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Quotients of A2 ∗ T2

Masaki Izumi, Scott Morrison, and David Penneys

Abstract. We study unitary quotients of the free product unitary pivotal category A2 ∗T2 . We show
that such quotients are parametrized by an integer n ≥ 1 and an 2n-th root of unity ω. We show that
for n = 1, 2, 3, there is exactly one quotient and ω = 1. For 4 ≤ n ≤ 10, we show that there are no
such quotients. Our methods also apply to quotients of T2 ∗ T2 , where we have a similar result.

_e essence of our method is a consistency check on jellyûsh relations. While we only treat the
speciûc cases of A2 ∗ T2 and T2 ∗ T2 , we anticipate that our technique can be extended to a general
method for proving the nonexistence of planar algebras with a speciûed principal graph.

During the preparation of this manuscript, we learnt of Liu’s independent result on composites
of A3 and A4 subfactor planar algebras (arxiv:1308.5691). In 1994, Bisch–Haagerup showed that the
principal graph of a composite of A3 and A4 must ût into a certain family, and Liu has classiûed all
such subfactor planar algebras. We explain the connection between the quotient categories and the
corresponding composite subfactor planar algebras. As a corollary of Liu’s result, there are no such
quotient categories for n ≥ 4.

_is is an abridged version of arxiv:1308.5723.

1 Introduction

In [BJ97], Bisch–Jones deûned the free product of two Temperley–Lieb subfactor pla-
nar algebras as a certain planar subalgebra of the tensor product subfactor planar al-
gebra. Given two subfactor planar algebras P● and Q●, their tensor product is given
by (P⊗ Q)n ,± = Pn ,± ⊗ Qn ,±, which is again a subfactor planar algebra, with tangles
acting diagonally on each tensor factor. In an unpublished article, Bisch–Jones de-
ûned the free product (P ∗Q)● to be the planar subalgebra of (P⊗Q)● consisting of
up-to-isotopy non-crossing diagrams. See also [BL10, Section 8].

_ere is an analogous deûnition for pivotal tensor categories. Given two such cate-
goriesC andD,we can deûne the tensor productC⊠D,which is again a pivotal tensor
category. _e objects are words of objects in C andD, and the morphism spaces are
just the tensor products of the morphism spaces for the subwords consisting of let-
ters from C and fromD. One can represent these diagrammatically as superimposed
diagrams from C andD, as if on two stacked panes of glass. _e free product C ∗D
is the pivotal subcategory of C⊠D containing onlymorphisms that can be presented
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1000 M. Izumi, S. Morrison, and D. Penneys

diagrammatically as non-crossing diagrams. For more details, see [IMP13]. Note that
if C andD are spherical (resp. unitary), then both C ⊠D and C ∗D are.

(a) a typical ⊗-product morphism (b) a typical free product morphism

One can think of the tensor product C⊠D as a quotient of the free product C∗D;
namely, there is a faithful, dominant functor C ∗D → C ⊠D (which is not full). We
can obtain C ⊠D from C ∗D by adding natural symmetric isomorphisms cd → dc
for all c ∈ C and d ∈ D. Hence, we deûne a quotient of C ∗D to be a pivotal tensor
category E together with a faithful dominant functor F ∶ C ∗D→ E.

_e easiest example is the casewhere C =D = A2, the unitary quotient of Temper-
ley–Lieb where the loop parameter is δ = 1. In this case, A2 ≅ Vec(Z/2Z), the free
product A2 ∗ A2 ≅ Vec(Z/2Z ∗ Z/2Z), and A2 ⊠ A2 ≅ Vec(Z/2Z × Z/2Z). Since
Z/2Z ∗Z/2Z ≅ D∞, the inûnite dihedral group, and all (nontrivial) quotients of D∞
are of the form D2n for some n ≥ 2, we see all quotients of A2 ∗ A2 are of the form
Vec(D2n ,ω) for some ω ∈ H3(D2n ,C×), i.e., they are classiûed by an n ≥ 2 and some
cohomological data. In subfactor theory, this corresponds to the A(1)2n−1 subfactors
[Pop94], which are closely related to the D(1)n+2 subfactors [IK93]. See [IMP13] for
more details.

In this article,we study quotients of A2 ∗T2,where T2 =
1
2A4 is the even half of the

unitary quotient of Temperley–Lieb where δ = τ = 1
2 (1 +

√
5). Sometimes T2 is also

called the “golden” or “Fibonacci” category. Now A2 ∗T2 is no longer pointed, but we
still ûnd that there is at most one quotient for each n ∈ N and a 2n-th root of unity ω.
_is root of unity is analogous to the cohomological data in the previous case.

We show that such a quotient has a unitary generator U with 4n strings that is
a rotational eigenvector with eigenvalue ωU , a 2n-th root of unity. We then derive
jellyûsh relations for our generator, and these relations are suõcient to evaluate all
closed diagrams, which determines the quotient, which we name ATn ,ωU , provided
it exists. Our main theorem is as follows.

_eorem 1.1 For n ∈ {1, 2, 3}, ATn ,ωU exists if and only if ωU = 1. For 4 ≤ n ≤ 10,
ATn ,ωU does not exist.

We prove this theorem using a variation of Bigelow’s jellyûsh algorithm [Big10,
BMPS12]. We take the diagram below and apply jellyûsh relations in two diòerent

https://doi.org/10.4153/CJM-2015-017-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-017-4


Quotients of A2 ∗ T2 1001

ways.

U⋆

=

U⋆

U⋆ U∗ ⋆

We either pull U through a bundle of strings, or ûrst create a cancelling pair UU∗ on
those strings, and then pull U between them. (In fact, the purple dotted string here is
a bundle of 2n − 1 strings.) When n ∈ {1, 2, 3}, this calculation shows ωU = 1. When
4 ≤ n ≤ 10, we obtain diòerent answers, so there are no such quotients of A2 ∗ T2.

_ese quotients of A2 ∗ T2 are related to quotients of Bisch–Jones’ Fuss–Catalan
subfactor planar algebra A3 ∗ A4 [BJ97]. Starting with a composed inclusion of sub-
factors N ⊂ P ⊂ M where N ⊂ P is A4 and P ⊂ M is A3, the planar algebra P● of
N ⊂ M contains the A3 ∗A4 Fuss–Catalan subfactor planar algebraFC●. We call such
a P● a composite A3 − A4 subfactor planar algebra. In this case, the even half 1

2P+ of
N − N bimodules is a quotient of A2 ∗ T2, so it must be of the form ATn ,ωU . _ese
parameters n,ωU also appear naturally from P●. In 1994, Bisch–Haagerup found the
list of possible candidates for the principal graphs for composite A3 − A4 subfactor
planar algebras (see Section 3).

