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Effects of fast-propagating water waves on the overlying wind are investigated using
simulation and theoretical analysis. By performing a large eddy simulation (LES) of
turbulent wind over water waves with high wave age, we observe that the perturbation to
wind velocity and pressure by the waves, or the wave-induced airflow, is mainly induced
by the vertical movement of the wave surface. We perform scaling analysis to show that
the turbulent stress effects on fast wave-induced airflow are negligible. Moreover, we find
that the curvilinear model developed for opposing wave effects on wind by Cao et al.
(J. Fluid Mech., vol. 901, 2020, p. A27) provides predictions that agree well with the
present LES results of wind following fast waves. Our analyses of the results indicate that
the fast wave-induced airflow is a quasilinear process. To elucidate the mechanisms for
fast wave effects, we split the curvilinear model into two equations corresponding to wave
kinematics and forcing by wave elevation, respectively. Using these equations, we illustrate
that the vertical component of wave orbital velocity induces a strong airflow perturbation,
which produces the dominant components of fast wave-induced airflow and determines
its overall spatial structure. Furthermore, we discover that the weak components of fast
wave-induced airflow are forced by the dominant components via viscous stress and by
the forcing induced by wave elevation, and generate the form drag on the wave surface.

Key words: wind–wave interactions, surface gravity waves, wave–turbulence interactions

1. Introduction

Wind–wave interactions play an important role in determining the upper-ocean and
lower-marine atmosphere environments, but are challenging to parameterise in weather
and climate models because of the complex flow dynamics involved. The presence of
water waves induces flow perturbations to the overlying turbulent wind field, or the
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wave-induced airflow, which can in turn affect the wave-field evolution by exerting a
form drag on the wave surface and thereby wind–wave momentum and energy exchanges.
A deep understanding of the wave-induced airflow is a key to the modelling of wind–wave
interactions.

For wind and waves that are aligned in the same direction, based on the direction
of wind–wave momentum flux at the water surface, the wind–wave interactions can be
roughly divided into two regimes. When the wave age c/uτ is low, roughly satisfying
c/uτ � 15 (c is the wave phase speed and uτ is the friction velocity in the air), the
momentum transfer is from the wind to the wave, which serves as the momentum
and energy source for the development of the wave field. Extensive experiments have
been performed to quantify the wind–wave momentum transfer and the associated wave
growth rate in this regime (e.g. Hsu, Hsu & Street 1981; Snyder et al. 1981; Hsu &
Hsu 1983; Hasselmann & Bösenberg 1991; Donelan et al. 2005, 2006; Grare et al.
2013b). Meanwhile, two mechanisms have been identified as the key factors determining
the structure of wave-induced airflow and the resultant momentum exchange. The first
mechanism is the effect of the critical layer, defined as the height where the wind speed
equals the wave celerity. The theoretical study by Miles (1957) has shown that the inviscid
equation governing the wave-induced airflow has a singularity at the critical height,
causing a recirculating airflow perturbation in the wave-following frame, which leads
to an asymmetric pressure distribution on the wave surface about the wave crest and
a form drag on the wave. Later, the critical-layer effects on the wave-induced airflow
were confirmed in field observations (Hristov, Miller & Friehe 2003; Grare, Lenain &
Melville 2013a). The second mechanism is the wave-induced turbulent stress, defined
as the difference between the phase-averaged and the plane-and-time-averaged turbulent
stresses in the wind, which was also theoretically found to play an important role in
causing the asymmetry of wave-induced velocity and pressure for a form drag to occur (e.g.
Knight 1977; Jacobs 1987; Van Duin & Janssen 1992; Belcher & Hunt 1993; Miles 1993,
1996). As pointed out by Belcher & Hunt (1998), for slow waves the physical processes
affecting the wave-induced airflow and the associated form drag are relatively well
understood.

When c/uτ is high, about c/uτ � 15, the wave speed is comparable to or faster than
the mean wind speed, and the direction of wind–wave momentum flux is from the wave
to the wind, which has also been observed in the previous simulations and experiments
(e.g. Harris 1966; Smedman, Tjernström & Högström 1994; Mastenbroek 1996; Drennan,
Kahma & Donelan 1999; Sullivan, McWilliams & Moeng 2000; Grachev & Fairall 2001;
Hanley & Belcher 2008; Sullivan et al. 2008; Druzhinin, Troitskaya & Zilitinkevich 2012;
Jiang et al. 2016; Åkervik & Vartdal 2019). The scenario of wave propagating faster than
wind can happen when long waves are generated by the nonlinear interaction of shorter
waves in a broadband wave field and enter a region with relatively calm wind. These long
waves propagate fast according to the dispersion relation for water waves. Over the past
several decades, despite the extensive research on wind over fast-propagating water waves,
there still remain important questions unanswered as summarised in the following.

First, with the limited amount of theoretical studies on this topic, the mechanisms
responsible for the structure of fast wave-induced airflow are not well understood. For
low c/uτ , owing to the effects of the critical layer and wave-induced turbulent stress as
reviewed above, the wave-induced airflow is asymmetric about the wave crest as visualised
in simulations and experiments (e.g. Sullivan et al. 2000; Yang & Shen 2010; Druzhinin
et al. 2012; Buckley & Veron 2016). However, for high c/uτ , the above-cited studies
have shown that the wave-induced velocity and pressure exhibit a nearly symmetric or
antisymmetric spatial distribution. The different features of the wave-induced airflow
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between low and high c/uτ indicate that the fast wave-induced airflow is controlled
by a mechanism different from that of slow waves, which is illustrated in the present
study.

Second, previous studies have shown that the dominant mechanism producing the
form drag on the wave surface may change as the wave speed increases in the high
c/uτ condition. Specifically, under the condition c/uτ � 34, Cohen (1997) modelled the
wave-induced turbulent stress using a damped mixing-length model and found that it can
cause a form drag on the water surface. Later, based on the analysis of the large eddy
simulation (LES) data of turbulent wind over fast waves, Åkervik & Vartdal (2019) found
that as c/uτ approaches 36, the effects of wave-induced viscous stress on the form drag
become increasingly more significant, whereas the effects of wave-induced turbulent stress
decrease. These studies suggest that as c/uτ increases, the dominant mechanism for form
drag transits from wave-induced turbulent stress to wave-induced viscous stress, but the
occurrence of this transition is still not fully understood. More importantly, the mechanism
for wave-induced viscous stress to generate the form drag has not been investigated
systematically.

Third, there is little high-fidelity simulation data to confirm the dominant role of
wave-induced viscous stress in producing the form drag for c/uτ � 36. The condition
c/uτ � 36 is a common scenario in wind–wave interactions. For example, Hanley &
Belcher (2010) pointed out that in a broadband wave field, the peak wave speed can
be as large as 2.8 times that of the 10 m wind speed, roughly corresponding to c �
72uτ . Although there have been wall-modelled LES studies in which the wave age lies
in the range of c/uτ � 36 (e.g. Sullivan et al. 2008; Jiang et al. 2016), the viscous
sublayer is parameterised instead of being resolved in those studies and thus the effects
of wave-induced viscous stress could not be examined. Therefore, direct numerical
simulation (DNS) and wall-resolved LES of wind over waves for high wave age are in
critical need.

Based on the preceding review, the present study aims to first expand the high-fidelity
dataset of turbulent wind over fast waves to wave ages higher than those in the literature,
and secondly to elucidate the mechanisms for the fast wave-induced airflow and the
associated form drag (with its associated sign changed for high c/uτ ) on the wave surface.
We perform wall-resolved LES of turbulent wind over fast-moving water waves. We also
theoretically investigate the mechanisms for fast wave effects on the wind based on the
curvilinear models of wave boundary layer, including the non-orthogonal viscous model
developed in our previous study for wind-opposing waves (Cao, Deng & Shen 2020) and
a new orthogonal viscous model developed in the present study. The wall-resolved LES
can achieve Reynolds numbers higher than DNS, but it still resolves the viscous sublayer
of airflow without resorting to parametrisations of surface roughness and stress. The fast
wave-induced airflow is extracted from the LES data and compared with the solutions
of the linearised models to illustrate the underlying dynamics. We remark that while the
present study and Cao et al. (2020) use the same LES code, the physical problems studied
are markedly different. In Cao et al. (2020), we investigated the scenario in which the
directions of wind and wave are opposite to each other, whereas in the present study they
are in the same direction with large wave-age values. More importantly, the behaviours of
wave-induced airflow and the underlying mechanisms revealed are significantly different
between these two studies, as summarised in § 7.

The remainder of this paper is organised as follows. The numerical method is introduced
in § 2. Based on the LES data, we present the mean airflow velocity and turbulence
statistics in § 3 and the spatial structure and magnitude of the wave impact on the
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airflow are examined § 4. Then in § 5, we develop a linearised-analysis framework for
the wave effects, based on which, the mechanisms of the wave-induced airflow and the
wind–wave momentum flux are elucidated in § 6. Finally, the conclusions and discussion
are given in § 7.

2. Numerical method

2.1. Simulation set-up
To obtain the three-dimensional wind field, we perform wall-resolved LES of wind
turbulence over prescribed water waves. The LES solves the filtered incompressible
Navier–Stokes equations for air motions, and is written

∂uj

∂xj
= 0, (2.1)

∂uj

∂t
+ ∂(ujum)

∂xm
= − 1

ρa

∂p
∂xj

−
∂τ d

jm

∂xm
+ ν

∂2uj

∂xm∂xm
, (2.2)

where xj(j = 1, 2, 3) = (x, y, z) denote the Cartesian coordinates in the streamwise,
spanwise and vertical directions, respectively, as illustrated in figure 1, uj(j = 1, 2, 3) =
(u, v,w) are the components of the filtered velocity in the LES at the grid scale, p is
the filtered modified pressure, τ d

jm is the trace-free part of the subgrid-scale (SGS) stress
tensor, ρa is the density of air and ν is the air kinematic viscosity. At the water surface, a
progressive water wave is imposed as the Dirichlet boundary condition for the airflow,
ui(z = η) = (us, vs,ws), where η is the surface-wave elevation and (us, vs,ws) is the
orbital velocity of the wave at the water surface, given as

η(x, y, t) = a sin k(x − ct), (2.3)

us(x, y, t) = akc sin k(x − ct), (2.4)

vs(x, y, t) = 0, (2.5)

ws(x, y, t) = −akc cos k(x − ct), (2.6)

where a is the amplitude of the surface wave, k = 2π/λ is its wavenumber, λ is its
wavelength and c is its phase speed. In (2.3)–(2.6), an Airy wave solution for deep water
waves is adopted. In the case of nonlinear waves, such as a Stokes wave, the effect
of nonlinearity by the higher harmonics is of O((ak)2). In the linear analysis of the
wave-induced airflow performed in later sections, the O((ak)2) terms in the governing
equations are omitted. As explained in Cao et al. (2020), to be consistent, we only consider
the dominant Fourier component in the water-wave solution.

In the simulation, the governing equations (2.1) and (2.2) in the physical space are
transformed to the rectangular computational space such that

τ = t, ξ = x, ψ = y, ζ = z + g(ζ )η, where g(ζ ) = ζ

Lz
− 1, (2.7a–d)

where (ξ, ψ, ζ, τ ) are the spatial and time coordinates in the computational space, Lz is the
mean physical domain height and g(ζ ) denotes the transformation function. The Jacobian
matrix corresponding to the spatial derivative transformation in (2.7a–d) is
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Lx = 6λ

λ

L z
=
λ

L y=
4λ

y
z

x

U0
c

Figure 1. Sketch of LES configuration of turbulent wind following fast-propagating water waves. A
three-dimensional wind field is driven by a constant velocity U0 applied at the top boundary and flows over
a plane propagating surface-wave train. The surface wave propagates in the x-direction, with a wavelength λ
and a phase speed c. The Dirichlet boundary condition is employed at the wave surface and periodic boundary
conditions are applied in the horizontal directions.

