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Abstract

The exploitation of hydrocarbon reservoirs may potentially lead to contamination of soils, shallow water resources,
and greenhouse gas emissions. Fluids such as methane or CO2 may in some cases migrate toward the groundwater
zone and atmosphere through and along imperfectly sealed hydrocarbon wells. Field tests in hydrocarbon-producing
regions are routinely conducted for detecting serious leakage to prevent environmental pollution. The challenge is
that testing is costly, time-consuming, and sometimes labor-intensive. In this study, machine learning approaches
were applied to predict serious leakage with uncertainty quantification for wells that have not been field tested in
Alberta, Canada. An improved imputation technique was developed by Cholesky factorization of the covariance
matrix between features, where missing data are imputed via conditioning of available values. The uncertainty in
imputed values was quantified and incorporated into the final prediction to improve decision-making. Next, a wide
range of predictive algorithms and various performance metrics were considered to achieve the most reliable
classifier. However, a highly skewed distribution of field tests toward the negative class (nonserious leakage) forces
predictive models to unrealistically underestimate the minority class (serious leakage). To address this issue, a
combination of oversampling, undersampling, and ensemble learning was applied. By investigating all the models on
never-before-seen data, an optimum classifier with minimal false negative prediction was determined. The developed
methodology can be applied to identify the wells with the highest likelihood for serious fluid leakage within
producing fields. This information is of key importance for optimizing field test operations to achieve economic
and environmental benefits.

Impact Statement

Field test operations to detect methane and CO2 leakages from hydrocarbon wells can be costly. Most wells do
not have leaks or are categorized as non-serious, which means that no repair is needed until they are abandoned.
However, it is crucial to identify and prioritize serious leakages for immediate remediation to prevent environ-
mental pollution. This study developed a reliable predictive model by correlating the results of historical field
tests with various well properties, including age, depth, production/injection history, and deviation, among
others. The trained model can predict the likelihood of serious leakage for untested wells, allowing for the
prioritization of wells with the highest probability of leaks for field testing. This approach leads to cost-effective
field testing and environmental benefits.
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1. Introduction

Exploitation of oil and gas reservoirs has raised public concerns regarding potential contamination of
soils, shallow groundwater, and increases in greenhouse gas emissions (Shindell et al., 2009; Brandt et al.,
2014; Cherry et al., 2014). Improperly sealed hydrocarbon wells may lead to the migration of gases such
as methane and CO2 to shallow aquifers, soils, and the atmosphere, or vented through surface casing vent
flows (SCVFs). Regulators require monitoring of such gas migration (GM) and vent flows to detect
leakage and prioritize the repair of themost severe cases (Watson andBachu, 2009;Montague et al., 2018;
Abboud et al., 2021). The Alberta Energy Regulator (AER) in Alberta, Canada, conducts such field tests
for energy wells within the province. The AER applies two field tests for the identification of fluid
migration after a well is completed to produce hydrocarbon or to inject any fluid:

1. SCVF is the flow of gas (methane, CO2, etc.) out of the casing annulus or surface casing. SCVF is
often referred to as internal migration. Wells with positive SCVF are considered serious in the
province of Alberta under one or several of the following conditions: (a) gas-flow rates higher than
300 m3/d, (b) stabilized pressure >9.8 kPa/m, (c) liquid-hydrocarbons, and (d) hydrogen sulfide
(H2S) flow (see Alberta Energy Regulator, 2003, for more information).

2. GM is a flow of any gas that is detectable at surface outside of the outermost casing string. GM is
often referred to as seepage or external migration (Alberta Energy Regulator, 2003). A GM is
serious if there is a high flow rate or public safety hazard or off-lease environmental damage, such
as groundwater contamination (see Alberta Energy Regulator (2003) for more information).

Wells with positive SCVF/GM are classified as nonserious if none of the conditions for the serious
category are met. In Alberta, repair for serious SCVF/GM leakage is required within 90 days; otherwise,
repair is deferred to abandonment (Alberta EnergyRegulator, 2003;Watson and Bachu, 2009; Kang et al.,
2014; Montague et al., 2018).

Efficient and cost-effective testing of all hydrocarbon-producing wells is a major challenge in areas
with large numbers of producing or injection wells. The AER requires testing for all wells only within a
small specific area in central and eastern Alberta and only for wells completed since 1995 (Montague
et al., 2018; Abboud et al., 2021). There are manywells in other parts of Alberta including abandoned and
orphaned wells for which no SCVF/GM test have been conducted. Montague et al. (2018) applied
predictive models (machine learning) based on known well properties to generate a binary result for GM:
whether the well is positive for a SCVF/GM test or not. Wisen et al. (2020) carried out a descriptive
analysis of fugitive gas incidents in British Columbia (BC), Canada, with a particular focus on SCVF. The
records from theBritish ColumbiaOil andGasCommission (BCOGC)were analyzed to uncover frequent
leakage pathways, the frequency of such incidents, and the levels of greenhouse gas emissions. Sandl et al.
(2021) utilized a basic predictive method to investigate the linkages between various well features and
reported instances of GM in BC. There were other database analysis studies to identify wellbore leakage
based on a wide range of factors (Fleming et al., 2021; Cahill and Samano, 2022; Iyer et al., 2022).