Simultaneously and independently, Liu proved the complete theorem for these
composite subfactor planar algebras. (In fact, the articles [Liu13, IMP13] were coordi-
nated to appear on the arXiv the same day.)

_eorem 1.2 ([Liu13]) For n ∈ {1, 2, 3,∞}, there is a unique A3 − A4 composite
subfactor planar algebra. For 4 ≤ n <∞, no such composite exists.

Since the even half 1
2P+ must be of the form ATn ,ωU , the weaker category result

implies a weaker subfactor result. In light of Liu’s stronger theorem, we would like
the stronger subfactor result to imply a stronger category result. Luckily, we have the
following theorem,whichwe prove in Section 3 by ûnding a Frobenius algebra object
in ATn ,ωU for every n and ωU .

_eorem 1.3 _ere is a bijective correspondence between quotients of A2 ∗ T2 and
composite A3 − A4 subfactor planar algebras.

Hence, using Liu’s theorem together with the above result yields the following
corollary.

Corollary 1.4 For 4 ≤ n <∞,ATn ,ωU does not exist.

_emethods of this article and Liu’s article [Liu13] also apply to quotients of T2 ∗

T2 with little alteration, where similar results are proved. Again, we obtain a partial
classiûcation for quotient categories, and Liu obtains a full classiûcation for composite
subfactor planar algebras. _ese two viewpoints are really the same by looking at even
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halves and Frobenius algebras, so we get a full classiûcation of composite categories
from Liu’s stronger classiûcation.

2 Quotients of A2 ∗ T2

We recall that the pivotal category A2 has two simple objects 1 and θ, which are
both symmetrically self-dual. _e category A2 has no generators as a pivotal cate-
gory (meaning all morphisms are tensor generated by identities and (co)evaluations)
and the relations

= 1,(A1)

= .(A2)

Here, we represent θ by a dashed blue strand. _e ûrst relation simply says dim θ = 1.
In aunitary category, the second relation follows from the ûrst by calculating thenorm
of the diòerence of the two terms.

Recall that T2, the even half of A4 (A4 is Temperley–Lieb with δ = τ = 1+√5
2 ), has

two simple objects 1, ρ where ρ⊗ ρ ≅ 1⊕ ρ. We denote ρ by a solid red strand, and we
write a trivalent vertex for the intertwiner ρ ⊗ ρ → ρ given by

= (
[2]

[3] − 1
)

1/2 2

2 2
,

where we just write 2 for f (2), and [2] = [3] = τ.
_e following proposition is straightforward from the deûnition of the trivalent

vertex.

Proposition 2.1 We have the following skein relations in T2:

= , = = τ,

=
∗
= , = 0,

=
1
τ

+ .(T1)

_e distinct simple objects of A2 ∗ T2 are all alternating words in ρ, θ. Hence
representatives of the isomorphism classes of simples are given by

1

,
ρ

,
θ

,
ρθ

,
θρ

,
ρθρ

,
θρθ

, . . .

2.1 Finding Generators

We now show all unitary quotients of A2 ∗ T2 are parametrized by an n ∈ N and an
n-th root of unity ω. Suppose we are working in some unitary quotient of A2 ∗ T2.
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_e following proposition,with the sameproof,was known toBisch andHaagerup,
and follows by a simple Frobenius reciprocity argument.

Proposition 2.2 Suppose that (ρθ)k ≇ (θρ)k for some k ≥ 1. _en all alternating
words in ρ, θ with length less than or equal to 2k + 2 give distinct simple objects, except
that (ρθ)k+1 may not be distinct from (θρ)k+1.

Proof We induct on k. If k = 1, then it is a straightforward calculation using Frobe-
nius reciprocity (which holds in the unitary quotient) to show that 1, ρ, θ, ρθ, θρ,
ρθρ, θρθ, ρθρθ are distinct and simple.
For example, once one shows ρθ and θρ are irreducible, we have

⟨ρθρθ , ρθρθ⟩ = ⟨ρθρ, ρθρ⟩ = ⟨ρθ , ρθ⟩ + ⟨ρθρ, ρθ⟩ = 1 + ⟨θρ, ρθ⟩ + ⟨θρ, θ⟩ = 1.

A similar calculation shows that θρθρ is simple, but note thatwe cannot yet compute
⟨ρθρθ , θρθρ⟩.

Suppose the result holds true for k > 1, and suppose we also know that (ρθ)k+1 /=

(θρ)k+1. _en we calculate:

⟨(ρθ)kρ, (ρθ)k⟩ = ⟨(θρ)k , (1⊕ ρ)(θρ)k−1θ⟩

= ⟨(θρ)k , (θρ)k−1θ⟩ + ⟨(θρ)k , (ρθ)k⟩ = 0

⟨(ρθ)kρ, (ρθ)kρ⟩ = ⟨(ρθ)k
(1⊕ ρ), (ρθ)k⟩

= ⟨(ρθ)k , (ρθ)k⟩ + ⟨(ρθ)kρ, (ρθ)k⟩ = 1

⟨(θρ)kθ , (θρ)k⟩ = ⟨(ρθ)k , (ρθ)k−1θ⟩ = 0

⟨(θρ)kθ , (θρ)kθ⟩ = ⟨(θρ)k , (θρ)k⟩ = 1

⟨(ρθ)kρ, (θρ)kθ⟩ = 0
(simples with diòerent dimensions)

⟨(ρθ)k+1 , (ρθ)kρ⟩ = ⟨(θρ)kθ , (1⊕ ρ)(θρ)k⟩

= ⟨(θρ)kθ , (θρ)k⟩ + ⟨(θρ)kθ , (ρθ)kρ⟩ = 0

and so forth. We see that (ρθ)kρ, (θρ)kθ , (ρθ)k+1 , (θρ)k+1 are all distinct and sim-
ple, except that possibly (ρθ)k+1 ≅ (θρ)k+1.

Corollary 2.3 Either there is an n ∈ N such that (ρθ)n ≅ (θρ)n , or there is no such
n. In either case, we know all the distinct simples generated by θ , ρ.

If there is an n ∈ N as in Corollary 2.3, there is a unitary isomorphism U ∶ (ρθ)n →

(θρ)n . Let ζ = (θρ)n−1θ. We denote ζ by a dotted purple strand, and we denote the
isomorphism U by

U⋆ .
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Since U∗U = 1ζρ and UU∗ = 1ρζ , we immediately obtain

(AT1) = U
⋆

U∗
⋆

and = U∗
⋆

U
⋆

.