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂ξ

∂x
∂ξ

∂y
∂ξ

∂z
∂ψ

∂x
∂ψ

∂y
∂ψ

∂z
∂ζ

∂x
∂ζ

∂y
∂ζ

∂z

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

1 0 0
0 1 0

gηξ
1 − gζ η

gηψ
1 − gζ η

1
1 − gζ η

⎤
⎥⎥⎥⎦ , (2.8)

where gζ = dg/dζ . The transformation of time derivative between the computational
space and the physical space in (2.7a–d) caused by the surface-wave motion is defined
as

∂

∂t
= ∂

∂τ
+ ∂ξj

∂t
∂

∂ξj
= ∂

∂τ
+ ∂ζ

∂t
∂

∂ζ
, where

∂ζ

∂t
= gητ

1 − gζ η
. (2.9)

Then the LES equations (2.1) and (2.2) in the computational space become

Jpj
∂uj

∂ξp
= 0, (2.10)

∂uj

∂τ
+ δp3

∂ζ

∂t
∂uj

∂ξp
+ Jlp

∂(ujup)

∂ξl
= − Jlj

ρa

∂p
∂ξl

+ Jlp
∂τ d

jp

∂ξl
+ νJnp

∂

∂ξn

(
Jlp
∂uj

∂ξl

)
, (2.11)

where Jlp is the (l, p) entry of the mapping matrix J and δlm is the Kronecker delta. The
transformed LES equations (2.10) and (2.11) are discretised and solved in computational
space. Specifically, in the (ξ − ψ) plane, a Fourier-series-based pseudo-spectral method
is used for discretisation with evenly spaced grid points. In the ζ -direction, a second-order
finite-difference method is employed with grid points clustered towards the upper and
lower boundaries. To calculate the SGS stress tensor, the dynamic Smagorinsky model
is used (Smagorinsky 1963; Germano et al. 1991; Lilly 1992). The detailed numerical
procedure and extensive validations can be found in our previous studies of turbulent
wind–wave interactions (Yang & Shen 2010, 2011; Yang, Meneveau & Shen 2013; Hao
& Shen 2019; Cao et al. 2020).
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c/U0 ak uτ /U0 × 102 c/uτ c/Uλ/2 uτλ/ν (�ξ+,�ψ+,�ζ+
min)

0.1 0.15 2.89 3.46 0.24 867 (20.32, 13.55, 0.17)
0.4 0.15 2.60 15.38 0.82 768 (18.00, 12.00, 0.15)
0.8 0.15 2.38 33.61 1.52 714 (16.73, 11.16, 0.14)
1.0 0.15 2.24 44.64 1.83 672 (15.75, 10.50, 0.13)
1.2 0.15 2.21 54.30 2.10 663 (15.54, 10.36, 0.13)
1.4 0.15 2.10 66.67 2.36 630 (14.77, 9.84, 0.12)
0.8 0.10 2.49 32.12 1.56 747 (17.51, 11.67, 0.15)
1.0 0.10 2.44 40.98 1.91 732 (17.16, 11.44, 0.14)
1.2 0.10 2.38 50.42 2.26 714 (16.73, 11.16, 0.14)
1.4 0.10 2.31 60.61 2.55 693 (16.24, 10.83, 0.14)

Table 1. List of LES cases for turbulent wind over progressive water waves. The wind field is discretised with
(Nx,Ny,Nz) = (384, 384, 193) grid points in the (ξ, ψ, ζ ) directions, respectively. The bulk Reynolds number
U0λ/ν is prescribed as 30 000 for all of the wave cases, while uτ , uτλ/ν and the grid resolution in wall units
are obtained a posterior. Here, the superscript ‘+’ denotes normalisation by the viscous length scale ν/uτ .

As sketched in figure 1, the turbulent wind is driven by an external velocity at the top
of the simulation domain, (u, v,w) = (U0, 0, 0); a canonical set-up in the simulations of
turbulent airflows over surface waves (e.g. Sullivan et al. 2000; Druzhinin et al. 2012;
Cao et al. 2020). In the present study, the wave age c/U0 varies between 0.1 and 1.4,
and two wave-steepness values are considered, ak = 0.10 and 0.15 (table 1). The wave
steepness in the present study is within the range of values adopted in the previous studies
of wind over fast waves, e.g. ak = 0.10 in Sullivan et al. (2000), ak = 0.2 in Hanley &
Belcher (2008), ak = 0.10 and 0.25 in Yang & Shen (2010), ak = 0.05–0.4 in Jiang et al.
(2016) and ak = 0.10 in Åkervik & Vartdal (2019). The Reynolds number based on the
wavelength of the surface wave and the top-driven velocity, U0λ/ν, is 30 000, which is
higher than the values 8800–15 000 in the previous DNS of wind over water waves (e.g.
Sullivan et al. 2000; Yang & Shen 2010; Druzhinin et al. 2012). The Reynolds number
based on the air friction velocity uτ , i.e. uτλ/ν, is obtained a posterior and is summarised
in table 1, and is comparable with values in the wall-resolved LES study by Åkervik &
Vartdal (2019). In the present study, uτ is defined using the mean viscous shear stress
at the top boundary τs, which equals the mean total stress in the streamwise direction at
any given height in the wave boundary layer, as uτ = √

τs/ρa. Following the previous
studies (e.g. Sullivan et al. 2000; Druzhinin et al. 2012; Cao et al. 2020), a simulation
domain of the size (Lx, Ly, Lz) = (6λ, 4λ, λ) is adopted for the wind turbulence. The wind
field is discretised in the computational space with 3842 × 193 grid points, providing a
resolution of �ξ/(ν/uτ ) < 21, �ψ/(ν/uτ ) < 14 and �ζmin/(ν/uτ ) < 0.2, where �ζmin
is the minimum grid space in the ζ -direction near the boundaries. The grid resolution in all
cases satisfies the requirement of the wall-resolved LES specified by Choi & Moin (2012).
The parameters and resolution of the LES cases in this study are summarised and listed in
table 1.

3. Mean velocity and turbulence statistics of airflow

In this section, we first examine the mean velocity and turbulence statistics in the airflow
for different wave ages using the LES data. To explain the variation of airflow velocity
with wave age, we analyse the mean momentum equation for the wind, with a focus on the
direction of momentum transfer between the wind and the wave at the water surface.
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To analyse the airflow statistics, we adopt the triple decomposition (Hussain & Reynolds
1970) for an instantaneous physical quantity in the airflow,

f = f̄ (ξ, ζ )+ f ′(ξ, ψ, ζ, t) = 〈 f 〉(ζ )+ f̃ (ξ, ζ )+ f ′(ξ, ψ, ζ, t), (3.1)

where f denotes an arbitrary physical quantity, f̄ is its phase-averaged part, 〈 f 〉 is its mean
value, which is obtained through the average in time and over the (ξ, ψ) plane, f̃ = f̄ − 〈 f 〉
is its wave-induced fluctuation and f ′ = f − f̄ is its turbulent fluctuation. We note that f̃ in
(3.1) is defined based on the computational curvilinear coordinates as in previous studies
(e.g. Hsu et al. 1981; Belcher & Hunt 1993; Sullivan et al. 2000; Druzhinin et al. 2012;
Buckley & Veron 2016; Åkervik & Vartdal 2019; Cao et al. 2020). For periodic waves, f̃
can be represented using its Fourier coefficient f̂ , as

f̃ = f̂ eikξ + f̂ ∗e−ikξ = 2 Re
[

f̂
]

cos(kξ)− 2Im
[

f̂
]

sin(kξ) = 2| f̂ | sin(kξ − φf̃ η̃). (3.2)

Here ‘| · |’ is the modulus operator for complex numbers and φf̃ η̃ = arctan(Re[ f̂ ]/Im[ f̂ ])

is the phase difference from the surface-wave profile η̃ = a sin(kξ) and f̂ ∗ is the complex
conjugate of f̂ .

Figure 2 shows the mean wind velocity 〈u〉 and turbulent air velocity variance
for different wave age c/U0. Here, we note that in this study, when illustrating
the characteristics of airflow statistics, we only present the results of ak = 0.15 as
representative cases for paper length considerations. But both the ak = 0.1 and the
ak = 0.15 results will be utilised when the mechanisms underlying the wave-induced
airflow are elucidated. Figure 2(a) shows that as the wave propagates faster, the mean
wind velocity increases, suggesting the diminishing of the blocking effect on the airflow
by the wave. In contrast, figure 2(b–d) show that all of the three components of the
turbulent air velocity variance decreases appreciably as c/U0 increases. The weakening
of turbulence intensity is also reflected in the decreasing of uτ , with increasing wave
speed (table 1). When normalised by uτ , the difference in the turbulence variance is small.
Interestingly, it is observed that the turbulence-intensity profiles become more symmetric
with increasing wave age. For instance, in the cases (c/U0, c/uτ ) = (0.4, 15.38) and
(c/U0, c/uτ ) = (1.2, 54.30), the profiles at the top and bottom are similar. This trend of
turbulence-intensity profiles is worthy of further investigation in the future. For a specific
wave age for fast waves, the higher the wave steepness, the larger the mean wind velocity
and the weaker the turbulence variance (which can be seen by comparing c/Uλ/2 and uτ
for the same c/U0 between different wave steepness in table 1), indicating that the fast
wave effects increase with the wave steepness.

The increase of mean airflow velocity, as the wave age increases, is caused by the
changed direction of wind–wave momentum flux. To examine the momentum transfer,
we analyse the mean airflow momentum equation (Hara & Sullivan 2015; Cao et al. 2020)

〈τw
13〉 + 〈τ p

13〉 + 〈τ13〉 + 〈τv13〉 = 〈τtot〉 = u2
τ . (3.3)

Here, τw
jm = −ũjŨm is the wave-induced stress with Um = J−1 · uj · ∂ξm/∂xj being the

velocity in the curvilinear coordinates, J being the determinant of the transformation
matrix J (2.8) and (̃·) defined in (3.1), τ p

jm = −J−1 · p/ρa · ∂ξm/∂xj is the pressure stress,
τjm = −u′

jU
′
m + J−1 · τ d

jl · ∂ξm/∂xl is the total turbulent stress with τ d
jm being the SGS

stress tensor in (2.2), τvjm = −J−1 · σjl · ∂ξm/∂xl is the viscous stress with σjm = −2νSjm

and Sjm = (∂uj/∂xm + ∂um/∂xj)/2 and τtot is summation of all of the stresses.
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Figure 2. Mean wind velocity and turbulent air velocity variance: (a) 〈u〉; (b) 〈u′2〉1/2; (c) 〈v′2〉1/2; and
(d) 〈w′2〉1/2. The wave conditions shown are: black solid line, (c/U0, c/uτ ) = (0.1, 3.46); cyan solid line,
(c/U0, c/uτ ) = (0.4, 15.38); blue solid line, (c/U0, c/uτ ) = (1.2, 54.30). Results for ak = 0.15. The results
are normalised by U0.