In this article, we apply several potential improvements to the workflow presented in Montague et al.
(2018). The only wells within the small test region (central and eastern Alberta) was included in the study
by Montague et al. (2018) and no predictions were made regarding the seriousness of fluid migration.
Most leakages are nonserious (Alberta Energy Regulator, 2022) and repair is not required until aban-
donment; in contrast, serious leakages are critical and should be identified and prioritized for amendment
to prevent environmental pollution. All available data within Alberta were used in this article to predict
serious fluid leakage.

A wide range of machine learning algorithms was applied using Python’s scikit-learn package
(Pedregosa et al., 2011). The algorithms are Stochastic Gradient Descent, Logistic Regression, Support
Vector Machine, Random Forest, Adaptive Boosting, and Deep Neural Network. See Géron (2019) for
more information about these algorithms. The key goals of this study were to address obstacles
encountered when implementing predictions, including the following:
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1. The first challenge faced by this studywas the high number ofmissing data. Replacingmissing data
with a constant value such as the mean or median of the feature can result in unreliable predictions
and artifacts due to a large population of data having similar values. TheK nearest neighbors (KNN)
is an algorithm that applies feature similarity to impute missing values. The KNN algorithm is
prone to being affected by outliers. Moreover, it does not take into account the potential uncertainty
in imputed values. There are complex techniques such as multivariate imputation by chained
equation (MICE) (van Buuren and Groothuis-Oudshoorn, 2010) and deep learning (DataWing,
2022). However, the imputation using these techniques can be quite slow and computationally
expensive for large datasets. They may also need special software, distributional assumption, and
the uncertainty in imputation of missing data cannot be considered. Therefore, a new approach was
developed to impute missing values by conditioning using available data and quantifying the
uncertainty of imputed values. This approach is fast and efficient for big data sets and easy to
implement (in Python).

2. The second challenge was a highly skewed distribution toward the negative class. This leads to
forcing the predictive models to an unrealistically high classification for the negative class
(Montague et al., 2018; Brownlee, 2020) and underestimating the positive class. Resampling
techniques were used to adjust the class distribution of training data to feedmore balanced data into
predictive models, thereby creating a new transformed version of the training set with a different
class distribution. Two main approaches for random resampling an imbalanced dataset are:
(a) Undersampling: this approach deletes random instances of a majority class from the training
set. A drawback of undersampling is eliminating the instances that may be important, useful, or
critical for fitting a robust decision boundary (He and Ma, 2013; Brownlee, 2021).
(b) Oversampling: this approach adds random instances (duplicates) of the minority class to the
training set. A disadvantage of this technique is that it increases the likelihood of overfitting
because of including the exact copies of the minority class examples (Fernández et al., 2018;
Brownlee, 2021). In this article, integration of oversampling and undersampling approaches was
applied to resolve the issue of imbalanced data.

3. Finally, the main aim was to achieve a higher-performance classifier. Ensemble Learning was
utilized to integrate multiple models to build a stronger predictor. It works by aggregating the
predictions of a group of predictors. Hard Voting is a simple Ensemble Learning that aggregates the
predictions of each classifier and predicts the class that gets the most votes. Soft Voting is another
Ensemble Learning that works by averaging the probability of each class and predict a class with
the highest probability (Géron, 2019). Both Hard Voting and Soft Voting were applied in this article
to enhance performance.

The overall objective of this study was to apply the above-described novel solutions to machine learning
approaches to generate a final trained model that can subsequently be applied to predict the probability of
serious fluid leakage for the wells with known properties for which SCVF/GM tests are not available.

2. Field Test Data

Figure 1 shows a location map of classification for SCVF/GM test results obtained by AER (Alberta
Energy Regulator, 2022) between January 1984 and November 2021 within Alberta, Canada. Based on
27,404 tests that were conducted, 83.8% of the wells were classified as nonserious, while 16.2% of the
tested wells had serious leakage that required immediate fixing to avoid environmental impacts. We
considered known physical properties of the wells as training features to predict the probability of serious
fluid leakage in the province of Alberta, Canada. The properties were retrieved from geoSCOUT, a large
database of well characteristics in Alberta (geoSCOUT, 2022). Table 1 shows the 22 physical properties
that were considered for each well displayed in Figure 1. They include the following: properties 1 and
2 define deviated and horizontal wells (True/False). Properties 3–10 describe surface casing and
production casing specifications of each well. Production-casing and surface-casing grades are string
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variables (text). Properties 11 and 12 are measured depth and the temperature of the borehole, respect-
ively. Property 13 is the geological formation (text) targeted for production or injection. Property 14 shows
the status of the well in text such as suspended, issued, and abandoned. Property 15 is the age of each well
in months (counted from January 2022). Property 16 is the regional well density calculated as the total
number of hydrocarbon wells with positive SCVF/GM test within 10 km × 10 km area around each well.