We can normalize by a phase so that for some 2n-th root of unity ωU ,

(AT2) F−1
(U) =

⋅ ⋅ ⋅

⋅ ⋅ ⋅
}

{

ρ(θρ)n−1

ρ(θρ)n−1

U⋆ = U∗⋆ = ω−1
U U
⋆

= ω−1
U F(U).

Remark 2.4 Not assuming unitarity, there are exactly 2 ways to put a ∗-structure
on the quotient. However, we only consider the unitary case.

2.2 Jellyfish Relations

We now derive jellyûsh relations for our generators U and U∗. Recall that a diagram
is in jellyûsh form if all the appearances of U or U∗ are at the top of the diagram. A
jellyûsh relation is a relationwhich rewrites a diagramwith a strand above a generator
U or U∗ as a linear combination of diagrams in jellyûsh form. _e existence of a
complete set of jellyûsh relations implies that we can rewrite an arbitrary diagram in
jellyûsh form.

Lemma 2.5

= σU U∗
⋆

U∗
⋆

U
⋆

,

where σU is a choice of square root of ωU .

Remark 2.6 Note that switching the sign of U switches the sign of σU .

Proof Recall that ζ and ζρ are distinct simple objects by Proposition 2.2, so

⟨ζρ, ζρ2
⟩ = ⟨ζρ, ζ⟩ + ⟨ζρ, ζρ⟩ = 1.

_us, both diagrams live in the same 1-dimensional morphism space. Since the dia-
grams have the same nonzero norm τ dim(ζ) (using equation (AT1)), there is a uni-
modular scalar λ ∈ T such that the diagramon the le� is equal to λ times the diagram
on the right. It remains to determine the scalar λ.

We can write in two diòerent ways:

= U
⋆

U∗
⋆

=
1
τ U

⋆

U∗
⋆

+ U
⋆

U∗
⋆

,
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= U∗

⋆

U
⋆

= U∗
⋆

U
⋆

=
1
τ

U∗
⋆

U
⋆

+ U∗
⋆

U
⋆

.

On the right-hand sides, the ûrst terms are equal, so the second terms must be equal
as well. We have

U∗
⋆

U
⋆

= λ2 U
⋆

U∗
⋆

U∗
⋆

U
⋆

U∗
⋆

U∗
⋆

U
⋆

U∗
⋆

= λ2ω−1
U U

⋆

U∗
⋆

,

so λ2 = ωU .

_eorem 2.7 _e following jellyûsh relations hold for U :

(i) U⋆
=

U∗⋆ ;

(ii) U⋆
=

ωU

τ
U∗⋆

+ σ−1
U

U
⋆

U∗
⋆

.

Proof (i) follows from relations (A2) and (AT2). In more detail, the rightmost ζ
strand below the U on the le�-hand side of (i) is a bundle of strands (θρ)n−1θ, so we
can use Relation (A2) to reconnect the θ strands. Now using relation (AT2) gives the
right-hand side.

To prove (ii), we ûrst note that the intermediate result

U
⋆

= ωU
U∗

⋆

= σ−1
U

U
⋆

U∗
⋆

follows from Lemma 2.5 by multiplying on the le� by U and on the right by U∗. (ii)
now follows from this intermediate result by the relations in Proposition 2.1.

Remark 2.8 We get jellyûsh relations for U∗ by taking adjoints of the above rela-
tions.
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_eorem 2.9 Relations (A1)–(A2), the relations in Proposition 2.1, relations (AT1)–
(AT2), and the relations in _eorem 2.7 are suõcient to evaluate all closed diagrams.

Proof Wemay assume our diagram is in jellyûsh form by_eorem 2.7 and Remark
2.8.

Suppose we have such a diagram D. We show that we can evaluate D by induction
on the number of generators U ,U∗ in the diagram.

k = 0: If there are no U ’s or U∗’s, we can evaluate D using Relation (A1) and Proposi-
tion 2.1.

k = 1: If there is only one U or U∗ in D, all θ strings connect back to the generator,
so somewhere there is an innermost θ cap. Inside this cap is a red diagram with only
one boundary point, which must be zero by Proposition 2.1.

k ≥ 2: Suppose there are k ≥ 2 generators U or U∗, and suppose that we can evaluate
all closed diagrams D with k − 1 generators.

If there are no trivalent vertices, the usual argument in the jellyûsh algorithm ap-
plies [BMPS12], so theremust be two generators connected by at least n strings along
the boundary. We can then use relation (AT1) to obtain a diagram with k − 2 genera-
tors. We are ûnished by the induction hypothesis.

Suppose now that there are trivalent vertices. Using relation (T1) in Proposition
2.1, which does not increase the number of generators, we can assume that no two
trivalent vertices ofD are connected. Hence each string connected to a trivalent vertex
connects to a generator. If there is a vertex connected by two ρ strings to a generator
U ′, then between those ρ strings there is an innermost θ cap. _e argument from the
k = 1 case shows that D = 0.

Now we can assume each vertex attaches to 3 distinct generators. Isotope D so
that all trivalent vertices have strings emanating from the top, and these strings travel
upward and attach to U ’s or U∗’s with no critical points (this amounts to picking a
linear ordering of the generators rather than the cyclic ordering aòorded by jellyûsh
form)

U1

⋆

⋅ ⋅ ⋅ U2

⋆

⋅ ⋅ ⋅ U3

⋆}

j generators

}

ℓ generators

.

(Here,U1,U2, andU3 are eitherU orU∗.) Hence each trivalent vertex bounds two in-
ner regions in the diagram. Pick an innermost trivalent vertex v, i.e., a trivalent vertex
for which these two inner regions contain no other trivalent vertices. Let U1 ,U2 ,U3
be the distinct generators attached to v as in the diagram above. Let j be the number of
distinct generators between U1 andU2, and let ℓ be the number of distinct generators
between U2 and U3.

If j and ℓ are both zero, thenU2 is connected to eitherU1 orU3 by at least n strings,
and we can use relation (AT1) to reduce the number of generators by 2. If j > 0,
looking at the region above our innermost trivalent vertex v and between U1 and U2,
we see have a polygonal region whose vertices are the copies of U or U∗, with some
number of diagonals. _ere are two strings connecting v to U1 and U2, we consider

https://doi.org/10.4153/CJM-2015-017-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-017-4


Quotients of A2 ∗ T2 1007

these as a single distinguished edge of the polygon. Now, the usual jellyûsh argument
proceeds by showing that every polygon with diagonals has a vertex with no incident
diagonals. Ifwewere assured only one such vertex, itmay be the case that this vertex is
U1 or U2, andwewould get stuck at this point. Luckily, we have the following lemma.