Figure 3 presents the mean stress terms in (3.3) for different wave age c/U0. For all three
of the wave conditions, the mean total stress is constant and equals u2

τ at any given height.
At the wave surface, the wave-induced stress 〈τw

13〉 and the turbulent stress 〈τ13〉 vanish, and
the wave-induced pressure 〈τ p

13〉 equals the form drag on the wave, which is the dominant
mechanism for the momentum exchange between the wind and the wave (see Belcher &
Hunt 1998). The 〈τ p

13〉 at the water surface reverses its sign as c/U0 increases. Specifically,
for the slow wave (c/U0, c/uτ ) = (0.1, 3.46) (figure 3a), both the viscous stress 〈τv13〉
and the wave-induced pressure 〈τ p

13〉 are positive at the wave surface, indicating that the
momentum flux is from the wind field to the waves. As c/U0 increases, 〈τ p

13〉 decreases and
then becomes negative. For the intermediate wave (c/U0, c/uτ ) = (0.4, 15.38) (figure 3b),
〈τ p

13〉 is negligible and the momentum exchange between the wind and the wave is also
small. Under the fast wave condition (c/U0, c/uτ ) = (1.2, 54.30) (figure 3c), 〈τ p

13〉 is
negative, suggesting that the wave loses momentum to the wind field. Meanwhile, 〈τv13〉
is greater than u2

τ near the wave surface owing to the negative 〈τ p
13〉. Therefore, the change

of the sign of form drag on the wave surface results in the larger mean airflow velocity as
the wave speed increases. Figure 3 also shows that the mean viscous stress 〈τv13〉 is mainly
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Figure 3. Stress terms in the mean momentum equation (3.3): green dash dotted line, wave-induced stress
〈τw

13〉; blue dashed line, wave-induced pressure 〈τ p
13〉; red solid line, turbulent stress 〈τ13〉; orange dashed line,

viscous stress 〈τ v13〉; solid black line, approximation of 〈τ v13〉 by ν d〈u〉/dζ ; black thin dashed line, total stress
〈τtot〉. The wave conditions shown are: (a) (c/U0, c/uτ ) = (0.1, 3.46); (b) (c/U0, c/uτ ) = (0.4, 15.38); and
(c) (c/U0, c/uτ ) = (1.2, 54.30). Results for ak = 0.15. The results are normalised by u2

τ .

generated by the vertical gradient of mean airflow velocity and can be approximated by
ν d〈u〉/dζ . In other words, the mean wind velocity profile 〈u〉 is shaped by the mean
stresses in the wave boundary layer.

To summarise this section, the LES results have shown that as the wave age increases,
the mean wind velocity increases and the airflow turbulence intensity is weakened. The
analyses of mean airflow equation illustrate that the form drag on the wave surface transits
from positive, for slow waves, to negative for fast waves, which causes the larger mean
airflow velocity in the latter case.

4. Features and magnitude of wave effects on airflow

In this section, we investigate the features and perform magnitude-scaling analyses of the
wave-induced perturbations to the airflow using the LES data. We first examine in § 4.1
the wave effects on the airflow velocity and pressure. Then in § 4.2, the wave-induced
perturbations to the airflow turbulence variance and turbulent shear stress are analysed.
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Figure 4. Wave-induced vertical air velocity w̃/(akU0) for the wave conditions: (a) (c/U0, c/uτ ) = (0.1,

3.46); (b) (c/U0, c/uτ ) = (0.4, 15.38); (c) (c/U0, c/uτ ) = (1.2, 54.30). Results for ak = 0.15.

4.1. Wave-induced velocity and pressure
In this subsection, we focus on the wave-induced velocity and pressure in the wind
field. Figure 4 presents the wave-induced vertical velocity w̃ for different wave ages.
It is shown that the structure of w̃ varies substantially with c/U0, indicating that the
physical process producing w̃ depends significantly on c/U0. For the slow wave with
(c/U0, c/uτ ) = (0.1, 3.46) (figure 4a), away from the surface, w̃ is mostly positive above
the windward face and negative above the leeward face, without displaying antisymmetry
across the wave crest. The w̃ for slow waves (c � uτ ) is produced by the airflow blocked
by the windward face of the wave owing to the low wave speed. The airflow goes
upward along the wave windward surface and therefore has a positive w̃ there. However,
when c � uτ , the wave surface no longer blocks the overlying airflow. As shown, for
the intermediate wave with (c/U0, c/uτ ) = (0.4, 15.38) (figure 4b), the structure of w̃
is remarkably different from that of the slow wave. Specifically, in the near surface
region, w̃ exhibits a nearly antisymmetric spatial structure about the wave crest, namely,
positive over the leeward side and negative over the windward side with a comparable
magnitude. The antisymmetric distribution of w̃ is also present in the fast wave case with
(c/U0, c/uτ ) = (1.2, 54.30) (figure 4c), but with a much larger amplitude and extends to
a much higher altitude in the airflow.

The nearly antisymmetric w̃ in the intermediate (figure 4b) and fast (figure 4c) wave
cases indicates that it is associated with the airflow perturbation induced by the vertical
wave movement, i.e. ws (2.6). At the surface, the vertical air velocity satisfies the
Dirichlet boundary condition (2.6) and therefore w̃(ζ = 0) = w̃s = −akc cos(kξ), with
η̃ = a sin(kξ). Therefore, one can expect that at the wave surface, a strong vertical motion
of water wave would initiate a strong upward airflow at the leeward face and downward
airflow at the windward face, which is confirmed by the LES result of w̃ shown in
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figures 4(b) and 4(c). Away from the surface, the airflow perturbation induced by the
vertical wave motion weakens gradually and thus the magnitude of w̃ decays with height.
The previously described mechanism for the occurrence of w̃ indicates that w̃ has an order
of magnitude of akc for intermediate and fast waves. In particular, when the wave speed
c � U0, the magnitude of w̃ near the wave surface has a magnitude comparable to akU0.
Therefore, in figure 4(c) with (c/U0, c/uτ ) = (1.2, 54.30), w̃/(akU0) has a magnitude of
approximately 1, which is significantly larger than that shown in figures 4(a) and 4(b).

Figure 5 shows the wave-induced streamwise air velocity ũ for different c/U0. At the
low wave age with (c/U0, c/uτ ) = (0.1, 3.46) (figure 5a), ũ has a strong positive value
at the windward side near the wave crest, caused by the streamwise velocity acceleration
associated with the narrowing of cross-section of the air passage on the windward side of
the slow wave. For the intermediate wave with (c/U0, c/uτ ) = (0.4, 15.38) (figure 5b), ũ
has a large magnitude only in a very thin region above the surface. For the fast wave with
(c/U0, c/uτ ) = (1.2, 54.30) (figure 5c), away from the surface, ũ is nearly in antiphase
with the wave elevation, namely, a positive ũ above the wave trough and a negative
ũ above the wave crest, which appears contrary to the airflow perturbation induced by
the streamwise component of the wave kinematics. Specifically, at the wave surface,
ũ(ζ = 0) = ũs = akc sin(kξ), with η̃ = a sin(kξ), according to the Dirichlet boundary
condition (2.4). Therefore, the streamwise motion of water wave induces a ũ in phase
with the wave elevation at the water surface (because akc > 0), which is not exhibited by
the structure of ũ away from the surface in figure 5(c). In fact, for fast waves, the effect
of the boundary condition (2.4) on ũ is limited within a very thin region in the airflow
and, thus, is not obvious in figure 5(c) (see more detailed discussions in § 6). Away from
the surface, ũ is mainly produced by the airflow perturbation induced by the vertical wave
motion (figure 4c) through mass conservation as

∂ ũ
∂ξ

= −∂w̃
∂ζ

− d〈u〉
dζ

gη̃ξ , (4.1)

which is derived using (5.4) in § 5 and illustrates how ũ can be generated by w̃. Under
the fast wave condition c � U0, at a vertical length scale l = O(k−1), ∂w̃/∂ζ = O(ak2c)
and d〈u〉/dζgη̃ξ = O(ak2uτ ). Equation (4.1) suggests that away from the surface, ũ is
dominated by ∂w̃/∂ζ and therefore ũ = O(akc). For c � U0, the magnitude of ũ is
expected to be comparable to akU0, which is reflected in the result in figure 5(c).
In addition, because w̃ has the form of − cos(kξ) and decays with ζ (figure 4c), the
dominance of ∂w̃/∂ζ in (4.1) indicates that above the wave, ũ is in antiphase with wave
surface, which is consistent with figure 5(c).

Figure 6 shows the wave-induced air pressure p̃ for different c/U0. At low wave age
with (c/U0, c/uτ ) = (0.1, 3.46) (figure 6a), p̃ is highly asymmetric about the wave crest,
positive at the windward face and negative at the leeward face, which generates a strong
form drag on the wave surface to transfer the momentum from the wind to wave. For
the intermediate wave with (c/U0, c/uτ ) = (0.4, 15.38) (figure 6b), similar to w̃ and
ũ, p̃ is significant only within a thin region near the surface. For the fast wave with
(c/U0, c/uτ ) = (1.2, 54.30) (figure 6c), similar to ũ, p̃ is strong and is nearly in antiphase
with the wave surface, owing to the vertical wave motion-induced airflow. To illustrate this
point, we obtain the dominant mechanism for producing p̃ using the vertical momentum
equation of the wave-induced airflow, which is (detailed derivation is given in § 5.1)

(〈u〉 − c)
∂w̃
∂ξ

≈ − ∂ p̃
∂ζ
, (4.2)
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Figure 5. Wave-induced streamwise air velocity ũ/(akU0) for the wave conditions: (a) (c/U0, c/uτ ) = (0.1,

3.46); (b) (c/U0, c/uτ ) = (0.4, 15.38); (c) (c/U0, c/uτ ) = (1.2, 54.30). Results for ak = 0.15.

and the solution follows,

p̃|ζ ≈
∫ ∞

ζ

(〈u〉 − c)
∂w̃
∂ξ

dζ. (4.3)

Since for the fast wave, w̃ is nearly in antiphase with the wave slope η̃ξ as shown
in figure 4(c) and 〈u〉 − c < 0, (4.3) illustrates that p̃ is nearly in antiphase with the
wave elevation. Meanwhile, for c � U0, by considering w̃ = O(akc) and U0/2 � |〈u〉 − c|
when ζ/λ < 0.5, we obtain that p̃ = O(akρacU0) based on (4.3). This result explains
why p̃/akρaU2

0 has a magnitude of approximately 1 for (c/U0, c/uτ ) = (1.2, 54.30) in
figure 6(c).

To summarise this subsection, the LES results have shown that the wave-induced
airflow is governed by different physical processes between slow waves and fast
waves. Specifically, for slow waves, the wave-induced airflow occurs as a result of
the blocking effect of the wave surface, while for fast waves it results from the
airflow perturbation induced by the vertical motion of the wave. Therefore, when the
wave speed c is comparable with, or larger than the outer velocity U0, i.e. c � U0,
the wave-induced velocity and pressure scale as ũ = O(akc), w̃ = O(akc) and p̃ =
O(akρacU0), respectively, which are significantly stronger than those of slow waves.