Figure 1. Location map of Alberta Energy Regulator (AER) classification for test results (serious and
nonserious) of surface casing vent flow (SCVF) and gas migration (GM) for energy wells in Alberta,

Canada. The majority of the wells are classified as nonserious (83.8%).

Table 1. Twenty-two physical properties for each well in Figure 1 retrieved from geoSCOUT (2022).

Physical properties of wells

1. Deviated hole (T/F) 12. Borehole temperature (°C)
2. Horizontal hole (T/F) 13. Prod./lnject. formation
3. Surface-casing depth (m) 14. Well status
4. Surface-casing size (mm) 15. Month well spudded
5. Surface-casing weight (kg/m) 16. Well density (n/10 km × 10 km)
6. Production-casing depth (m) 17. Surface abandonment type
7. Production-casing size (mm) 18. Surface abandonment month
8. Production-casing weight (kg/m) 19. Cumulative GAS prod. (e3m3)
9. Production-casing grade 20. Cumulative OIL prod. (m3)
10. Surface-casing grade 21. Cumulative WATER prod. (m3)
11. Measured depth (m) 22. Total production month
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Property 17 indicates the type of surface abandonment such as plate or cement; 18 is time in month since
abandonment (counted from January 2022). Properties 19–22 are cumulative gas, oil, and water
production and total months in production.

3. Workflow

Binary classification was applied using the 22 physical properties in Table 1 as training features, while
using the SCVF/GM test results (AER classification) as target with serious leakage as positive class (value
1) and nonserious leakage as negative class (value 0). Figure 2 shows the workflow used in this article.
First, the dataset is split into a training set, validation set, and test set since a model should be trained first
and then reasonably evaluated. The data shown in Figure 1 were split into training (72%), validation
(18%), and test sets (10%) as shown in Figure 3. The percentage of nonserious (83.8%) and serious
(16.2%) classes for the training, validation, and test sets should be identical to the results for the entire
dataset shown in Figure 1. The reason for having a test set as well as a validation set is to avoid overfitting
and to evaluate the model based on a never-before-seen dataset. Developing suchmodels always involves
tuning hyperparameters; feedback that signals the performance of the model on a validation set is used for
tuning. Although the model is never directly trained on the validation set, tuning the configuration of the
model based on its performance on the validation set can quickly result in overfitting to the validation set,
suggesting that some information about the validation data leaks into the model whenever a hyperpara-
meter is tuned. Therefore, the model should not have any access to any information about the test set; it is
only applied at the end of the project to evaluate the performance of the final model.

Figure 2. Schematic illustration of the workflow used in this article.
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The next step is data processing for the training set including normalization, text handling, and
imputation. Text handling should be efficiently done to convert text to numbers before feeding predictive
algorithms. To enhance the performance of algorithms, a target encoding technique (Kaggle, 2022) was
utilized in this study for converting text to numbers. Due to high number of missing data for well
properties, an efficient technique was developed by pursuing amethod of imputingmissing data using LU
(lower–upper) simulation based on triangular decomposition of the correlation (standardized covariance)
matrix. Many theoretical developments of LU simulation have been pursued in geostatistics for geomo-
deling and spatial resampling (Davis, 1987; Deutsch and Journel, 1998; Journel and Bitanov, 2004; Khan
and Deutsch, 2016; Rezvandehy and Deutsch, 2017). A modified LU conditional simulation (Davis,
1987) is suggested here for imputation by conditioning nonmissing values to impute missing data for each
well. Section 4 provides an in-depth explanation on how to carry out the imputation technique. The same
statistics and models for data processing of the training set should be applied to transform the validation
set and test set as shown in dashed lines in Figure 2. The transformation includes normalization, text
handling, and imputation.