Lemma 2.10 Every polygon with four or more sides, with certain diagonals drawn,
has a pair of nonadjacent vertices with no incident diagonals.

Hence, at least one of the j generators strictly between U1 and U2 is connected
to one its neighbors by at least n strands. Hence, we can reduce the diagram using
relation (AT1), leaving it in jellyûsh form, and we are ûnished by the induction hy-
pothesis.

Deûnition 2.11 For 1 ≤ n < ∞, let ATn ,ωU be the unitary quotient of A2 ∗ T2
generated by U satisfying relation (A1), the relations of Proposition 2.1, and relations
(AT1)–(AT2), provided that it exists. Note that AT1,1 is A2 ⊠ T2.

2.3 A Basis for Jellyfish Calculations

Proposition 2.12 Consider all diagrams of the form

a1 a2 ak−1

c

ak

a0 b2 b3 bk−1 bk

U1

⋆

U2

⋆

U3

⋆

⋅ ⋅ ⋅ Uk−1

⋆

Uk

⋆

where the labels on the thick strings indicate the total number of ρ and θ strings in the
bundle, satisfying the following criteria:
● k is even;
● the U i ’s alternate between U and U∗, but U1 is not necessarily U;
● a0 ≥ 2n and 0 ≤ ak ≤ 2n − 2;
● 1 ≤ c ≤ 2n − 1 is odd, and the bundle is of the form θ(ρθ) j for some j;
● for 2 ≤ i ≤ k, 1 ≤ b i ≤ 2n − 1 and b i is odd;
● for i = 1, . . . , k−1, 1 ≤ a i ≤ 2n−1 and a i −a i±1 is odd (the parity of the a is alternates).
_en each such diagram has nonzero norm squared, and distinct diagrams with the
same number of strings attached to the external boundary are orthogonal.

Proof A simple calculation shows the norm squared of each diagram is a power of
τ, which is nonzero.

Suppose now that we have two distinct diagrams with the same number of ex-
ternal strings. Let the ûrst diagram have constants (a0 , . . . ak , b2 , . . . , bk , c), and let
the second diagram have constants (a′0 , . . . a

′
ℓ , b

′
2 , . . . , b

′
ℓ , c

′). Without loss of gener-
ality, assume k ≤ ℓ. We cannot have a i = a′i for all i = 0, . . . , k, since the b is are
determined by the a i ’s, and then c, c′ are determined by the a i ’s and the number of
external boundary points.
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Let j be minimal such that a j /= a′j , which implies that b j /= b′j . If a j > a′j , then
b j < b′j . Taking the inner product, we get the following sub-diagram:

a1 a2 a j−1 a j

a1 a2 a j−1 a′j

a0 b2 b3 b j−1 b j

b′j − b j

U1

⋆

U2

⋆

U3

⋆

⋅ ⋅ ⋅ U j−1

⋆

U j

⋆

U∗
1

⋆

U∗
2

⋆

U∗
3

⋆

⋅ ⋅ ⋅ U∗

j−1

⋆

U j

⋆

.

We can iteratively cancel the ûrst j − 1 pairs of generators U i ,U∗
i counting from the

le�, since a0 ≥ 2n, and a i−1 + b i ≥ 2n for all i = 2, . . . , j − 1. We then get some power
of τ times

a j

a′j

a j−1 + b j

b′j − b j

U j

⋆

U j

⋆

,

which is zero since a j−1 + b j ≥ 2n. Similarly, we get zero if a′j > a j .

Corollary 2.13 _e conclusion of Proposition 2.12 holds for diagrams of the form

akak−1a2

d

a1

ak+1bkbk−1b3b2

Uk+1

⋆

Uk

⋆

Uk−1

⋆

⋅ ⋅ ⋅U3

⋆

U2

⋆

,

where the a is and b is satisfy the same criteria, but instead of a0 and c,we have ak+1 ≥ 2n
and 0 ≤ d ≤ 2n − 2, where the d bundle is of the form (ρθ) j .

Notation 2.14 We use the following notation for one-car trains:

train[{ ⋅},wheel[c]] = c
U ⋆ , train[wheel[d], { ⋅}] = d

U⋆ .
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We use the following notation for diagrams in the form of Proposition 2.12:

train[ a0 , a1 , . . . , ak−1 , ak ,wheel[c]] =

a1 a2 ak−1

c

ak

a0 b2 b3 bk−1 bk

U1

⋆

U2

⋆

U3

⋆

⋅ ⋅ ⋅ Uk−1

⋆

Uk

⋆

train[wheel[d], a1 , a2 . . . , ak , ak+1] =

akak−1a2

d

a1

ak+1bkbk−1b3b2

U

⋆

U∗
⋆

U

⋆

⋅ ⋅ ⋅U

⋆

U∗
⋆

.

We now omit the b is, since they can be recovered from the a is. _ese diagrams can
be thought of as products of two-car trains

(2.1) twocar[a j−1 , a j , a j+1] =

a j−1 a j a j+1
U1

⋆

U2

⋆

with a caboose and an engine:

caboose[a0] = a0
engine[ak , c] =

c ak
,

with the convention that the last twocar in the train must have all its strings con-
nected to the caboose (and no strings going downward). Wemultiply the train parts
by concatenating horizontally:

twocar[a1 , a2 , a3] twocar[a3 , a4 , a5] =

a1 a2 a3 a4 a5U1

⋆

U2

⋆

U3

⋆

U4

⋆

.

To simplify future calculation, we will also allow the external a is in our two car
trains to surpass 2n, i.e., for the two car train in Equation (2.1), if a j < 2n − 2, then
a j−1 or a j+1 may be more than 2n − 1. If a j = 2n − 1, we have the following two-car
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trains for which one of a j±1 is 2n:

twocar[2n, 2n − 1, a j] =

2n 2n − 1 a j
U

⋆

U∗
⋆

where a j is even,

twocar[a j , 2n − 1, 2n] =
2n2n − 1a j

U∗
⋆

U

⋆

where a j is even.

When we use the two-car trains with 2n horizontal strands, we have the following
multiplication rules for contracting the 2n strands:

twocar[x1 , x2 , 2n] twocar[2n, x3 , x4] =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if x2 , x3 < 2n − 1,
twocar[x1 , x3 , x4] if x2 = 2n − 1 and x3 < 2n − 1,
twocar[x1 , x2 , x4] if x2 < 2n − 1 and x3 = 2n − 1,
−1
τ twocar[x1 , 2n − 1, x4] if x2 , x3 = 2n − 1.

_e last identity follows from the fact that

= −τ−1 .