4.2. Wave-induced turbulence variance and turbulent shear stress
In this subsection, we examine the spatial structure and magnitude of the wave-induced
turbulence variance and turbulent shear stress. Figure 7 presents the distribution of
wave-induced turbulence variance ũ′u′ + ṽ′v′ + w̃′w′ = u′u′ − 〈u′u′〉 + v′v′ − 〈v′v′〉 +
w′w′ − 〈w′w′〉 for different c/U0. In general, ũ′u′ + ṽ′v′ + w̃′w′ reflects the wave effects on
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Figure 6. Wave-induced air pressure p̃/(akρaU2
0) for the wave conditions: (a) (c/U0, c/uτ ) = (0.1, 3.46);

(b) (c/U0, c/uτ ) = (0.4, 15.38); (c) (c/U0, c/uτ ) = (1.2, 54.30). Results for ak = 0.15.
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Figure 7. Wave-induced turbulence variance (ũ′u′ + ṽ′v′ + w̃′w′)/u2
τ for the wave conditions: (a)

(c/U0, c/uτ ) = (0.1, 3.46); (b) (c/U0, c/uτ ) = (0.4, 15.38); and (c) (c/U0, c/uτ ) = (1.2, 54.30). Results for
ak = 0.15.
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Figure 8. Wave-induced turbulent shear stress −ũ′w′/u2
τ for the wave conditions: (a) (c/U0, c/uτ ) =

(0.1, 3.46); (b) (c/U0, c/uτ ) = (0.4, 15.38); and (c) (c/U0, c/uτ ) = (1.2, 54.30). Results for ak = 0.15.

the turbulence variance in the air, which can, in turn, affect the behaviour of wave-induced
airflow as illustrated in the previous studies on wind over slow waves (e.g. Belcher & Hunt
1993; Miles 1993, 1996). As shown in the figure, the slow wave with (c/U0, c/uτ ) = (0.1,
3.46) induces a strong positive ũ′u′ + ṽ′v′ + w̃′w′ above the leeward face of the wave
(figure 7a). Buckley & Veron (2016) attribute this enhanced turbulence intensity to
sporadic airflow separation past the wave crest. By contrast, the intermediate wave with
(c/U0, c/uτ ) = (0.4, 15.38) intensifies the turbulence variance at the windward face of
the wave, and suppresses the turbulence variance at the leeward face (figure 7b). As
the wave propagates faster with (c/U0, c/uτ ) = (1.2, 54.30), the regions corresponding
to the intensified and suppressed turbulence variance shift farther upstream, such that
ũ′u′ + ṽ′v′ + w̃′w′ displays a positive value over the wave trough and a negative value over
the wave crest, as shown in figure 7(c). Importantly, it is observed that, unlike w̃, ũ and p̃,
the magnitudes of wave-induced turbulence variance normalised by u2

τ are comparable for
different c/U0 with a magnitude of O(1), or ũ′u′ + ṽ′v′ + w̃′w′ = O(u2

τ ). This observation
is utilised in § 5.2 to show that for fast waves, the effects of nonlinear forcing on the
wave-induced airflow are negligible.

Figure 8 compares the wave-induced turbulent shear stress −ũ′w′ = −u′w′ − 〈−u′w′〉
for the three wave ages. At the small wave age with (c/U0, c/uτ ) = (0.1, 3.46), similar
to the turbulence variance (figure 7a), the turbulent shear stress is enhanced above the
leeward face of the wave (figure 8a), owing to the effect of intermittent airflow separation
downstream of the wave crest (Buckley & Veron 2016). For the intermediate wave age with
(c/U0, c/uτ ) = (0.4, 15.38), −ũ′w′ has a negative value above the windward face and
a positive value above the leeward face, with an almost antisymmetric spatial structure
across the wave crest (figure 8b). Compared with case (c/U0, c/uτ ) = (0.4, 15.38),
at the high wave age with (c/U0, c/uτ ) = (1.2, 54.30), −ũ′w′ exhibits a similar spatial
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distribution, but is limited to a slightly thinner region in the airflow (figure 8c). Similar to
ũ′u′ + ṽ′v′ + w̃′w′, the LES results suggest that for different wave ages, −ũ′w′ = O(u2

τ ).
The previous results demonstrate that, contrary to the wave-induced velocity and pressure,
which are significantly stronger in the fast wave case than in the slow wave case,
ũ′u′ + ṽ′v′ + w̃′w′ and −ũ′w′ have magnitudes comparable for different wave speeds.

To conclude § 4, the LES results indicate that for wind over fast waves, the
wave-coherent airflow is dominated by the vertical wave motion-induced air motion, which
is much stronger than for wind over slow waves. By contrast, compared with the slow
wave, the modulation of turbulence variance and turbulent stress by the fast waves are
not strengthened. These results together suggest that the effects of wave-induced turbulent
stress on the wave-induced airflow become relatively weaker as the wave propagates faster.
In § 5, we develop a linear-analysis framework for the wave effects on the wind, based on
which the fast wave-induced airflow is explained theoretically in § 6.

5. Development of linear-analysis framework for wave effects

In this section, we develop a linear-analysis framework for the wave-induced airflow in
the turbulent-wave boundary layer by neglecting nonlinear forcing. In § 5.1, a curvilinear
model is presented based on non-orthogonal curvilinear coordinates. In § 5.2, we perform
a scaling analysis on the effects of nonlinear forcing. In § 5.3, we show that the curvilinear
model can be split into two equations to investigate the effects of wave kinematics and
body forcing induced by the wave elevation, respectively.

5.1. Non-orthogonal curvilinear model
To capture the wave-induced quantities in the entire region of airflow including the height
above the wave trough and below the wave crest, the Cartesian coordinates (x, y, z) can be
transformed to the non-orthogonal curvilinear coordinates (ξ, ψ, ζ ), as

ξ = x, ψ = y, ζ = z + g(ζ )η, (5.1a–c)

where g(ζ ) can be any function that increases monotonically from the wave surface to the
top of the simulation domain (Hsu et al. 1981). In the present LES, the computational
coordinates (2.7a–d) follow the form of (5.1a–c) with a linear mapping function g =
ζ/Lz − 1. With the general transformation (5.1a–c) and the properties of phase average,
the momentum and continuity equations for the wave-induced airflow can be expressed as
(Cao et al. 2020)

(〈u〉 − c)
∂ ũ
∂ξ

+ (w̃ + (〈u〉 − c)gη̃ξ )
d〈u〉
dζ

+ 1
ρa

∂ p̃
∂ξ

= ν

(
∂2ũ
∂ζ 2 − ∂2w̃

∂ξ∂ζ

)
+ ν

d
dζ

(
d〈u〉
dζ

gζ

)
η̃ + O((ak)2)+ n.l.f ., (5.2)

(〈u〉 − c)
∂w̃
∂ξ

+ 1
ρa

∂ p̃
∂ζ

= ν

(
∂2w̃
∂ξ2 + ∂2w̃

∂ζ 2

)
+ O((ak)2)+ n.l.f ., (5.3)

∂ ũ
∂ξ

+ ∂w̃
∂ζ

+ d〈u〉
dζ

gη̃ξ = 0 + O((ak)2), (5.4)

where O((ak)2) denotes the neglected second- and higher-order terms (we neglect the
correlations between a wave-induced quantity f̃ and O(ak)2 terms, such as η̃2

ξ f̃ compared

919 A38-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

41
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.416


T. Cao and L. Shen

with f̃ (to capture the dominant flow physics only). Here, g is treated as an O(1) quantity),
‘n.l.f .’ represents the neglected nonlinear forcing, namely, the wave-induced fluctuations
of the turbulent stress, i.e. τ̃jm and the wave-induced fluctuations of the wave-induced
stress, i.e. τ̃w

jm. The effects of τ̃w
jm are always small for moderate wave slopes, and the

effects of τ̃jm are analysed in § 5.2. Note that although (5.2)–(5.4) are on the curvilinear
coordinate system, primitive variables in the physical space are used in the equations for
more direct illustration of the flow physics.

Next, by eliminating ũ and p̃, we can reduce the equation system (5.2)–(5.4) to a single
equation for w̃ as (Cao et al. 2020)

− ν

ik

[
d4

dζ 4 − 2k2 d2

dζ 2 + k4
]

ŵ +
[
(〈u〉 − c)

(
d2

dζ 2 − k2
)

− d2〈u〉
dζ 2

]
ŵ

= νη̂
d2

dζ 2

[
g

d2〈u〉
dζ 2

]
+ O((ak)2)+ n.l.f ., (5.5)

where ŵ is the Fourier coefficient of w̃ (3.2). The curvilinear equation (5.5) is different
from the original Orr–Sommerfeld equation (e.g. Lin 1955) in that the presence of the
wave elevation η̂ leads to a forcing term on its right-hand side. To evaluate the relative
importance of the right-hand side in (5.5) requires information on the dependence of
the mean wind velocity profile on the Reynolds number. However, how to model the
mean wind velocity profile as a function of Reynolds number and mean stresses in the
turbulent-wave boundary layer is still an open question in the research community and
should be investigated in the future.

Equation (5.5) can be solved using the boundary conditions imposed by the wave
kinematics, including the Dirichlet boundary conditions for ŵ,

ŵ
∣∣
ζ=0 = ŵs, ŵ

∣∣
ζ=∞ = 0, (5.6a,b)

and the Neumann boundary conditions for dŵ/dζ , which can be derived from (5.4) and
read

dŵ
dζ

∣∣∣∣
ζ=0

= −ikûs − ikη̂
d〈u〉
dζ

∣∣∣∣
ζ=0

,
dŵ
dζ

∣∣∣∣
ζ=∞

= 0, (5.7a,b)

where ûs and ŵs are the Fourier coefficients of the streamwise (2.4) and vertical (2.6)
components of wave orbital velocity, respectively. In § 6, (5.5) with g = ζ/Lz − 1 is
numerically solved using the mean wind velocity 〈u〉 from the LES, and its results are
compared with LES data to illustrate the mechanisms for the fast wave-induced airflow.

To evaluate the effects of coordinate systems, in appendix A we further develop a
curvilinear model based on the orthogonal curvilinear coordinates (e.g. Sullivan et al.
2000; Buckley & Veron 2016; Yousefi & Veron 2020; Yousefi, Veron & Buckley 2020),

ξ = x − iae−kzeikx, ψ = y, ζ = z − ae−kzeikx. (5.8a–c)

In appendix B, we compare the solutions of the curvilinear equations with different
curvilinear coordinates, and show that the mechanisms of fast wave effects on the airflow
revealed by the curvilinear models hold the same.

5.2. Scaling analysis of fast wave-induced turbulent stress effects
In this subsection we perform scaling analysis of the effects of fast wave-induced turbulent
stress τ̃jm on the wave-induced momentum equations (5.2) and (5.3). In § 4, the LES results
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Wind over fast-propagating water waves

show that for fast waves, w̃ = O(akc), p̃ = O(akρacU0), ũ′u′ + ṽ′v′ + w̃′w′ = O(u2
τ ) and

−ũ′w′ = O(u2
τ ). Based on these results, it can be further shown that in the curvilinear

coordinates, the wave-induced turbulent stress satisfies τ̃jm = O(u2
τ ), which has been

neglected in deriving (5.2) and (5.3). By comparing the magnitude of τ̃jm with the stress
terms in (5.2) and (5.3), we can evaluate the effects of τ̃jm on the fast wave-induced airflow.

To investigate the effects of τ̃jm, we focus on a vertical length scale l satisfying kl <
1, because ũ′u′ + ṽ′v′ + w̃′w′ (figure 7) and −ũ′w′ (figure 8) are significant only within
this region. To analyse the streamwise momentum equation (5.2), we can reduce it to the
following form by using (5.4) to eliminate ũ as

− (〈u〉 − c)
∂w̃
∂ζ

+ w̃
d〈u〉
dζ

+ 1
ρa

∂ p̃
∂ξ

= ν

(
∂2ũ
∂ζ 2 − ∂2w̃

∂ξ∂ζ

)
+ ν

d
dζ

(
d〈u〉
dζ

gζ

)
η̃. (5.9)

With the results in § 4, we can obtain the following scaling in (5.9),

1/ρa∂ p̃/∂ξ
−(〈u〉 − c)∂w̃/∂ζ

∼ akcU0 · k
akcU0/l

= kl, (5.10)

w̃〈u〉ζ
−(〈u〉 − c)∂w̃/∂ζ

∼ akc〈u〉(l)/l
akcU0/l

= 〈u〉(l)
U0

, (5.11)

∂τ̃11/∂ξ

−(〈u〉 − c)∂w̃/∂ζ
∼ u2

τ · k
akcU0/l

<
u2
τ /l

akcU0/l
∼ ∂τ̃13/∂ζ

−(〈u〉 − c)∂w̃/∂ζ
∼ 1

ak
uτ
U0

uτ
c
, (5.12)

where 〈u〉(l) is the value of 〈u〉 at ζ = l. Similarly, for the vertical momentum equation
(5.3), we have

(〈u〉 − c)∂w̃/∂ξ
1/ρa∂ p̃/∂ζ

∼ akcU0 · k
akcU0/l

= kl, (5.13)

∂τ̃31/∂ξ

1/ρa∂ p̃/∂ζ
∼ u2

τ · k
akcU0/l

<
u2
τ /l

akcU0/l
∼ ∂τ̃33/∂ζ

1/ρa∂ p̃/∂ζ
∼ 1

ak
uτ
U0

uτ
c
. (5.14)

In the wave surface layer, ak � 0.1 and U0/uτ is large. Equations (5.10)–(5.12) illustrate
that for high wave age c/uτ , ∂τ̃11/∂ξ and ∂τ̃13/∂ζ are significantly smaller than
−(〈u〉 − c)∂w̃/∂ζ in the streamwise momentum equation (5.9). Likewise, (5.13) and (5.14)
demonstrate that for large c/uτ , ∂τ̃31/∂ξ and τ̃33/∂ζ have negligible effects compared
with 1/ρa · ∂ p̃/∂ζ in the vertical momentum equation (5.3). If ak � 0.1, the magnitude
of τ̃jm should be much smaller than O(u2

τ ), and we still expect that its effects are much
smaller than the wave-induced advection or pressure. These results suggest that for fast
waves, the effects of wave-induced turbulent stress τ̃jm on the wave-induced airflow
are always much smaller than the dominant forcing in the wave-induced momentum
equations, which constitutes the physical grounds for neglecting τ̃jm, i.e.the nonlinear
forcing, in the curvilinear equations. The present scaling analyses support the results of
Åkervik & Vartdal (2019), who found that for high wave age, the forcing induced by the
wave-induced velocity and pressure is mainly balanced by the viscous stress, instead of
the turbulent stress, indicating a quasi-laminar flow regime. To further verify this finding,
they reproduced the LES results using a linear split system.