Predictive algorithms were trained by the training set to achieve the most reliable classifier. K-fold
cross-validation was utilized to get a clean prediction for the training set (to prevent overfitting): it splits
the training set into K-folds and then predicts each fold using a model trained on the remaining folds.
Evaluating a classifier is often more challenging than a regressor. The most common approach for

Figure 3. AER classification shown in Figure 1 is separated into training, validation, and test sets.
Location map (top) and pie chart (bottom) for training (left), validation (middle), and test sets (right).
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assessment is Accuracy, which is calculated by the number of true predicted over the total number of data.
However, accuracy alone may not be practical for performance measurement of classifiers, especially in
the case of skewed datasets. Accuracy should be considered along with other metrics. A confusion matrix
is a much better way to evaluate the performance of a classifier (Géron, 2019). Although the confusion
matrix represents a lot of information, sometimes more concise metrics (including accuracy) are preferred
as: Sensitivity: the proportion of correct positive predictions to the total positive classes, Precision: the
proportion of correct positive prediction to the total positive predicted values, and Specificity: true
negative rate or the proportion of negatives that are correctly identified. For imbalanced class dataset,
onemetric is always significantly higher than another. Depending on the specific needs of the problem, the
preference for higher precision or sensitivity may vary. In this study, it was deemed acceptable if the
precision is relatively low, which means having noticeable false alerts of serious leakages while they are
nonserious. However, we expect the classifier to have a high sensitivity that can detect serious leakages
with a minimal number of false negatives. The hyperparameters for each algorithm are fine-tuned to
enhance sensitivity. The trained model is evaluated with the validation set. This process is repeated to
achieve reasonable sensitivity on the validation set (see Figure 2). If no classifier can reach a reliable
sensitivity, class distribution can be adjusted by combination of oversampling and undersampling to
reasonably increase sensitivity. Adjustment of class distribution was applied for different ratios: minority
class divided by majority class. This process was repeated until a reliable class ratio is achieved based on
validation set performance (Figure 2). Resampling should be applied with Ensemble Learning to build a
stronger predictor. Section 5 provides an explanation of how to use resampling with ensemble learning to
improve prediction performance. The final trainedmodelwas tested on never-before-seen data set tomake
sure the model can generalize well to new unseen data.

4. Imputation

LU conditional simulation (Davis, 1987) was modified to impute missing data by conditioning nonmiss-
ing values. This method not only preserves the correlation between features, but also accurately estimates
the uncertainty of the imputed missing data. Additionally, it is more efficient and requires less compu-
tational resources for handling large datasets, in comparison to other methods. The procedure can be
summarized in the following steps:

1. Normal Score Transformation (Deutsch and Journel, 1998). Quantile–quantile transformation is
applied to convert distribution of each feature z to a Gaussian distribution with mean = 0 and
standard deviation = 1, which is required for LU simulation.

2. Correlation Matrix of Features. A correlation matrix (standardized covariance matrix) ρ for n
features is shown in Figure 4a. The diagonal elements of this correlation matrix ρ11, ρ22, :…, ρnn
are 1 representing the correlation of each feature to itself.

3. Cholesky Decomposition. The correlation matrix is then discomposed by Cholesky decomposition
as ρ=LU, where L is the lower triangular matrix with all elements above diagonal elements is
0, and U is upper triangular matrix with 0 values below diagonal elements. Only L is required for
the LU simulation. Figure 4a shows the lower triangular matrix L achieved from Cholesky
decomposition.

4. Modified LU Conditional Simulation. A vector of uncorrelated standard normal deviate w with
mean = 0, standard deviation = 1 is simulated for each feature. The length ofw for each feature is the
number of data (here is the total number of wells for the training set). LU unconditional simulation
can be simply calculated by y=Lw. Figure 4b shows how to generate a LU unconditional
simulation achieving correlated Gaussian realization y. The unconditional simulation can be used
for oversampling to improve the imbalance number of classes for classification (see Section 5).
However, conditional simulation is needed to simulate missing data conditioned based on non-
missing values. For conditioning nonmissing features, each array of w vector with known values
needs to be converted towc that is a function of the nonmissing features. For example, if feature 1 z1
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and feature 2 z2 are available, LU conditional simulation can be applied to keep z1 and z2 unchanged
and simulate y3 to yn (missing data) conditioned based on z1 and z2 as shown in Figure 4c. This
conditioning requires to convert w1 and w2 to wc

1 and wc
2 as follows:

wc
1 =

z1
L11

, wc
2 =

z2�L21wc
1

L22
, (1)

where L11, L21, and L22 are elements of the lower triangular matrix L from Cholesky decomposition
(Figure 4c). This process needs to be repeated to calculate allwc for conditioning nonmissing features. The
nthw is calculated as:

Figure 4. (a) Cholesky decomposition of correlation matrix for n features (well properties). (b) LU
unconditional simulation. (c) LU conditional simulation.
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wc
n =

zn�Lnn�1wc
n�1

Lnn
, (2)

w for missing data should change for each feature and each instance (random sampling from Gaussian
distribution) leading to quantification of the uncertainty in missing data after simulation. The main
challenge for applying LU conditional simulation for imputation is the ordering of missing and nonmiss-
ing features for each row of data. If missing data are placed first followed by nonmissing values, the
conditioning cannot be applied since w1 for missing data are randomly sampled and then wc

2 for
nonmissing values are calculated based on equation (1): Lw cannot enforce the correlation between
simulated and nonmissing values. However, if nonmissing values are placed first followed by missing
data, the conditioning will be properly applied because of calculatingwc