We now describe the nice jellyûsh relations for these two car trains. _e proofs
of the following three lemmas are straightforward applications of _eorem 2.7 and
Remark 2.8.

Lemma 2.15 _e diagrams in the formofProposition 2.12 satisfy the following jellyûsh
relation for θ strings, where we assume the a2 js are even and the a2 j+1’s are odd:

θ(train[a0 , a1 , . . . , ak−1 , ak ,wheel[c]])

=

a1 a2 ak−1

c

ak

a0

U

⋆

U∗
⋆

U

⋆

⋅ ⋅ ⋅ U

⋆

U∗
⋆

=

a1 − 1 a2 + 1 ak−1 − 1

c

ak + 1

a0 + 1

U∗
⋆

U

⋆

U∗
⋆

⋅ ⋅ ⋅ U∗
⋆

U

⋆

= train[a0 + 1, a1 − 1, . . . , ak−1 − 1, ak + 1,wheel[c]].
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Lemma 2.16 When d1 , d2 are odd and e ≤ 2n − 2 is even,

d1 e d2U1

⋆

U2

⋆

=
1
τ
d1 + 1 e − 1 d2 + 1U1

⋆

U2

⋆

+ X ,

where X is the diagram on the right in the table below according to the values of d1 , d2.

d1 , d2 X

d1 , d2 < 2n − 1
d1 + 1 2n − 1 e 2n − 1 d2 + 1U1

⋆

U2

⋆

U3

⋆

U4

⋆

d2 < 2n − 1 ≤ d1
2n 2n − 1 e 2n − 1 d2 + 1U1

⋆

U2

⋆

U3

⋆

U4

⋆

d1 < 2n − 1 ≤ d2
d1 + 1 2n − 1 e 2n − 1 2nU1

⋆

U2

⋆

U3

⋆

U4

⋆

2n − 1 ≤ d1 , d2
2n 2n − 1 e 2n − 1 2nU1

⋆

U2

⋆

U3

⋆

U4

⋆

2.4 Existence Results for ATn ,ωU

We now use our jellyûsh relations to prove our existence results for the ATn ,ωU . We
can prove these results thanks to the train bases aòorded by Proposition 2.12.

Deûnition 2.17 Consider the set of diagrams of the form of Proposition 2.12 with
8n external boundary points, together with the one car train below:

Br =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

U
⋆ ⎫⎪⎪⎪⎪⎪

⎬
⎪⎪⎪⎪⎪⎭

∪

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

a1 a2 ak−1

c

ak

a0 b2 b3 bk−1 bk

U
⋆

U∗
⋆

U
⋆

⋅ ⋅ ⋅ U
⋆

U∗
⋆ ⎫⎪⎪⎪⎪⎪

⎬
⎪⎪⎪⎪⎪⎭

⊂ P(ρζ)3 ζρ .

_en Br is orthogonal and linearly independent. We call Br the right train basis.
Similarly, we deûne the le� train basis by

Bℓ =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

U
⋆ ⎫⎪⎪⎪⎪⎪

⎬
⎪⎪⎪⎪⎪⎭

∪

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

akak−1a2

d

a1

ak+1bkbk−1b3b2

U
⋆

U∗
⋆

U
⋆

⋅ ⋅ ⋅U
⋆

U∗
⋆ ⎫⎪⎪⎪⎪⎪

⎬
⎪⎪⎪⎪⎪⎭

⊂ Pζρ(ρζ)3 .
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Given an element in Bℓ , attaching

U⋆ U∗ ⋆

underneath yields an element of Br .

_eorem 2.18 For n = 1, 2, or 3,ATn ,ωU does not exist if ωU /= 1.

Proof SupposeATn ,ωU exists. We compute ρζ(U) in two ways:

(2.2) ρζ(U) =
U
⋆

=

U

⋆

U⋆ U∗ ⋆
= U(ζρ(U))U∗ .

Note that by Lemmas 2.15 and 2.16, applying the ρ and θ strings in the order on the
le� always gives us a linear combination of elements from Br , the right train basis.
Similarly, applying the ρ and θ strings in the order on the right always gives us a
linear combination of elements from Bℓ , the le� train basis. _en conjugating by U
as in equation (2.2), we get back some linear combination of elements in Br .

We can calculate the coeõcients in the linear combinations for ρζ(U) and
U(ζρ(U))U∗ a�er applying the jellyûsh relations. _ese are displayed in full in Ap-
pendix A of the unabridged version [IMP13] of this paper, as Figures 2, 3, and 4.

_ese coeõcients can agree only if σU = σ−1
U , and hence ωU = 1.

_eorem 2.19 ATn ,ωU does not exist for 4 ≤ n ≤ 10.

Proof _e technique is the same as the proof of_eorem 2.18. We compute ρζ(U)

in two diòerent ways as in Equation (2.2), and we get diòerent linear combinations.
Hence by Proposition 2.12,ATn ,ωU = 0 for 4 ≤ n ≤ 10.

_e coeõcients for n = 4 also appear in [IMP13, Fig. 5, Appendix A]. Similar
computations for 5 ≤ n ≤ 10 using the same code yield diòerent linear combinations.

Conjecture 2.20 _e technique used for _eorems 2.18 and 2.19 should show that
(i) ATn ,ωU exists only if ωU = 1 for all 1 ≤ n <∞, and
(ii) ATn ,ωU does not exist for all 4 ≤ n <∞.
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3 Application to Subfactors at Index 3 +√5
We now connect the categories ATn ,ωU to index 3 +

√
5 subfactors. In 1994, Bisch–

Haagerup found a sequence of possible principal graphs converging to the Fuss–Cata-
lan principal graph at index 3 +

√
5:

BHF1 = ,

BHF2 = ,

BHF3 = ,

BHFn = ⋅ ⋅ ⋅ .

For n ≥ 4, the dashed section appears a total of n − 3 times in BHFn .
_emain result of this section is the following theorem.

_eorem 3.1 A subfactor with principal graph BHFn exists if and only if ATn ,ωU

exists for some ω2n
U = 1.

Proof Existence of the subfactor implies existence of such a fusion category by_e-
orem 3.8. _e converse follows from _eorem 3.10.

Corollary 3.2 A unique subfactor exists with principal graphs BHFn for n = 1, 2, 3.
No subfactor exists with principal graph BHFn for 4 ≤ n ≤ 10.

Proof By_eorem 3.1, uniqueness and nonexistence follow from_eorems 2.18 and
2.19, respectively. Subsection 3.3 shows existence for n = 1, 2, 3.

Independently, and by a diòerent method, Liu [Liu13] showed that no subfactor
with principal graph BHFn exists for any n ≥ 4. Liu’s result together with _eorem
3.1 shows that ATn ,ωU does not exist for any n ≥ 4.