Finally, we comment on the effect of Reynolds number on the scaling analyses in this
section. The foregoing analyses have shown that the ratio of the magnitude of turbulent
stress to the magnitude of inertial forcing induced by the wave-induced velocity or the
wave-induced pressure scales with (uτ /U0) · (uτ /c) instead of viscosity, as shown by
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(5.12) and (5.14). Therefore, for high c/uτ , the trend that the turbulent stress effects become
negligible and the inertial forcing will be balanced by either the viscous stress or the wave
elevation-induced forcing should hold irrespective of Reynolds number. However, as the
Reynolds number increases, uτ /U0 decreases and thus the transition to the quasilinear
regime might happen at a lower c/uτ , which is consistent with the conclusions of Åkervik
& Vartdal (2019).

5.3. Split equations of curvilinear model
In this subsection, we develop split equations for the curvilinear model of the wave effects
on airflow. The expressions of the curvilinear model (5.5) and its boundary conditions
(5.6a,b) and (5.7a,b), reveal two mechanisms of the impacts of fast waves on the overlying
turbulent wind field, namely, the forcing induced by the wave elevation, which is the source
term on the right-hand side of (5.5), and the wave orbital velocity, which is shown by the
boundary conditions (5.6a,b)–(5.7a,b). To investigate these two mechanisms separately,
we can split a curvilinear equation into two separate equations corresponding to the two
components of ŵ, ŵk and ŵ f , respectively,

ŵ = ŵk + ŵ f . (5.15)

In this equation, ŵk and ŵ f are the vertical velocity perturbations associated with the wave
kinematics and by the forcing caused by the wave elevation, respectively.

Extracted from (5.5), the equation for ŵk has a zero source term on the right-hand side,
but is driven by the wave orbital velocity at the wave surface, which is

− ν

ik

[
d4

dζ 4 − 2k2 d2

dζ 2 + k4
]

ŵk +
[
(〈u〉 − c)

(
d2

dζ 2 − k2
)

− d2〈u〉
dζ 2

]
ŵk = 0, (5.16)

with the boundary conditions

ŵk
∣∣∣
ζ=0

= ŵs, ŵk
∣∣∣
ζ=∞

= 0, (5.17a,b)

dŵk

dζ

∣∣∣∣
ζ=0

= −ikûs − ikη̂
(

g
d〈u〉
dζ

)∣∣∣∣
ζ=0

,
dŵk

dζ

∣∣∣∣
ζ=∞

= 0. (5.18a,b)

The boundary conditions (5.17a,b) and (5.18a,b) are enforced at ζ = 0, because the effects
of wave orbital velocity on the airflow are applied on the curved water-wave surface.
Therefore, (5.18a,b) implicitly includes some geometrical effects. The extraction of the
wave-kinematics effects by (5.16)–(5.18a,b) follows the idea of Åkervik & Vartdal (2019),
where the particular solution to the kinematics is split from the rest of the response,
but with a difference between these two studies. In Åkervik & Vartdal (2019), the
particular solution to the kinematics does not involve the background shear effect, whereas
(5.16)–(5.18a,b) include the background shear effect. If we set the mean wind velocity to
be zero, (5.16) reduces to the formulation obtained by Åkervik & Vartdal (2019).

The equation for ŵ f has a non-zero source term on the right-hand side, but is not affected
by the wave kinematics at the surface, we write

− ν

ik

[
d4

dζ 4 − 2k2 d2

dζ 2 + k4
]

ŵ f +
[
(〈u〉 − c)

(
d2

dζ 2 − k2
)

− d2〈u〉
dζ 2

]
ŵ f

= νη̂
d2

dζ 2

[
g

d2〈u〉
dζ 2

]
, (5.19)
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with the homogeneous boundary conditions

ŵ f
∣∣∣
ζ=0

= 0, ŵ f
∣∣∣
ζ=∞

= 0, (5.20a,b)

dŵ f

dζ

∣∣∣∣
ζ=0

= 0,
dŵ f

dζ

∣∣∣∣
ζ=∞

= 0. (5.21a,b)

Here, it is noted that following the previous studies (e.g. Miles 1957; Belcher & Hunt
1993; Miles 1996; Hara & Sullivan 2015), to discuss the mechanisms for wave-induced
velocity, it is assumed that the mean wind velocity profile can be modelled through the
mean flow momentum equation or it can be obtained experimentally. Therefore, we treat
the right-hand side of (5.19) as a forcing to drive the wave-induced velocity, rather than a
geometric correction to the mean wind velocity derivative given a specific wave-induced
velocity forcing. In §§ 6.1 and 6.2, the equations (5.16)–(5.18a,b) and (5.19)–(5.21a,b) are
solved separately, and their solutions are compared with the LES data to elucidate the
effects of wave kinematics and forcing by the wave elevation on fast wave-induced airflow.

To conclude § 5, we have developed a linear-analysis framework for the fast wave effects
on the overlying turbulent wind field. The scaling analysis shows that for high c/uτ ,
the nonlinear forcing has secondary effects on the wave-induced airflow compared with
the advection induced by w̃ and the gradient of p̃. The curvilinear model of the wave
boundary layer reveals two mechanisms for the wave effects on the airflow, namely, the
wave kinematics and the forcing induced by the wave elevation, which can be investigated
separately by the split curvilinear equations.

6. Explanation of fast wave-induced airflow using linear theory

In this section, we analyse the characteristics and the underlying mechanisms of fast
wave-induced airflow through the comparisons between the solutions of the curvilinear
equations in § 5 and the LES results. The dominant and weak components of the
wave-induce airflow are investigated in §§ 6.1 and 6.2, respectively. In § 6.3, we examine
the generation of wave-coherent stress in the wind and the form drag on the wave surface.
Finally, the effect of wave age on the behaviours of wave-induced airflow is discussed in
§ 6.4.

To explain the fast wave-induced airflow, we express the wave-induced vertical velocity
w̃, wave-induced streamwise velocity ũ and wave-induced pressure p̃ using their Fourier
coefficients (3.2) as

w̃ = 2|ŵ| sin(kξ − φw̃η̃), (6.1)

ũ = 2|û| sin(kξ − φũη̃), (6.2)

p̃ = 2|p̂| sin(kξ − φp̃η̃), (6.3)

where 2|ŵ|, 2|û| and 2|p̂| are the amplitude of w̃, ũ and p̃, respectively, and φw̃η̃, φũη̃ and
φp̃η̃ are the phase difference of w̃, ũ and p̃ with respect to the wave surface η̃ = sin(kξ),
respectively.

Figure 9 compares the phase difference φũη̃ (6.2) between the LES results and the
solutions of the curvilinear equation (5.5) for the fast waves. In all of the four wave cases
shown, the linear solutions agree well with the LES results. It is observed that φũη̃ ≈ −π
only away from the surface, ζ/λ � 0.01, which is consistent with the results in figure 5(c)
and suggests that |Im[û]| � |Re[û]| there. At the surface, owing to the no-slip boundary
condition ũ = ak sin(kξ) (2.4), it is shown that φũη̃ = 0. The results indicate that the
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ζ/λ

φ
ũη̃

/π

Figure 9. Comparison of the phase difference φũη̃ (6.2) between the LES results and the solutions of the
curvilinear equation (5.5) for the fast waves. Lines are the LES results: black solid line, (c/U0, c/uτ ) =
(0.8, 33.61); cyan solid line, (c/U0, c/uτ ) = (1.0, 44.64); blue solid line, (c/U0, c/uτ ) = (1.2, 54.30); green
solid line, (c/U0, c/uτ ) = (1.4, 66.67). Symbols are the linear solutions: open black box, (c/U0, c/uτ ) =
(0.8, 33.61); open cyan box, (c/U0, c/uτ ) = (1.0, 44.64); open blue box, (c/U0, c/uτ ) = (1.2, 54.30); open
green box, (c/U0, c/uτ ) = (1.4, 66.67). In all four cases, ak = 0.15.

direct effect of the boundary condition (2.4) on ũ is only limited to a very thin region
in the airflow, ζ/λ � 0.01. The further analysis of φw̃η̃ (6.1) and φp̃η̃ (6.3) shows that
φw̃η̃ ≈ π/2 and φp̃η̃ ≈ −π throughout the wave boundary layer (results not plotted here for
space considerations), consistent with the observation in figures 4(c) and 6(c), respectively.
From the definitions of φw̃η̃ and φp̃η̃ (3.2), it can be deduced that |Re[ŵ]| � |Im[ŵ]| and
|Im[p̂]| � |Re[p̂]| throughout the wave boundary layer. In the following subsections, the
mechanisms for the strong (Re[ŵ], Im[û] and Im[p̂]), and weak (Im[ŵ], Re[û] and Re[p̂])
components of fast wave-induced airflow are investigated.

6.1. Mechanisms for dominant components of wave-induced airflow
So far, we have demonstrated that for fast waves, Re[ŵ], Im[û] and Im[p̂] are the
dominant components of |ŵ|, |û| and |p̂|, respectively. In this subsection, we explain
how they are produced. First, we identify the flow dynamics governing the dominant
wave-induced airflow. Figure 10 compares the magnitudes and the dominant components
of the wave-induced velocity and pressure between the LES results and the solutions of
the curvilinear equation (5.5) for four fast waves. The agreement between the LES results
and the linear solutions demonstrates that the dominant components of wave-induced
airflow are controlled by linear dynamics. As shown, |ŵ| and |p̂| have almost the same
magnitudes as Re[ŵ] and Im[p̂], respectively, throughout the boundary layer, indicating
that the overall structures of w̃ and p̃ are determined by Re[ŵ] and Im[p̂], respectively.
Because Re[ŵ] maintains a negative value and Im[p̂] has a positive sign, using (3.2) we
can obtain that φw̃η̃ ≈ π/2 and φp̃η̃ ≈ −π, which explains the results shown in figures 4(c)
and 6(c), respectively. By contrast, |û| has a similar magnitude to Im[û] only at ζ/λ � 0.01,
indicating that Im[û] determines the structure of ũ there. The positive value of Im[û] for
ζ/λ � 0.01 suggests that φũη̃ ≈ −π. For ζ/λ < 0.01, φũη̃ transits from zero at the surface
to −π farther away, which is caused by the change of the sign of Im[û] across this thin
region. These results explain figure 9.
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Figure 10. Comparison of the magnitudes (a,c,e) and the dominant components (b,d, f ) of wave-induced
airflow between the LES results and the solutions of the curvilinear equation (5.5) for the fast waves: (a) |ŵ|;
(b) Re[ŵ]; (c) |û|; (d) Im[û]; (e) |p̂|; and ( f ) Im[p̂]. Lines are the LES results: solid black line, (c/U0, c/uτ ) =
(0.8, 33.61); solid cyan line, (c/U0, c/uτ ) = (1.0, 44.64); solid blue line, (c/U0, c/uτ ) = (1.2, 54.30); solid
green line, (c/U0, c/uτ ) = (1.4, 66.67). Symbols are the linear solutions: open black box, (c/U0, c/uτ ) =
(0.8, 33.61); open cyan box, (c/U0, c/uτ ) = (1.0, 44.64); open blue box, (c/U0, c/uτ ) = (1.2, 54.30); open
green box, (c/U0, c/uτ ) = (1.4, 66.67). Results for ak = 0.15.

