanying Figs. 2 - 7 show graphical representations of the 
single-parameter families of the ejection orbits from for mass-ratios 
1112/111! = i-o, o-8, and o-6, and different sets of initial velocities, the two 
cases o)E $ GJK being treated separately. On each diagram, the centre of 
gravity of the system is taken as the origin of co-ordinates, and the outline 

Fig. 3. Trajectories of particles ejected from Lx with thirteen different values of the initial velocity 
V0 ranging from 0*5 to i-6, for the case of u)B<o)K (retrograde orbits). The mass-ratio m 2 / m 1 

is i*o. 

of the secondary's equator is drawn to scale for the respective mass-ratio. 
The circle of radius o-i enclosing the primary's centre of gravity, however, 
merely represents a limit inside which we began getting in trouble with the 
scale factors of our machine integrations, rather than any anticipated size 
or shape of the primary component (which can be arbitrary inside its own 
Roche limit). Filled circles on each trajectory represent points attained by 
the moving particles in equal time intervals. A list of the initial velocities 
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of all trajectories plotted on Figs. 2 -7 is given in Table 2 .* A great many 
more integrations than those shown here have been performed at Man­
chester to date,f but their present selection should illustrate sufficiently 
the main topological properties of ejection orbits (under the envisaged 
conditions) in the equatorial plane. Considerable work has also been done 

Fig. 4. Trajectories of particles ejected from Lx with fourteen different values of the initial 
velocity V0 ranging from 0-5 to 3 - 5 , for the case of OJe xoK (direct orbits). The mass-ratio m2jm1 

is o-8. 

on trajectories corresponding to the mass-ratio 0*4, but dynamical con­
ditions in this latter case have proved to be considerably more complex, and 
a fuller presentation of the results is being postponed for a later occasion. 
We cannot, however, forego exhibiting on Fig. 8 at least one trajectory of 
this family (corresponding to the initial velocity of v0 = — 0-7) J on account 
of its re-entrant character. 

* The unit of velocity, consistent with our previous practice, becomes v / ^ ( m i + m 2 ) / - ^ 
cm./sec. 

f It is estimated that the machine solutions made so far are equivalent to at least 50,000 man-
hours with an ordinary desk-type computing machine. 

X In what follows, the negative sign will be used to denote velocities of ejection for o)E<coK 

(i.e. when^ is negative), giving rise to retrograde orbits. 
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Fig. 5. Trajectories of particles ejected from Lx with twelve different values of the initial velocity 
V0 ranging from 0*5 to i-6, for the case of (t)E<d)K (retrograde orbits). The mass-ratio 1112/111! 
is o-8. 

Fig. 6. Trajectories of particles ejected from Lx with thirteen different values of the initial velocity 
V0 ranging from 0 - 5 to 4-0, for the case of u)E><oK (direct orbits). The mass-ratio m%jml is o-6. 
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Fig. 7. Trajectories of particles ejected from Lx with nine different values of the initial velocity 
VQ ranging from 0-5 to 1-5, for the case of toE<coK (retrograde orbits). The mass-ratio m2lml 

is o-6. 

Table 2. The Initial Velocities (in Units of ^G(m1 4- m 2 ) / R cm./sec.) 

of the Ejection Orbits Plotted in Figures 2 - 7 . 

Figure: 2 4 
A 

6 3 5 
A 

7 
( 

Direct orbits: CO E >toK 

t 
Retrograde orbits: 

A _ A 
< 

1 1 1 2 / 1 1 1 ! = 1*0 o-8 o-6 i-o o-8 o-6 

0*5 o-5 0'5 o*5 o*5 
0 7 0 7 o-8 o-6 o-6 o-8 
1*0 0-9 I-I 0-7 0 7 0-9 
i*3 I-I i'4 o-8 o-8 i-o 
i*4 i*3 i-5 0-9 o-9 i-i 

i '5 i*5 i-6 i-o i-o 1-2 
i*7 i-6 1 7 1-05 I-I i '3 
i-8 i-7 i-8 1-2 i*4 
i'9 i-8 i'9 I ' 2 1*3 
2*0 i-9 2-0 i*3 1*4 — 
2-25 2-0 2-5 i*4 i*5 — 
2'5 2'5 3-0 i '5 i-6 — 
3-0 3-0 4-0 i-6 — — 