3.1 From Subfactors to Quotients of A2 ∗ T2

Let N ⊂ M be a 1-supertransitive subfactor at index 3+
√
5 with intermediate subfac-

tor P.
By taking duals, we can assume that [M∶ P] = 2 and [P∶N] = τ2 = 3+√5

2 . Denote
the planar algebra for N ⊂ M by P● and the principal even half of N − N bimodules
by 1

2P+. In this subsection, we show that 1
2P+ must be a quotient of A2 ∗ T2.

By [BJ97],P● has a Fuss–Catalan planar subalgebraFC●. Recall thatFC j,+ consists
of allA3∗A4 diagramswith boundaries of the form ab(baab) j−1ba,where a and b are
the usual generators of A3 and A4. Similarly, FC j,+ of those diagrams with boundary
ba(abba) j−1ab. In the diagrams below we represent a by a dashed green string and
b by a solid orange string.
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Deûnition 3.3 Deûne projections ρ and θ in FC+ ⊂ P+ by

ρ =
1

√
2
f (2) and θ =

1
2

f (2)f (3) f (3) ,

_ese correspond to N −N bimodules, and so to (possibly a collection of) vertices
on Γ+. Clearly, ρ is aminimal projection of trace τ, and ρ2 ≅ 1⊕ ρ.

Lemma 3.4 _e projection θ satisûes θ ⊗ θ ≅ 1 and θ ≇ 1.

Proof First, θ2 ≅ 1, since and f (2) have dimension 1. _is follows from the fact that
if p is a trace 1 symmetrically self-dual projection in a factor planar algebra [BHP12],
then

p p = p
p

(take the norm squared of the diòerence). Now let x be an intertwiner from θ to the
empty diagram. _en by sphericality, and the fact that dim( f (3)) = 1, we have

f (2)f (3) f (3)

x

x∗

= f (2)f (3)f (3)

x

x∗

= f (2)
f(

3)
f(

3)
x

x∗

= 0,

since any intertwiner from f (2) to the empty diagram must be zero.

Proposition 3.5 In FC●, f (2) ≅ ρ ⊕ ρθρ.

Proof We have

f (2) − ρ = −
1

τ
√

2
−

1
√

2
f (2) = f (2) .

It is then easy to see that f (2) ≅ ρ ⊕ ρθρ, since f (1) ≅ f (2) f (3) ≅ f (3) f (2).

Corollary 3.6 _e even half 1
2P+ of P● is generated by ρ and θ. Hence 1

2P+ is either
A2 ∗ T2 or ATn ,ωU for some 1 ≤ n <∞ and some 2n-th root of unity ωU .

Proof Note that all of the N − N bimodules are summands of a tensor power of
f (2) ≅ ρ ⊕ ρθρ, and thus every N − N bimodule is a summand of some alternating
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word in ρ, θ. Hence, by sending θ ∈ A2 to θ ∈ 1
2P+ (deûned above) and ρ ∈ T2

to ρ ∈ 1
2P+, we get a dominant functor F∶A2 ∗ T2 →

1
2P+ . _is functor is faithful,

because A2∗T2 ≅
1
2FC+ andFC● is a planar subalgebra ofP●. _us, 1

2P+ is a quotient
of A2 ∗ T2.

We now show that any subfactor with principal graph BHFn must have an inter-
mediate subfactor, and thus its even halfmust beATn ,ωU for some 2n-th root of unity
ωU .

_e following lemma iswell known to experts. (In fact, amuch stronger version is
true, but we do not need it here.)

Lemma 3.7 Suppose the subfactor N ⊂ M has planar algebraP● and principal graph
Γ+. Suppose Γ+ is 1 supertransitive, has depth greater than 2, and has exactly one univa-
lent (self-dual) vertex β at depth 2. _en e1 + β is a biprojection [Bis94,Lan02], so there
is an intermediate subfactor N ⊂ P ⊂ M where [P ∶ N] = 2.

_eorem 3.8 If the principal graph of N ⊂ M isBHFn , then there is an intermediate
subfactor N ⊂ P ⊂ M such that [M ∶ P] = 2 and [P ∶ N] = 3+√5

2 . Hence, the even half
of N ⊂ M is necessarilyATn ,ωU for some ω

2n
U = 1.

Proof If n = 1, then the dual graph Γ− must be one of

or .

(In fact, the dual graph cannot be the second graph above, since the dual even half
must also be AT2,ωU , which only exists if ωU = 1 by _eorem 2.18.) If n ≥ 2, since
BHFn startswith a triplepoint, the dual graph Γ− also startswith a triplepoint, and by
Ocneanu’s triple point obstruction [Haa94], Γ− has a univalent vertex at depth 2. _us
for any n, applying Lemma 3.7 to the dual subfactor yields an intermediate subfactor
with the desired indices.

Now that we know there is an intermediate subfactor, Corollary 3.6 implies that
the even half of N ⊂ M must be ATk ,ωU for some 2k-th root of unity ωU . By Propo-
sition 2.2, it suõces to count the even vertices ofBHFn to see that k = n.

3.2 From Quotients of A2 ∗ T2 to Subfactors

Proposition 3.9 In A2 ∗ T2, A = 1 ⊕ ρ ⊕ ρθρ is a Frobenius algebra object with
Frobenius subalgebra object B = 1⊕ ρ.

Proof First, it is well known that B is an algebra object, but we provide a proof as
a warmup to showing that A is an algebra. We need to specify the map B ⊗ B → B,
which can be thought of as 8 maps between the summands. Since the map must be
unital and rotationally invariant, we only have one unknown parameter:

maps from X ⊗ Y → 1:

⊗ 1 ρ

1 0

ρ 0
,

https://doi.org/10.4153/CJM-2015-017-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-017-4


1016 M. Izumi, S. Morrison, and D. Penneys

maps from X ⊗ Y → ρ:

⊗ 1 ρ

1 0

ρ λ

for some constant λ ∈ C. Checking associativity amounts to checking associativity of
ρ ⊗ ρ ⊗ ρ → ρ ⊗ ρ → 1, which yields the following equation:

+ λ2
= + λ2 .

_is equation is satisûed whenever λ = ±τ−1/2 by relation (T1).
We now specify themap A⊗A→ A for A = 1⊕ρ⊕ρθρ by specifyingmaps between

the summands as before. We already know one constraint if B is a subalgebra.

maps from X ⊗ Y → 1:

⊗ 1 ρ ρθρ

1 0 0

ρ 0 0

ρθρ 0 0

,

maps from X ⊗ Y → ρ:

⊗ 1 ρ ρθρ

1 0 0

ρ ±1√
τ 0

ρθρ 0 0 λ

,

maps from X ⊗ Y → ρθρ:

⊗ 1 ρ ρθρ

1 0 0

ρ 0 0 λ

ρθρ λ 0

.