1 for nonmissing values beforew2.
Therefore, nonmissing values must be placed first followed by missing data for each instance (row of
data). This requires reconstructing the correlation matrix for each instance to be consistent with the order
of features. The ordering is not important withinmissing and nonmissing features. This is the contribution
of this article to modify LU Conditional Simulation for applying correct imputation. Figure 5 shows how
to change the order of features and correlation matrix based on nonmissing and missing data. There are
four features and four rows. Figure 5b shows how to change the order of raw data in Figure 5a and the
related correlation matrix for each row is shown in Figure 5c. All four features of row 1 have nonmissing
values and therefore changing the order of features is not required. However, for rows 2–4, the order of
features should be changed to start with nonmissing values. The correlation matrices should be consistent
for each row of data. For the LU conditional simulation (Figure 4c), Cholesky decomposition must be
calculated for each covariance matrix separately.

5. Back-transform fromGaussian to Original Space. The simulated values in Gaussian space must be
back-transformed to original space. This requires to lookup through the standard Gaussian
distribution to find the CDF (cumulative distribution function) probability Pð Þ of each simulated

Figure 5. (a) Schematic illustration of four features with four rows of data with missing and nonmissing
values. (b) Change the order of features for raw data to have nonmissing values first followed by missing

data. (c) Correlation matrix for each row in (b).
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value. Then, lookup through the original distribution of related feature to find the P-quantile of the
simulated value in the original space. This ensures that nonmissing values remain unchanged.

Steps 4 and 5 are repeated for all data in the training set to impute all missing data. Due to random
sampling from the distribution of each feature, this approach quantifies the uncertainty in imputation of
missing data by running the process described above many times (e.g., 100 times). Standard normal
deviate w should be different for each run to simulate different values for missing data while keeping the
nonmissing values unchanged and respecting the correlation between features. Moreover, implementa-
tion of the above outlined steps is straightforward especially with Python programming language. Since
Cholesky decomposition of the correlation matrix should be applied only once per each unique order of
features, the process is fast and efficient for big datasets.

To evaluate the efficiency of the proposed imputation technique a synthetic example is considered with
four correlated features with 10,000 data as shown in Figure 6a. Features 1 and 2 are Gaussian and
lognormal distributions, respectively while features 3 and 4 are triangular distributions with different
statistics (mean and mode). Figure 6b shows the correlation matrix between features (below diagonal
elements) and percentage of missing data for each bivariate feature (above diagonal elements). The
highest percentage ofmissing data for bivariate distributions is between feature 1 and feature 2 (51%), and
the lowest is between feature 3 and feature 4 (32%). Figure 7 shows a scatter plot matrix including
histograms of each feature on diagonal elements before imputation (a) and after imputation (b). The
correlation between features (ρx,y), the shape of univariate (histograms), and the bivariate distributions are
reproduced after imputation. Therefore, the technique is highly suitable for imputation of realistic data.

5. Resampling and Ensemble Learning

Combining both oversampling and undersampling can lead to improved overall performance in com-
parison with performing one approach in isolation (Brownlee, 2021). Undersampling was considered for
the instances with missing data. Although imputation was already applied, it is better to remove random
instances that have imputed values instead of real nonmissing instances. We used LU unconditional

Figure 6. (a) Synthetic example of four features with 10,000 data. NaNs are missing data. (b) Correlation
matrix between features (below diagonal elements) and percentage of missing data for each bivariate
feature (above diagonal elements). Maximum percentage of missing data is 51% for bivariate distribution

of features 1 and 2.
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simulation for oversampling to avoid the inclusion of exact duplicates as discussed in Section 4 and shown
in Figure 4b. This approach is fast and includes associated uncertainty for resampling. Both resampling
approaches were combined with equal percentage: undersampling with a selected percentage is applied
to the majority class to reduce the bias on that class, while also applying the same percentage
for oversampling of the minority class to improve the bias toward these instances. This was applied
for different ratios of Class 1

Class 0, where Class 1 and Class 0 are the proportions of serious and nonserious
leakage, respectively. For each ratio, the metrics were calculated. The most reliable ratio is the one that
performs similarly across all metrics.

K-fold cross-validation was applied along with resampling to achieve clean prediction. However,
using K-fold cross-validation on the transformed version of the training set may not be correct since the
class distribution of the original data is different from the sampled training set. The correct approach is to
resample within K-fold cross-validation (Santos et al., 2018). Figure 8 shows a schematic illustration of
resampling within 5-fold cross-validation. The training set is divided into 5 stratified splits: the folds of
each split have the same class distribution (percentage) of the original data. Resampling was applied on
the training folds of each split. A model was trained on the resampled training folds. The test fold, which
preserves the percentage of samples for each class in the original dataset, was predicted with the trained
model. This process was repeated for all 5-splits that leads to five models. The trained models 1–5
obtained from 5-fold cross-validation (Figure 8) were applied separately to predict the entire validation
set. Then, Ensemble Learning was applied by aggregating the predictions from each model to predict the
class that gets the most votes (hard voting); since each model is trained on random subsets of training sets
with random sampling, it is reasonable to aggregate the predictions. This process was repeated for all
classifiers. This leads to achieve a number of good and promising predictors. To build a stronger predictor,
soft voting was applied by integrating the promising classifiers to achieve a final trained model at the end.