3*5 — — — — 
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The investigation outlined in this report is still in progress, and a full 
account of it will be published elsewhere at a later date.* The present 
results, incomplete as they are, lend themselves, however, to a number of 
tentative conclusions. If the difference (^E~0)K remains moderately small 
(corresponding to velocities of ejection contained between — 0-5 < V0< 1-5 
for primary components of fractional radii r = o-i, and between still wider 
limits for larger stars), *f our results leave but little room for doubt that all 
matter lost by the secondary component at the inner Lagrangian point Lx will be 

transferred directly to the primary star. A continued loss of mass at Lx due to 

Fig. 8. Trajectory of a particle ejected from Lx with an initial velocity of F0 = O ' 7 in 
the case of OJE< OJK (retrograde orbits), and for a mass-ratio of 1112/111! = 0-4. 

secular expansion of the secondary component is, therefore, in time bound 
to keep increasing the disparity in masses between the two components of 
the same pair. Now close eclipsing systems with sub-giant secondaries have 
long been known to exhibit abnormally large mass-ratios—a fact discussed 
particularly by Struve[8]. As most (if not all) such companions have been 
found to possess fractional dimensions coinciding with their Roche limits, 
there remains but little room for doubt that the relative smallness of their 
present masses is but the consequence of a secular transfer of mass from the 

* We shall, however, be pleased to furnish particular results, in advance of publication, to any 
investigator who may request them. 

f It should be stressed that, in most binary systems, the actual velocities of ejection are likely 
to lie within these limits. 
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secondary to the primary components by 4gravitational pipelines' shown 
on our Figs. 2 - 7 . 

If the velocity of ejection becomes higher (its exact limit depending on 
the size of the primary component), the mass ejected at L x may circum­
navigate the primary component and be intercepted by the secondary 

Fig. 9. Trajectory of a particle ejected from Lx with an initial velocity of F 0 = o*9 in the case of 
<oE<(t)K (a retrograde orbit), and for a mass-ratio m ^ / m ^ i-o. The scale is more compressed 
than that of Figs. 2-7. 

anywhere along its equator (cf. again Figs. 2 - 7 ) , or, with further increase 
of ejection speed, circumnavigate the primary and secondary until falling at 
last on the primary star. It is not until still higher velocities are attained— 
velocities much higher than the radial velocities of any gas streams actually 
observed in eclipsing variables (with the possible exception of/? Lyrae, or 
of the Wolf-Rayet and other anomalous binaries)—that matter ejected 
by the secondary component at L x can actually spiral out in the equatorial 
plane and be lost to the system. In fact, one of the principal results of the 
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present investigation is the full realization of the difficulty with which any 
matter can be permanently expelled from a close binary system.* 

If (oE > (oK, the foregoing description covers broadly any dynamical 
contingency which may arise, but for o)E < o)K an additional interesting 
possibility should be mentioned in this connexion: namely, the existence 
of a class of retrograde orbits corresponding to a relatively narrow initial-

Fig io. Trajectory of a particle ejected from Lx with an initial velocity of V0 = i-o in the case of 
ioE<ioK (a retrograde orbit), and for a mass-ratio r r L j / m ^ i-o. The scale is more compressed 
than that of Figs. 2 - 7 . Fig. 3 should be consulted for the details of the inner part of the trajectory. 

velocity range around V0 = — i -o. Our numerical integrations show (cf. 
Figs. 3, 5 and 7) that the particles departing from L x with such a velocity 
may, after circumnavigating the primary component (and describing 
cusps in the neighbourhood of the Lagrangian equilateral points Z,4 and 
Z,5), pass through the gap between the two stars and recede thereafter to a 
considerable distance from the system. In two cases (corresponding to the 
mass-ratio i-o and the ejection velocities V0= —0-9 and — i-o), we have 

* The opening-up of the corresponding Jacobian surface of zero velocity is a necessary, but not 
sufficient, condition for such an escape. 
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followed the orbits of such particles for many thousands of steps (requiring 
integrations which took hours to perform even at electronic speeds). 

The outcome, plotted on Figs. 9 and 10 on a much reduced scale, reveals 
that the recession of a particle from its parent binary system does not 
continue indefinitely, but possesses an upper limit (of radius about ten 
times as large as the radius of the orbit of the two finite bodies), which our 
particle will approach asymptotically before it will eventually spiral inward 
to end its motion by falling on one of the two components. The asymptotic 
nature of the orbit (cf., in particular, Fig. 9) suggests that a continuous 
stream of particles moving along it may lead to the maintenance of a dis­
tinct gas ring, encircling the whole binary system at a considerable distance 
from it and (as indicated by the time-dots) rotating with respect to it with 
almost 'constant angular velocity. Now the existence of gaseous rings of this 
nature, encircling certain eclipsing systems, has indeed been reported by 
several investigators. Whether or not these are dynamically related to the 
secondary component by particle orbits discussed in this paper, however, 
remains to be settled by future investigations. 
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