The quasilinear behaviour of the dominant wave-induced airflow suggests that the
underlying mechanisms can be explained using the curvilinear models. The key is to
identify the physical processes that generate Re[ŵ], which can be elucidated using the split
curvilinear equations obtained in § 5.3. As mentioned previously, (5.16) for ŵk and (5.19)
for ŵ f represent the effects of the wave kinematics and the forcing by wave elevation,
respectively. Figure 11 compares Re[ŵk] solved from (5.16), Re[ŵ f ] solved from (5.19),
and Re[ŵk] + Re[ŵ f ] with the Re[ŵ] result from LES for ak = 0.1 and 0.15. As shown,
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Figure 11. Comparison of Re[ŵk] solved from (5.16), Re[ŵ f ] solved from (5.19), Re[ŵk] + Re[ŵ f ] and the
Re[ŵ] result from the LES for (a) case (c/U0, c/uτ , ak) = (1.2, 50.42, 0.10) and (b) case (c/U0, c/uτ , ak) =
(1.2, 54.30, 0.15). Symbols are blue circle, Re[ŵk]; cyan diamond, Re[ŵ f ]; open green box, Re[ŵk] + Re[ŵ f ];
and solid black line, LES result of Re[ŵ]. Note that Re[ŵk] and Re[ŵk] + Re[ŵ f ] collapse together.

for both wave steepnesses, Re[ŵ] is contributed to almost entirely by Re[ŵk] with near
zero contribution from Re[ŵ f ], indicating that the wave kinematics plays a primary role
in perturbing the vertical airflow velocity. To further investigate how the wave kinematics
produces Re[ŵk], we examine the boundary conditions for Re[ŵk], which can be derived
from (5.17a,b) and (5.18a,b), and read

Re[ŵk]
∣∣∣
ζ=0

= −1
2

akc,
d Re[ŵk]

dζ

∣∣∣∣
ζ=0

= −1
2

ak2c − 1
2

ak
(

g
d〈u〉
dζ

)∣∣∣∣
ζ=0

. (6.4a,b)

We find that the vertical component of wave orbital velocity ws (2.6) initiates a
perturbation to the vertical air velocity Re[ŵk] at the wave surface through the Dirichlet
boundary condition (6.4a), and the streamwise component of wave orbital velocity us (2.4)
only affects the vertical derivative of Re[ŵk], i.e. d Re[ŵk]/dζ , at the wave surface (6.4b).
Away from the wave surface, Re[ŵk] decays monotonically to zero without changing its
sign as shown in figure 11.

Based on the results of Re[ŵ], the mechanisms for the dominant components
of wave-induced streamwise air velocity Im[û] and air pressure Im[p̂] can also be
explained. Specifically, Im[û] occurs as a result of mass conservation in response to the
Re[ŵ]-associated airflow perturbation, which can be obtained from the continuity equation
(5.4) as

Im[û] = 1
k

d Re[ŵ]
dζ

+ 1
2

ag
d〈u〉
dζ

. (6.5)

Equation (6.5) explains that the changing sign of Im[û] (figure 10d) and the associated
variation of φũη̃ (figure 9) in the wave boundary layer are because the effects of us on
Im[û], through the Dirichlet boundary condition (2.4), are limited to the proximity of
the wave surface and the behaviour of Im[û] at higher altitude is determined primarily
by the Re[ŵ]-associated airflow. Meanwhile, Im[p̂] is generated through the momentum
conservation of the Re[ŵ]-associated airflow, which can be seen from the contribution to
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Im[p̂] derived from (5.3)

Im[p̂] =
∫ ∞

ζ

[
(〈u〉 − c)k Re[ŵ] − ν

(
k2 Im[ŵ] − d2 Im[ŵ]

dζ 2

)]
dζ, (6.6)

where the second term on the right-hand side denotes the viscous stress effect and is
much smaller than the first term. Equation (6.6) shows that a strong Re[ŵ] leads to a
large-magnitude Im[p̂] (figure 10f ).

As a summary of this subsection, we have discovered that the dominant components
of fast wave-induced velocity and pressure are directly driven by the wave kinematics
at the water surface and can be described by the curvilinear models. Based on the split
curvilinear equations, we have illustrated that the vertical wave motion (ws) initiates a
strong vertical air velocity at the wave surface, which gradually decays away from the
wave surface and causes a strong Re[ŵ] in the airflow. The Re[ŵ] further results in Im[û]
and Im[p̂] in the air through the conservation of mass and momentum, respectively.

6.2. Mechanisms for weak components of wave-induced airflow
In § 6.1, we have explained the occurrence of Re[ŵ], Im[û] and Im[p̂], i.e. the dominant
components of the fast wave-induced airflow, using the curvilinear equations of the wave
boundary layer. In this subsection, we further investigate the physical processes producing
the weak components Im[ŵ], Re[û] and Re[p̂]. To show the flow dynamics governing these
weak components of wave-induced airflow, figure 12 compares the profiles of Im[ŵ], Re[û]
and Re[p̂] between the LES results and the solutions of the curvilinear equation (5.5)
for the fast waves. In all four of the cases shown, the linear solutions agree well with
the LES results, suggesting that similar to their strong counterparts, Im[ŵ], Re[û] and
Re[p̂] are also controlled by linear dynamics. For w̃ and p̃, compared with Re[ŵ] and
Im[p̂] (figure 10b, f ), it is found that |Im[ŵ]| < 0.04|Re[ŵ]| and |Re[p̂]| < 0.04|Im[p̂]|
throughout the boundary layer (figure 12a,c). Therefore, the contributions from Im[ŵ] and
Re[p̂] to the magnitude, |ŵ| and |p̂| (figure 10a,e) and the phase difference, φw̃η̃ and φp̃η̃,
are negligible. However, for ũ, Re[û] (figure 12b) is comparable to Im[û] (figure 10d) near
the surface, ζ/λ � 0.01 and, therefore, φũη̃ (figure 9) varies significantly across this thin
region. Away from the wave surface, ζ/λ � 0.01, Re[û] becomes negligible compared
with Im[û] and correspondingly, φũη̃ ≈ −π there (figure 9).

The quasilinear behaviour of the weak components of fast wave-induced airflow already
shown suggests that we can use the split curvilinear equations (5.16) and (5.19) developed
in § 5.3 to explain the underlying mechanism. As discussed previously, in (5.16), a strong
Re[ŵk] directly results from the airflow perturbation induced by the vertical wave motion
and it almost fully determines Re[ŵ], with near-zero contribution from Re[ŵ f ] in (5.19).
However, this is not the case for Im[ŵk]. To illustrate this point, we first examine the
boundary conditions for Im[ŵk], which can be derived from (5.17a,b) and (5.18a,b), and
read

Im[ŵk]
∣∣∣
ζ=0

= 0,
d Im[ŵk]

dζ

∣∣∣∣
ζ=0

= 0. (6.7a,b)

Equations (6.7a,b) show that in contrast to Re[ŵk], Im[ŵk] has homogeneous boundary
conditions, indicating that Im[ŵk] is not directly driven by the wave kinematics.
Meanwhile, an examination of the expression of (5.16) shows that Im[ŵk] can be forced by
Re[ŵk] and thereby occurs in the boundary layer. This can be seen by taking the imaginary
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Figure 12. Comparison of the profiles of (a) Im[ŵ], (b) Re[û] and (c) Re[p̂] between the LES results and
the solutions of the curvilinear equation (5.5) for the fast waves. Lines are the LES results: solid black
line, (c/U0, c/uτ ) = (0.8, 33.61); solid cyan line, (c/U0, c/uτ ) = (1.0, 44.64); solid blue line, (c/U0, c/uτ ) =
(1.2, 54.30); solid green line, (c/U0, c/uτ ) = (1.4, 66.67). Symbols are the linear solutions: open black box,
(c/U0, c/uτ ) = (0.8, 33.61); open cyan box, (c/U0, c/uτ ) = (1.0, 44.64); open blue box, (c/U0, c/uτ ) =
(1.2, 54.30); open green box, (c/U0, c/uτ ) = (1.4, 66.67). Results for ak = 0.15.

part of (5.16) with respect to its advection term as

ν

k

[
d4

dζ 4 − 2k2 d2

dζ 2 + k4
]

Re[ŵk] +
[
(〈u〉 − c)

(
d2

dζ 2 − k2
)

− d2〈u〉
dζ 2

]
Im[ŵk] = 0.

(6.8)
Equation (6.8) shows that it is Re[ŵk] that appears in the viscous term and Im[ŵk]
in the advection term for the two components of ŵk to be coupled. In other words,
because of the wave-induced viscous stress, a strong Re[ŵk] can lead to the occurrence
of Im[ŵk]. In (5.19) for ŵ f , it is shown that similar to Re[ŵ f ], Im[ŵ f ] is also driven by the
right-hand-side forcing induced by the wave elevation.

Figure 13 shows the comparison for Im[ŵk] solved from (5.16), Im[ŵ f ] solved from
(5.19), Im[ŵk] + Im[ŵ f ] and the Im[ŵ] result from the LES for ak = 0.1 and 0.15. As
shown, for both wave steepnesses, Im[ŵk] has a magnitude larger than Im[ŵ f ]. However,
the contribution from Im[ŵ f ] to Im[ŵ] is still appreciable, especially for the higher wave
steepness (figure 13b). These results suggest that the small-magnitude Im[ŵ] (figure 13a)
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Figure 13. Comparison of Im[ŵk] solved from (5.16), Im[ŵ f ] solved from (5.19), Im[ŵk] + Im[ŵ f ] and the
Im[ŵ] result from LES for (a) case (c/U0, c/uτ , ak) = (1.2, 50.42, 0.10) and (b) case (c/U0, c/uτ , ak) =
(1.2, 54.30, 0.15). Symbols are blue circle, Im[ŵk]; cyan diamond, Im[ŵ f ]; open green box, Im[ŵk] + Im[ŵ f ];
and solid black line, LES result of Im[ŵ].

is mainly generated through the forcing by Re[ŵ], but also with an appreciable contribution
from the forcing by the wave elevation.

Similar to the dominant components discussed in § 6.1, a weak Im[ŵ] can generate Re[û]
and Re[p̂] through the conservation of mass and momentum of the wave-induced airflow,
respectively, as

Re[û] = −1
k

d Im[ŵ]
dζ

, (6.9)

Re[p̂] = −
∫ ∞

ζ

[
(〈u〉 − c)k Im[ŵ] + ν

(
k2 Re[ŵ] − d2 Re[ŵ]

dζ 2

)]
dζ, (6.10)

which can be derived from the continuity equation (5.4) and the vertical momentum
equation (5.3), respectively. Equations (6.9) and (6.10) explain the results of figures 12(b)
and 12(c), respectively.