6. Results and Discussion

Figure 9 shows a correlation matrix for 22 well properties of the AER classification (SCVF/GM test
results), before imputation (Figure 9a) and after imputation (Figure 9b) for the training set. The
correlations between features after imputation have been reproduced. An example is provided at the

Figure 7. Scatter plot matrix for synthetic example of four features with 10,000 data before imputation
(a) and after imputation (b). Histograms of each feature are shown on diagonal elements. n is the number
of nonmissing values for each univariate and bivariate distribution and ρx,y is the correlation coefficient

for each bivariate distribution. μ is the mean and σ is the standard deviation.
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bottom of Figure 9 that shows the crossplot between surface-casing depth (m) and production casing
depth before and after imputation: imputed data (stars) have the same correlation as nonmissing values
(circles). The imputation can be repeated multiple times to quantify the associated uncertainty of imputed
values. The same approach must be applied for imputation of missing data in validation and test sets;
however, the correlation matrix and feature distribution of the training set must be used to prevent
information leak into these datasets (Figure 2). The training data is subsequently ready to feed a machine
learning algorithm for binary classification.

Figure 10 shows the performance of the predictive algorithms based on the four metrics achieved from
the confusion matrix for the training set (a), validation set (b), and test set (c). For a sanity test, predictions
from simple rule of thumb called DummyClassifier were compared with the results from these algorithms
(Pedregosa et al., 2011). The hyperparameters for each algorithm are fine-tuned to enhance performance.
The trainedmodels derived using the training set are applied for prediction of the validation set and test set
to confirm that overfitting is not occurring. The comparison between Figure 10a–c shows that the
performances are very similar except for Deep Neural Network having a lower precision for the test
set indicating overfitting for this algorithm. Specificity is the highest and sensitivity is lowest for almost all
classifiers. The Dummy classifier has the lowest values for all metrics except for sensitivity that is close to
the predictive algorithms. A highly skewed distribution toward the negative class leads to have sensitivity
close to that of the Dummy classifier even for powerful algorithms. In order to achieve better comparison
of the classifiers, a tool called receiver operating characteristic (ROC) curve was used to measure
performance. The ROC curve plots the true positive rate (sensitivity) against the false positive rate
(1-specificity). Every point on the ROC curve represents a chosen cut-off even though it cannot be seen.
The most common way to compare classifiers is to measure the area under the curve (AUC). A perfect
classifier has an AUC equal to 1, whereas a purely random classifier has an AUC ≈ 0.5. Figure 11 shows
ROC curves of classifiers for the training set (a), validation set (b), and test set (c). The AUC is shown for
each algorithm. The Dummy classifier has the lowest AUC (≈ 0.5). Random Forest and Deep Neural
Network have the highest AUC; however, due to overfitting, AUC for Deep Neural Network decreased

Figure 8. Schematic illustration of resampling within 5-fold cross-validation that leads to five models
(models 1–5). Resampling is applied only on the training folds. A model is trained for the resampled
training folds of each split. The trained model is used to predict the test fold which preserves the

percentage of samples for each class in the original data set.
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for the test set. Therefore, it is concluded that the Random Forest is the most reliable classifier with
AUC≈ 0.75. Using the above-described approach, the importance of each feature (Table 1) to predict
serious leakagewas determined by 100 realizations of RandomForest with 100 realizations of imputation,
one realization at a time to quantify the importance of each feature with full picture of uncertainty. The
results are summarized in Figure 12. Each bar shows the mean percentage of importance with uncertainty
interval (variance). MonthWell Spudded (e.g., the age of the wells in months) has the highest importance
to predict fluid leakage followed by six features that have similar performance: Total Production Month,
Surface-Casing Depth, Production Casing Depth, Measured Depth, Cumulative WATER Prod and
Cumulative GAS Prod. The features do not have strong linear correlations with the target (see Figure 9
for linear correlation of the well properties with AER classification). However, increasing Month Well

Figure 9. Correlation matrix (below diagonal elements) for 22 well properties of an AER classification
(SCVF/GM test results), before imputation (a) and after imputation (b). The percentage of missing data
for bivariate distribution is shown above diagonal elements. Cross plots between surface-casing depth
(m) and production-casing depth (m) before and after imputation are shown at the bottom. n is number of
nonmissing values for each univariate and bivariate distribution and ρx,y is the correlation coefficient for

each bivariate distribution. μ is the mean and σ is the standard deviation.
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Spudded, Total Production Month, Measured Depth, Cumulative GAS Prod, and Cumulative WATER
Prod probably lead to more serious fluid leakages according to the positive correlation with the target in
Figure 9. It is interesting to note that the features Deviated Hole and Horizontal Hole have very low
importance on impacting serious leakage. Furthermore, the size of production and surface casing, and the
surface abandonment type appear to have negligible influence on the likelihood of serious fluid leakage.