We get the following constraint

±
λ

√
τ

= λ2 ,

which is satisûed if λ = ∓
√

τ. We leave it to the reader that this restriction is suõcient
for themap A⊗ A→ A to be associative.

_eorem 3.10 Suppose ATn ,ωU exists for some ω2n
U = 1. _en there are II1-factors

N ⊂ P ⊂ M where [M∶ P] = 2 and [P∶N] = 3+√5
2 such that the even half of N ⊂ M is

ATn ,ωU , and the principal graph of N ⊂ M is BHFn .

Proof By Proposition 3.9, 1⊕ ρ⊕ ρθρ is a Frobenius algebra object with subalgebra
1 ⊕ ρ in A2 ∗ T2, and thus they are also algebra objects in ATn ,ωU . Now the usual
construction (see Remark 3.11) provides a subfactor N ⊂ M with f (2) = ρ ⊕ ρθρ. A
straightforward calculation shows that the fusion graph of ρ ⊕ ρθρ in ATn ,ωU is the
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same as the even part ofBHFn . We give the fusion graph for n = 1, 2, 3 below.

n = 1 2 ,

n = 2 ,

n = 3 .

Finally, we can show thatBHFn is the unique principal graph with this even part.
First, we note that N ⊂ M is irreducible. Since [M ∶ P] = 2 and [P ∶ N] = 3+√5

2 ,
dim( f (1)) =

√
2τ, which cannot be written as the sum of two numbers from the set

{2 cos(π/k)∣k ≥ 3}. Next, since f (1) is simple and f (1)⊗ f (1) ≅ 1⊕ f (2), the number of
self-loops on a vertex in the even principal graph is exactly onemore than the valence
of that vertex in the principal graph. _is condition uniquely determines the number
of vertices at each odd depth, and their connectivity to the vertices at even depths.

Remark 3.11 It is well known that Frobenius algebra objects in unitary fusion cate-
gories correspond to ûnite depth subfactor planar algebras. See [GS12, Section 2] for
a good background and a dictionary between the two viewpoints.

3.3 Existence of ATn ,1 for n ∈ {1, 2, 3}

We now show that ATn ,1 exists for n ∈ {1, 2, 3}. Hence by _eorems 2.18 and 3.10,
there is a unique hyperûnite subfactor whose principal graph is BHFn for n = 1, 2,
and 3.
First, AT1,1 = A2 ⊠ T2, which exists. Second, Bisch and Haagerup showed that if

N0 ⊂ N1 is the hyperûnite A4 subfactor, and β ∈ Out(N1 ⊗ N1) is the �ip automor-
phism, then both the N −N and P−P bimodules associatedwith composed inclusion

N = N0 ⊗ N1 ⊂ P = N1 ⊗ N1 ⊂ M = (N1 ⊗ N1) ⋊ ⟨β⟩

are equivalent to AT2,1.
We now construct BHF3 as an intermediate subfactor of a reduced subfactor of

the 3Z/4 subfactor with principal graphs

( , ) ,

which was constructed in unpublished work of Izumi and also in [PP13].
We will denote the even bimodules on the dual principal graph lexicographically

le� to right and bottom to top by 1, κ, βκ, χ, σ , β. Using the FusionAtlas program
FindFusionRules, we see that the dual principal even half MModM of 3Z/4 has the
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following fusion rules

⊗ κ βκ χ σ β
κ 1+κ+χ+σ+βκ κ+χ+σ+β+βκ κ+2χ+σ+βκ κ+χ+βκ βκ
βκ κ+χ+σ+β+βκ 1+κ+χ+σ+βκ κ+2χ+σ+βκ κ+χ+βκ κ
χ κ+2χ+σ+βκ κ+2χ+σ+βκ 1+2κ+χ+σ+β+2βκ κ+χ+σ+βκ χ
σ κ+χ+βκ κ+χ+βκ κ+χ+σ+βκ 1+χ+σ+β σ
β βκ κ χ σ 1

_e Frobenius–Perron dimensions of the M −M bimodules are as follows:

dim(1) = dim(β) = 1, dim(κ) = dim(βκ) = 2 +
√
5,

dim(χ) = 2τ2
= 3 +

√
5, dim(σ) = 2τ = 1 +

√
5.

Using the FusionAtlas program ExtractPairOfBigraphsWithDuals, we com-
pute the principal graphs of the reduced subfactor at σ to be

( , ) .

Here, the reduced subfactor is M ⊂ Q, where Q is the commutant of the right
M-action on σ . By Lemma 3.7 applied to the dual graph, there is an intermediate
subfactor M ⊂ P ⊂ Q such that [Q ∶ P] = 2. By Goldman’s _eorem [Gol59], we have
Q ≅ P ⋊Z/2 and PQP ≅ 1P ⊕ α for some α with dimension 1.

_eorem 3.12 _e principal graphs ofM ⊂ P are

( , ) .

Hence, a subfactor with principal graph BHF3 exists, andAT3,1 exists.

Proof We factor MQQ ≅ MP ⊗P QQ , and for notational convenience we write ξ =
MPP , so MPM = ξξ. Since σσ ≅ MQM , we have

1⊕ β ⊕ χ ⊕ σ = σσ = MQM = MQ ⊗Q QM = ξ(Q ⊗Q Q)ξ = ξ(1P ⊕ α)ξ = ξξ ⊕ ξαξ.

We also know ξξ has dimension 2τ2 = 3+
√
5 and is not irreducible, since it contains a

copy of the trivial. Hence by the Frobenius–Perron dimensions listed above, wemust
have ξξ = 1⊕ β ⊕ σ . We immediately see that the even half of M ⊂ P is the even half
of 3Z/4.

We continue computing the principal graph. We have

⟨σ ξ, σ ξ⟩ = ⟨σ 2 , ξξ⟩ = ⟨1⊕ σ ⊕ β ⊕ χ, 1⊕ σ ⊕ β⟩ = 3,

so σ ξ breaks up into 3 distinct irreducibles σ ξ = ξ ⊕ ν ⊕ µ. Moreover,

σ ξξ = σ(1⊕ σ ⊕ β) = 1⊕ 3σ ⊕ β ⊕ χ,

so without loss of generality, ν is a univalent vertex, and µ connects to only σ and χ.
As before, ⟨χξ, χξ⟩ = 3, and χ(1⊕ σ ⊕ β) = σ ⊕ 3χ⊕ κ⊕ βκ. Since κ, βκ are self-dual,
the principal graph is

.
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Using the FusionAtlas program FindGraphPartners, the only possible dual
graphs are

, , and ,

andOcneanu’s triple point obstruction [Haa94,MPPS12] implies that the third graph
must be the dual graph.