As a summary of this subsection, we have shown that the weak components of fast
wave-induced airflow can also be described by the curvilinear models. Unlike their strong
counterparts, the weak components have homogeneous boundary conditions and are not
directly affected by the wave kinematics at the water surface. With the split curvilinear
equations, it is discovered that the weak components of wave-induced airflow are forced
by their strong counterparts through wave-induced viscous stress and the forcing induced
by the wave elevation.

6.3. Mechanisms for wave-coherent stress and form drag
The proceeding subsections explain the occurrence of w̃, ũ and p̃ in the airflow using the
linear-analysis framework. In this subsection, we analyse the contributions from the strong
and weak components of the fast wave-induced airflow to the wave-coherent stress −ũw̃
in the wind and the form drag on the wave surface. The −ũw̃ can be decomposed into a
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Figure 14. Comparison of (a) −〈ũw̃〉 and (b) |̂̃uw̃| between the LES results and the solutions of the curvilinear
equation (5.5) for the fast waves. Lines are the LES results: solid black line, (c/U0, c/uτ ) = (0.8, 33.61);
solid cyan line, (c/U0, c/uτ ) = (1.0, 44.64); solid blue line, (c/U0, c/uτ ) = (1.2, 54.30); solid green line,
(c/U0, c/uτ ) = (1.4, 66.67). Symbols are the linear solutions: open black box, (c/U0, c/uτ ) = (0.8, 33.61);
open cyan box, (c/U0, c/uτ ) = (1.0, 44.64); open blue box, (c/U0, c/uτ ) = (1.2, 54.30); open green box,
(c/U0, c/uτ ) = (1.4, 66.67). Results for ak = 0.15.

mean component and a fluctuation component as

− ũw̃ = −〈ũw̃〉 − ˜̃uw̃ = −〈ũw̃〉 − ̂̃uw̃ei2kξ − ̂̃uw̃
∗
e−i2kξ . (6.11)

Figure 14 compares the profiles of −〈ũw̃〉 and |̂̃uw̃| between the solutions of the viscous
curvilinear equation (5.5) and the LES results, with good agreement obtained. Figure 14(a)
shows that −〈ũw̃〉 is significant only near the surface in the region where Re[û] (figure 12b)
is appreciable, namely, ζ/λ � 0.01, because −〈ũw̃〉 = −2(Re[û] Re[ŵ] + Im[û] Im[ŵ]),
in which −2 Re[û] Re[ŵ] plays a dominant role because |Re[ŵ]| � |Im[ŵ]|. This result
suggests that the weak component of ũ, i.e. Re[û], is crucial for generating a mean −ũw̃
in the wind, i.e. −〈ũw̃〉. Figure 14(b) shows that compared with −〈ũw̃〉, |̂̃uw̃| is significant
up to a much higher altitude, ζ/λ � 0.2, because |̂̃uw̃| is dominated by −Im[û] Re[ŵ]
(because |Re[ŵ]| � |Im[ŵ]|) and both Im[û] and Re[ŵ] are significant there. Based on
this result, we see that the air velocity perturbations directly induced by the vertical wave
motion, namely, Im[û] and Re[ŵ], cause a strong wave-induced fluctuation of −ũw̃, i.e.
−˜̃uw̃.

The wave-induced velocity results in −ũw̃ affecting the momentum transfer within the
airflow, and the wave-induced pressure can lead to a form drag on the wave surface, which
is the dominant mechanism for the momentum exchange between wind and waves (Belcher
& Hunt 1998). The form drag Fp is defined as

Fp = 1
ρau2

τ

∫ λ
0

p̃|ζ=0η̃x dx = ak Re[p̂]
ρau2

τ

∣∣∣∣
ζ=0

. (6.12)

Equation (6.12) shows that Fp can only be induced by the weak component of
wave-induced pressure, i.e. Re[p̂]. With Fp on the surface, the resultant wave growth-rate
parameter β is (e.g. Donelan 1999; Li, Xu & Taylor 2000; Yang et al. 2013)

β = 2Fp

(ak)2
, (6.13)
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Figure 15. Variation of wave growth rate parameter β (6.13) as a function of wave age c/uτ . Data shown are the
solutions of (5.5) for ak = 0.10 (line blue circle) and ak = 0.15 (line green diamond); the LES results for ak =
0.10 (line black box) and ak = 0.15 (line black triangle); the results of simulations using Reynolds-averaged
Navier–Stokes (RANS) equations by Mastenbroek (1996) (dashed line black box); and the results of Cohen
(1997) (dashed line black circle). As a reference, the values of wave growth rate at low wave age collated by
Plant (1982) are also included (open black box).

where a positive β corresponds to the wave growth, whereas a negative β causes the wave
to decay.

Figure 15 shows the variation of the wave growth rate parameter β as a function of
wave age c/uτ for all of the fast wave cases in table 1. As shown, the theoretical study of
wind over fast wave by Cohen (1997) and the numerical study using Reynolds-averaged
Navier–Stokes (RANS) equations by Mastenbroek (1996) investigated the range of c/uτ
up to about 35. The present study has significantly extended the upper limit of wave age
investigated in the literature to c/uτ ≈ 67. The comparison between the LES results and
the solutions of the curvilinear equation (5.5) shows good agreement with each other,
suggesting that the physical process causing a wind–wave momentum flux at high wave
age, c/uτ � 33, is governed by linear dynamics and can be described by the curvilinear
equations of wave boundary layer. This result is consistent with the recent finding of
Åkervik & Vartdal (2019) that as c/uτ approaches 36, the effects of wave-induced viscous
stress on the form drag become increasingly more significant, whereas the effects of
wave-induced turbulent stress decrease. Åkervik & Vartdal (2019) also pointed out that
the critical c/uτ , where the effects of nonlinear forcing on form drag vanish, depend
on the Reynolds number. Below the critical c/uτ , the form drag is mainly induced
by the wave-induced turbulent stress, which has been examined by Cohen (1997) and
Mastenbroek (1996). As a reference, the values of wave growth rate at low wave age
collated by Plant (1982) are also included in figure 15. It is shown that the magnitude
of wave attenuation rate for c/uτ � 45 is comparable to that of the wave growth rate
for c/uτ < 20, indicating that the strength of wind–wave momentum flux for fast waves
can be as large as that for slow waves. This result is reasonable, because for fast waves,
although Re[p̂] has a magnitude much smaller than Im[p̂], it is not small compared with
ρau2

τ (figure 12c), which is the mean total stress in the wind field. Therefore, the form drag
and wave attenuation rate induced by Re[p̂] are not small for fast waves.
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Here, we note that the wave growth rate β is more challenging to predict than
the wave-induced velocity. Equations (6.12) and (6.13) show that β depends on the
weak wave-induced pressure at the wave surface, Re[p̂](ζ = 0), which is computed
through (6.10). Equation (6.10) reveals two processes generating Re[p̂](ζ = 0), namely,
the integration of the advection by Im[ŵ] in the boundary layer and the integration of
the viscous forcing by Re[ŵ]. In (6.10), Re[ŵ] affects Re[p̂](ζ = 0) mainly through its
second-order vertical derivative, i.e. d2 Re[ŵ]/dζ 2, near the wave surface. Although the
curvilinear model can predict Re[ŵ] very well, d2 Re[ŵ]/dζ 2 is much more challenging
to determine. For higher wave ages, Re[ŵ] becomes increasingly stronger than Im[ŵ]
(figures 10 and 12) and, thus, can affect Re[p̂](ζ = 0) more significantly. Therefore, a
slight deviation in d2 Re[ŵ]/dζ 2 can cause more obvious discrepancy in Re[p̂](ζ = 0)
and thereby β, for higher wave ages (figure 15). Nevertheless, in the present study, the
error of β in the curvilinear model for the highest wave age is still below 10 %.

6.4. Effects of wave age on the behaviour of wave-induced airflow
In this subsection, we examine the effects of wave age on the behaviour of the
wave-induced air velocity. Figure 16 compares the dominant (Re[ŵ]) and the weak
(Im[ŵ]) components of the wave-induced vertical velocity for the intermediate wave case
(c/U0, c/uτ , ak) = (0.4, 15.38, 0.15) for the solution of (5.16), the solution of (5.19), the
summation of the solutions of (5.16) and (5.19) and the LES result. As shown, for Re[ŵ]
(figure 16a), the summation of the solutions of (5.16) and (5.19) agrees well with the
LES result, indicating that the dominant component of the intermediate wave-induced
airflow exhibits a quasilinear behaviour and can be described by the curvilinear model.
Meanwhile, similar to the fast wave (figure 11), Re[ŵ] for the intermediate wave also
mainly results from the effects of wave kinematics. By contrast, for Im[ŵ] (figure 16b),
the summation of the solutions of (5.16) and (5.19) deviates significantly from the LES
result, indicating that the weak component of the intermediate wave-induced airflow is
not entirely governed by the linear dynamics. For the slow wave case (c/U0, c/uτ , ak) =
(0.1, 3.46, 0.15), both Re[ŵ] and Im[ŵ] cannot be described by the curvilinear model
(results are omitted here for space considerations), indicating that the occurrence of the
slow wave-induced airflow is a nonlinear process.

To conclude § 6, we have demonstrated that the fast wave-induced airflow is governed
by quasilinear dynamics and can be described by the curvilinear model. Based on the
split curvilinear equations, we have discovered that the dominant components of the
wave-induced airflow, namely, Re[ŵ], Im[û] and Im[p̂], are produced by the airflow
perturbations directly induced by the vertical component of wave orbital velocity. On the
other hand, the weak components, namely, Im[ŵ], Re[û] and Re[p̂], are forced by their
strong counterparts and by the forcing induced by the wave elevation, and they cause a
wave-induced momentum flux in the airflow and a wind–wave momentum exchange at
the wave surface. In short, the linear-analysis framework developed in the present study
works well in explaining the fast wave-induced airflow and the underlying mechanisms.
As wave age decreases, our results show that the wave-induced airflow deviates from the
quasilinear behaviour gradually, to become controlled by linear dynamics only for the
strong components at intermediate wave age, and totally governed by nonlinear dynamics
at slow wave age.
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Figure 16. Comparison of the dominant (Re[ŵ]) and the weak (Im[ŵ]) components of the wave-induced
vertical velocity between the split curvilinear equations and the LES result for the intermediate wave case
(c/U0, c/uτ , ak) = (0.4, 15.38, 0.15). Symbols are: blue circle, the solution of (5.16); cyan diamond, the
solution of (5.19); open green box, the summation of the solutions of (5.16) and (5.19); and solid black line, the
LES result.

7. Conclusions and discussion

In this study, we have performed a numerical and theoretical study on the turbulent
wind over fast-propagating water waves with wave age higher than currently exists in the
literature. We have demonstrated that when the wave celerity is comparable with, or larger
than the wind speed, the effects of wave-induced turbulent stress on the wave-induced
airflow become negligibly small. Therefore, the interaction between the wind and the fast
waves can be described by the curvilinear equations of wave boundary layer. Here, we
summarise our main findings of the mechanisms underlying the fast wave-induced airflow.

By performing LES of turbulent wind over fast waves, we have observed that the
wave-induced streamwise velocity (ũ), vertical velocity (w̃) and pressure (p̃) in the wind
are related to the air motion induced by the vertical wave movement. It is further deduced
that for fast waves, w̃ = O(akc) and p̃ = O(akρacU0) in the wave surface layer. On the
other hand, the LES results have shown that the wave-induced turbulent stress has a
magnitude of O(u2

τ ). Based on these results, we have performed a scaling analysis on the
wave-induced momentum, which suggests that for fast waves, the wave-induced airflow is
primarily controlled by linear forcing.