The trained Random Forest model could be applied to predict the probability of serious fluid leakage
for the wells without SCVF/GM field tests. The predictions will have high accuracy (>0.8) and specificity
(>0.95), relatively low precision (0.6), but sensitivity will not be reliable: similar to prediction of
Dummy Classifier (see Figure 10) which is due to imbalanced class. Therefore, we combined under-
sampling and oversampling to increase sensitivity by adjusting class distribution. The resampling was
applied for different ratios of Class 1

Class 0, where Class 1 is proportions of serious leakage and Class 0 is the
proportion of nonserious leakage. Increasing this ratiomay lead to an increase in sensitivity but a decrease
in other metrics. The ratio that has similar performance for the metrics must be the most reliable ratio.
RandomForest was applied for prediction since it has the highest performance (Figures 10 and 11).K-fold
cross-validation can be applied on the transformed version of the training set. Figure 13a shows a 5-fold
cross-validation after resampling the training set for 22 ratios of Class 1

Class 0 from 0.25 to 1.95. By increasing
the ratio, AUC increases; sensitivity increases significantly; specificity decreases but accuracy almost
remains unchanged. The metrics accuracy, specificity, and sensitivity have equal performance (0.8) for
the ratio of 1.02.

However, K-fold cross-validation after resampling incorrectly leads to overoptimism and overfitting
since the class distribution of the original data is different from the sampled training set (Santos et al.,
2018). The correct approach is to resample within K-fold cross-validation as discussed in Section 5.
Figure 13b shows resampling within 5-folds cross-validation for the ratios of Class 1

Class 0. Compared with
Figure 13a, AUCs have decreased significantly which confirms overoptimism and overfitting for
applying K-fold cross-validation after resampling. The ratio 1.27 in Figure 13b is the point where the

Figure 10. Performance of predictive algorithms for training set (a), validation set (b), and test set
(c) based on the metrics accuracy, sensitivity, precision, and specificity achieved from confusion matrix.

Specificity is the highest and sensitivity is lowest for almost all classifiers.
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line of all metrics cross: the model performs almost equally for two classes. Therefore, the ratio 1.27,
which signifies there are more wells with serious leakage in the training data, is selected as the ratio of two
classes to achieve a more reliable sensitivity. The models 1–5, which were obtained through 5-fold cross-
validation (Figure 8), were individually used to make predictions on the validation set and test data. The
predictions made by each model were then combined and the class with the most votes was chosen as the
final prediction. This process was repeated for other classifiers to compare the performances with Random
Forest. Figure 14 shows the performance of the classifiers for the validation set (a) and test set (b) for the
resampling ratio of Class 1

Class 0 = 1:27 within 5-fold cross-validation. All classifiers for validation and test set
have a higher performance than the Dummy Classifier. Due to resampling, sensitivity has significantly
increased (compared with Figure 10). This leads to remarkable reduction for false negative predictions of
wells with serious leakage. The performance for the test set is a little lower than for the validation set. This
may be related to minor overfitting in the validation set while fine-tuning hyperparameters of classifiers.
Predicting the probability of serious fluid leakage with known well properties (Table 1) for the wells
without field test in Alberta will likely have similar performances as Figure 14b. Random Forest has the

Figure 11.ROCcurveswith calculated AUC for training set (a), validation set (b), and test set (c). TP, true
positive; TN true negative; FP, false positive; FN, false negative. Random Forest has the highest AUC

without overfitting.
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Figure 12.Hundred realizations of RandomForest with 100 realizations of imputation, one realization at
a time to quantify the importance of each feature with uncertainty for predicting target (AER classifi-
cation). The feature Month Well Spudded (age of the wells in months) has the highest importance;

Deviated Hole and Horizontal Hole have the lowest importance.

Figure 13. Resampling before (a) and within (b) 5-fold cross-validation by Random Forest algorithm
for training set for the ratios of Class 1

Class 0 : Resampling before cross-validation (a) is incorrect
due to overoptimism and overfitting. The metrics are accuracy, specificity, sensitivity, and AUC

(area under the curve).
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highest AUC but sensitivity is low. Logistic Regression has the highest sensitivity, but accuracy and
specificity are relatively low compared with other algorithms. Soft Voting was applied at the end to
integrate Random Forest and Logistic Regression by averaging the probability of each class and predict a
class with the highest probability. Soft Voting has high sensitivity and AUC, and reasonable accuracy and
specificity. Therefore, it is the most reliable classifier to predict the probability of serious fluid leakage for
hydrocarbon wells without SCVF/GM field tests.