4 Quotients of T2 ∗ T2

Our method also applies to composites of two copies of T2 with little alteration. _e
interested reader can seemore details at [IMP13]. As the techniques are highly similar
to those of Section 2, we merely state our results and their connections to subfactor
theory.

Suppose we have two copies of T2 generated by objects ρ, µ, together with inter-
twiners ρ ⊗ ρ → ρ and µ ⊗ µ → µ, both satisfying the relations in Proposition 2.1.
As before, we see nontrivial unitary quotients of T2 ∗ T2 are parametrized by an

n such that the alternating words in ρ, µ and µ, ρ of length n are isomorphic, and
an n-th root of unity ωU , resulting in a unitary isomorphism U ∶ (ρµ ⋅ ⋅ ⋅) → (µρ ⋅ ⋅ ⋅)
satisfying similar relations.
Arguing as in _eorem 2.9, similar relations as before are suõcient to evaluate all

closed diagrams, and thus we give the following deûnition.

Deûnition 4.1 For 2 ≤ n <∞, letTTn ,ωU be theunitary quotient ofT2∗T2 generated
by U , provided that it exists. Note that TT2,1 is T2 ⊠ T2.

We get a similar basis for our jellyûsh calculations, andwe can use a similar twocar
formalism. Our uniqueness and non-existence proofs are also similar. As in equa-
tion (2.2), we evaluate a similar diagram in two diòerent ways. Using very similar
Mathematica code, we see that for n = 2, 3, we must have ωU = 1, but n = 4, . . . , 10
are not possible.

Hence we have the following theorems. Again, for more details, see [IMP13].

_eorem 4.2 For n = 2, 3, TTn ,ωU exists only if ωU = 1.

_eorem 4.3 For 4 ≤ n ≤ 10, TTn ,ωU does not exist.

Conjecture 4.4 _e technique used for _eorems 4.2 and 4.3 should show that
(i) TTn ,ωU exists only if ωU = 1 for all 2 ≤ n <∞, and
(ii) TTn ,ωU does not exist for all 4 ≤ n <∞.

4.1 Application to Subfactors

_e techniques of Section 3 can be used to prove the following theorem.

_eorem 4.5 Any A4−A4 composite subfactor has (dual) even half T2∗T2 or TTn ,ωU

for some n-th root of unity ωU .
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Conversely, in T2 ∗ T2, 1 ⊕ ρ ⊕ ρµρ is a Frobenius algebra object with subalgebra
1 ⊕ ρ. _us, if TTn ,ωU exists, then there is an A4 − A4 composite subfactor with (dual)
even half TTn ,ωU .

Proof If we have a composite subfactor N ⊂ P ⊂ M, where N ⊂ P and P ⊂ M are
A4 subfactors, we can deûne ρ, µ analogously to Deûnition 3.3. _us, ρ, µ ≇ 1 are
irreducible, satisfying ρ2 ≅ 1 ⊕ ρ and µ2 ≅ 1 ⊕ µ by the same proof as in Lemma 3.4.
Again, we have f (2) ≅ ρ ⊕ ρµρ, so the M −M bimodules are generated by ρ, µ, and
the even half is either T2 ∗ T2 or TTn ,ωU for some ωU .
For the converse, the algebramap is given by

maps from X ⊗ Y → 1:

⊗ 1 ρ ρµρ

1 0 0

ρ 0 0

ρµρ 0 0

,

maps from X ⊗ Y → ρ:

⊗ 1 ρ ρµρ

1 0 0

ρ ±1√
τ 0

ρµρ 0 0 ∓
√

τ

,

maps from X ⊗ Y → ρµρ:

⊗ 1 ρ ρµρ

1 0 0

ρ 0 0 ∓
√

τ

ρµρ ∓
√

τ λ

.

We analyzemaps ρµρ ⊗ ρµρ ⊗ ρµρ → ρµρ to get the restriction

λ2
+ (

−λ2

τ
+ τ) = λ2

+ (
−λ2

τ
+ τ) ,

i.e., λ2 = 1.

Corollary 4.6 _ere is a unique A4 − A4 composite subfactor for n = 2, 3. For n =

4, . . . , 10 there is no such composite subfactor.

Proof By_eorem4.5, uniqueness and nonexistence follow from _eorems 4.2 and
4.3 respectively. Existence for n = 2, 3 is proved below.

Liu’s method also applies to the A4 − A4 composite subfactors, and he shows that
no subfactor with even half TTn ,ωU exists for any n ≥ 4 [Liu13]. His result together
with _eorem 4.5 shows that TTn ,ωU does not exist for any n ≥ 4.

Existence of TT2,1 and TT3,1.
Clearly TT2,1 = T2 ⊠T2 exists. We can construct TT3,1 from the 2D2 subfactorwith
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principal graphs

( , ) ,

which is constructed in unpublishedwork of Izumi, and also in [MP14]. First, naming
the even bimodules on the dual graph 1, f (2) , ρ, σ , σ , µ lexicographically from le� to
right, bottom to top, the fusion rules are

⊗ f (2) ρ σ σ µ
f (2) 1+2 f (2)+σ+σ+ρ+µ f (2)+σ f (2)+σ+σ+µ f (2)+σ+σ+ρ f (2)+σ
ρ f (2)+σ 1+ρ f (2) σ+µ σ
σ f (2)+σ+σ+ρ σ+µ f (2)+σ 1+ f (2)+µ f (2)

σ f (2)+σ+σ+µ f (2) 1+ f (2)+ρ f (2)+σ σ+ρ
µ f (2)+σ σ σ+ρ f (2) 1+µ

.

We see that ρ and µ give two copies of A4, and they satisfy the relation ρµρ ≅

f (2) ≅ µρµ, but ρµ ≇ µρ. Hence TT3,1 exists.

A4 − A4 composite principal graphs.
It is possible to determine the principal graph as in _eorem 3.10. For n = 2, 3, the

fusion graphs for the N − N bimodules with respect to ρ ⊕ ρµρ are given by

2

3 2 ,
23

2

resulting in the following principal graphs for n = 2, 3 respectively:

, .

_e ûrst is the tensor product A4 ⊗ A4.
Liu pointed out to us that these two A4 − A4 composite subfactors are also the

reduced subfactors ofBHF2 andBHF3 at ρθρ.
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