To confirm the negligible effects of the wave-induced turbulent stress, we have compared
the wave-induced airflow in the LES with the solution of the curvilinear equation of
wave boundary layer based on non-orthogonal curvilinear coordinates developed in our
previous study of wind-opposing waves (Cao et al. 2020), and good agreement between
them has been obtained. This result demonstrates the quasilinear nature of the interaction
between turbulent wind and fast waves. Moreover, we have derived a new curvilinear
model based on orthogonal curvilinear coordinates, and its solution agrees with that of the
non-orthogonal curvilinear equation. The consistency of the solutions of the curvilinear
models with different coordinate systems and their agreement with the LES result confirm
that the interaction between wind and fast waves can be adequately described by the
curvilinear models.

To explain the fundamental dynamics of the fast wave-induced airflow, we split the
curvilinear model into two equations corresponding to the effect of wave kinematics and
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that forced by wave elevation, respectively. Based on the split equations, first we have
analysed the occurrence of the dominant components of the wave-induced airflow, namely,
Re[ŵ], Im[û] and Im[p̂], which determine the overall magnitude and structure of w̃, ũ and
p̃, respectively. It is discovered that Re[ŵ], Im[û] and Im[p̂] are produced by the airflow
perturbations directly induced by the vertical component of wave orbital velocity, and they
cause the nearly antisymmetric spatial distribution of w̃ and the nearly symmetric structure
of ũ and p̃ observed in the LES. We have also elucidated the mechanisms for the weak
components of the wave-induced airflow, namely, Im[ŵ], Re[û] and Re[p̂]. Compared
with their strong counterparts, Im[ŵ], Re[û] and Re[p̂] do not affect the magnitude and
structure of w̃, ũ and p̃ noticeably, but they play a central role in generating the momentum
flux in the airflow and the wind–wave momentum exchange through the form drag at the
wave surface. We have discovered that Im[ŵ], Re[û] and Re[p̂] are forced by their strong
counterparts through the wave-induced viscous stress and by the forcing induced by the
wave elevation, and therefore they can occur in the wave boundary layer. We have further
illustrated that Re[û] and Re[p̂] result in a mean momentum flux 〈−ũw̃〉 in the airflow and
the form drag on the wave surface, respectively.

Finally, we compare the fast wave-induced airflow investigated in this paper with the
opposing wave-induced airflow studied in Cao et al. (2020). First, for fast waves, we
have discovered that both the strong and weak components of the wave-induced airflow
can be accurately described by the curvilinear models. However, for opposing waves,
only the strong components exhibit a quasilinear behaviour but the weak components
are significantly affected by the wave-induced turbulent stress, suggesting that the
nonlinear forcing markedly affects the momentum exchange between wind and opposing
waves. Second, although for both fast and opposing waves, the strong components of
the wave-induced airflow are related to the wave kinematics, they exhibit significantly
different behaviours. Specifically, away from the wave surface, for fast waves, the wave
kinematics-induced airflow decays monotonically, while for opposing waves, it is first
amplified by the positive mean velocity shear and then decays.
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Appendix A. Curvilinear model using orthogonal coordinates

In this appendix, we derive the viscous curvilinear model for the fast wave-induced airflow
based on the conformal mapping for the coordinates, we write

ξ = x − iae−kzeikx, ψ = y, ζ = z − ae−kzeikx. (A1a–c)

The phase-averaged LES equations in the wave-following frame are (e.g. Sullivan et al.
2000)

(Ūj − c)
∂ ūk

∂ξj
+ 1
ρa

∂

∂ξj

(
p̄
J
∂ξj

xk

)
= ν

(
∂2ūk

∂ξ2 + ∂2ūk

∂ζ 2

)
+ Turb., (A2)

∂Ūk

∂ξk
= 0, (A3)
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where ‘Turb.’ denotes the resolved and SGS turbulent stresses, ‘J’ is the determinant of
the transformation Jacobian matrix and Uk = 1/J · uj · ∂ξk/∂ξj is the contravariant flux
velocity.

By linearising (A2) and (A3) about the mean wind profile, we can extract the equations
for the wave-coherent air motion as

(〈U〉 − c)
∂ ũ
∂ξj

+ W̃
d〈u〉
dζ

+ 1
ρa

∂ p̃
∂ξj

〈
1
J
∂ξj

∂x

〉
= ν

(
∂2ũ
∂ξ2 + ∂2ũ

∂ζ 2

)
+ n.l.f ., (A4)

(〈U〉 − c)
∂w̃
∂ξj

+ W̃
d〈w〉
dζ

+ 1
ρa

∂ p̃
∂ξj

〈
1
J
∂ξj

∂z

〉
= ν

(
∂2w̃
∂ξ2 + ∂2w̃

∂ζ 2

)
+ n.l.f ., (A5)

∂Ũ
∂ξ

+ ∂W̃
∂ζ

= 0, (A6)

where ‘n.l.f .’ denotes the neglected nonlinear forcing, i.e. the wave-induced turbulent
stress and the wave-induced fluctuations of the correlations between the components of
the wave-induced velocity and ∂(1/J · ∂ξj/∂xk)/∂ξj = 0 has been applied.

To simplify (A4)–(A6), we can first express the (ξ , ψ) plane averaged contravariant flux
velocity 〈U〉 and 〈W〉 using the Cartesian quantities as

〈U〉 = 〈u〉 + O((ak)2), 〈W〉 = 〈w〉 + O((ak)2), (A7a,b)

where ‘O((ak)2)’ denotes the neglected second- and higher-order terms.
Then, we can express the wave-induced contravariant flux velocity Ũ and W̃ using the

Cartesian quantities as

Ũ = ũ
〈

1
J
∂ξ

∂x

〉
+ 〈u〉 1̃

J
∂ξ

∂x
+ w̃

〈
1
J
∂ξ

∂z

〉
+ 〈w〉 1̃

J
∂ξ

∂z
, (A8)

W̃ = ũ
〈

1
J
∂ζ

∂x

〉
+ 〈u〉 1̃

J
∂ζ

∂x
+ w̃

〈
1
J
∂ζ

∂z

〉
+ 〈w〉 1̃

J
∂ζ

∂z
. (A9)

With (A8) and (A9), the continuity equation (A6) can be linearised as

∂ ũ
∂ξ

+ ∂w̃
∂ζ

= d〈u〉
dζ

e−kζ η̃ξ + O((ak)2), (A10)

where ∂(1/J · ∂ξj/∂xk)/∂ξj = 0 and η̃ = aeikx have been applied.
The last step in simplifying (A4)–(A6) is to express the terms associated with the

wave-induced pressure p̃ as

∂ p̃
∂ξj

〈
1
J
∂ξj

∂x

〉
= ∂ p̃
∂ξ

+ O((ak)2),
∂ p̃
∂ξj

〈
1
J
∂ξj

∂z

〉
= ∂ p̃
∂ζ

+ O((ak)2). (A11a,b)

With (A7)–(A11), the equations for wave-coherent air motion (A4)–(A6) become

(〈u〉 − c)
∂ ũ
∂ξ

+ (w̃ − (〈u〉 − c) e−kζ η̃ξ )
d〈u〉
dζ

+ 1
ρa

∂ p̃
∂ξ

= ν

(
∂2ũ
∂ξ2 + ∂2ũ

∂ζ 2

)
+ O((ak)2)+ n.l.f ., (A12)
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(〈u〉 − c)
∂w̃
∂ξ

+ 1
ρa

∂ p̃
∂ζ

= ν

(
∂2w̃
∂ξ2 + ∂2w̃

∂ζ 2

)
+ O((ak)2)+ n.l.f ., (A13)

∂ ũ
∂ξ

+ ∂w̃
∂ζ

= d〈u〉
dζ

e−kζ η̃ξ + O((ak)2). (A14)

Using (A12)–(A14) and eliminating ũ and p̃, we can obtain the equation for ŵ as

− ν

ik

[
d4

dζ 4 − 2k2 d2

dζ 2 + k4
]

ŵ +
[
(〈u〉 − c)

(
d2

dζ 2 − k2
)

− d2〈u〉
dζ 2

]
ŵ

= −νη̂
[

d2

dζ 2 − k2
] (

d
dζ

(
d〈u〉
dζ

e−kζ
))

+ O((ak)2)+ n.l.f . (A15)

Based on (2.4), (2.6) and (A14), it can be shown that (A15) can be solved with the same
boundary conditions for (5.5), namely, the boundary conditions (5.6a,b) and (5.7a,b).

A comparison between (5.5) and (A15) provides valuable insights into the effects of the
curvilinear coordinate systems on the wave-induced airflow modelling. First, (A15) has
the same left-hand-side terms as (5.5) and both of them have a non-zero right-hand-side
term. More importantly, the dominant terms on the right-hand side of (A15) and (5.5) are
consistent with each other. Specifically, the right-hand side of (A15) is dominated by the
term related to the fourth-order vertical derivative of 〈u〉, namely, −νη̂e−kζ d4〈u〉/d4ζ ,
which is the same as the dominant term of the right-hand side of (5.5) with g =
− exp(−kζ ). This result suggests that the solution of (A15) using the orthogonal mapping
should be consistent with the solution of (5.5) using the non-orthogonal transformation
with a mapping function g = − exp(−kζ ). Second, both (A15) and (5.5) are driven by the
same boundary conditions, indicating that the wave kinematics impose the same effects on
the wave-induced airflow between these two coordinate systems. More detailed analysis of
the effects of coordinate systems is presented in § B.

Appendix B. Effects of curvilinear coordinate systems

In this appendix, we analyse the effects of curvilinear coordinate systems on the
prediction of the fast wave-induced airflow. Specifically, we investigate the effects of
the mapping function g of the non-orthogonal coordinates (5.1a–c) and the effects of
curvilinear coordinates orthogonality. Figure 17 shows the difference in ŵ, û and p̂ for
case (c/U0, c/uτ , ak) = (1.2, 54.30, 0.15) between the solutions of curvilinear equations
with various curvilinear coordinate systems. In the figure, the result of subtracting the
solution of the non-orthogonal model (5.5) with g = ζ/Lz − 1 from the solution of (5.5)
with g = − exp(−kζ ) and the result of subtracting the solution of (5.5) with g = ζ/Lz − 1
from the solution of the orthogonal model (A15) are plotted. The other cases have results
consistent with the case (c/U0, c/uτ , ak) = (1.2, 54.30, 0.15) and thus are omitted in the
presentation for space considerations. A comparison between figures 17(a, f ) and 10(b, f )
shows that for the strong components of w̃ and p̃, i.e. Re[ŵ] and Im[p̂], respectively, the
difference in the linear solutions between different curvilinear coordinate systems is much
less than 1 % of the magnitudes of Re[w̃] and Im[p̃]. Through comparison with figure 12,
figure 17(b,c,e) shows that the difference in the solutions of the weak components (Im[ŵ],
Re[û] and Re[p̂]) between the curvilinear equations using different coordinate systems is
approximately 1 % of their magnitudes. However, for Im[û], the difference in the solutions
of the three curvilinear equations can be as large as 10 % of the magnitude of Im[û] (see
the comparison between figures 17d and 10d), which is because the mapping function g
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Figure 17. Difference in ŵ, û and p̂ for case (c/U0, c/uτ , ak) = (1.2, 54.30, 0.15) between the solutions of
curvilinear equations with various curvilinear coordinate systems. The blue square (open blue box) is the result
of subtracting the solution of the non-orthogonal model (5.5) with g = ζ/Lz − 1 from the solution of (5.5)
with g = − exp(−kζ ); and the green square (open green box) is the result of subtracting the solution of the
non-orthogonal model (5.5) with g = ζ/Lz − 1 from the solution of the orthogonal model (A15).

affects Im[û] directly through the continuity equation as illustrated in (6.5). Overall, the
difference is insignificant.
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