The specific value of the sampling ratio used in this manuscript, 1.27, was determined through
experimentation on the given data set. Therefore, if the data set were to change, it would be necessary
to reevaluate and potentially adjust the sampling ratio accordingly. Similarly, the combination of
classifiers chosen for ensemble learning, specifically the use of Random Forest and Logistic Regression
for soft voting, was based on the characteristics of the current data set. It is important to note that different
data sets may require different combinations of sampling ratio and classifiers to achieve optimal
performance. However, the developed framework described in this article can be applied for any
producing oil and gas field to train an optimum classifier for leakage detection.

To apply the trained classifier for leakage detection, 1,000 hydrocarbon wells without field tests were
randomly selected in Alberta, Canada. Figure 15a shows the location map of the wells. The 22 physical
properties of the wells (Table 1) used for training the classifier were utilized to predict the probability of
serious fluid leakage for each well. Figure 15b shows the percentage of missing data for the well
properties. The distribution of the training set for each well property should be applied for normalization,
text handling, and imputation of these 1,000 wells. Since some properties have more than 40% missing
data, the uncertainty of imputed values should be incorporated in the final prediction. This requires
running developed LU conditional simulation for multiple realizations: each realization gives different
imputed values. Hundred realizations of imputation were generated. The trained classifier was applied
100 times using one realization of imputation at a time. This results in quantification of the uncertainty for
the predicted probability of serious fluid leakage. The 100 predicted probabilities for each well can be
aggregated by mean, median or 25th, 75th percentiles for decision-making. Figure 16a shows the
calculated mean of probability for serious fluid leakage of the 100 realizations for each well. The
histogram of predicted probabilities for two wells (with means of probability for serious fluid leakage
of 0.42 and 0.70) in southern Alberta is shown to represent that each well has 100 predicted probabilities
achieved by running the classifier with 100 realizations of imputed values. Figure 16b,c shows the

Figure 14. (a) Performance of the classifiers for validation set (a) and test set (b) for the sampling ratio of
Class 1
Class 0 = 1:27 within 5-fold cross-validation. All classifiers for validation and test set have reasonably
higher performance than Dummy Classifier. There is small overfitting in the validation set because of
fine-tuning of hyperparameters. Soft voting, integration of Logistic Regression and RandomForest, is the
most reliable classifier with high sensitivity and AUC (area under the curve), and reasonable accuracy

and specificity.
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location map of the wells that have the mean of probability of serious fluid leakage higher than 0.6 and 0.8
in Figure 16a, respectively. There are 136wells with the probability higher than 0.8 probably representing
the leakiest wells for this random selection of 1,000 wells. Therefore, field test operations can be
optimized by targeting these 136 wells in Figure 16c first, followed by test for the rest of the wells
shown in Figure 16b. To optimize field test procedures, the wells with probabilities of less than 0.4 should
not be prioritized for field testing since they may not have serious leakage. There are over 300,000
hydrocarbon wells (Watson and Bachu, 2009) in Alberta. The described approach can be utilized to most
efficiently detect serious fluid leakages for previously nontested wells in Alberta.

7. Conclusion

This article describes the development of a framework enabling the prediction of serious fluid leakage
from hydrocarbon wells. Awide range of machine learning algorithms was trained based on 22 physical
properties from 19,730 wells, evaluated by 4,933 wells (validation set), and finally tested by 2,741 wells
(test set). A new imputation technique with low computational cost was developed using a modified LU
conditional simulation to overcome the challenge of frequently missing data for selected well properties.
Using this approach, the correlations of features were preserved after imputation. Due to random sampling
from the distribution of well properties, the associated uncertainty in the imputation of missing data was
quantified. Random Forest was found to have the highest performance among all classifiers. The
importance of well proprieties to predict serious fluid leakage was quantified based on 100 realizations
of Random Forest: each run used different imputed values to incorporate the uncertainty of imputation for
feature importance measurement. Month Well Spudded (e.g., the age of the wells) was found to have the
highest importance for potential fluid leakage followed by Total Production Month, Surface-Casing
Depth, Production Casing Depth, Measured Depth, Cumulative WATER Prod and Cumulative GAS
Prod. The well properties do not have a strong positive linear correlation with the target (AER

Figure 15. (a) Location map of 1,000 random wells without field test in Alberta, Canada. (b) Bar chart of
missing values of the wells in (a) for 22 well properties retrieved from the geoSCOUT database.

e12-18 Mehdi Rezvandehy and Bernhard Mayer

https://doi.org/10.1017/dce.2023.9 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2023.9


classification). However, the presented results suggest that the oldest and deepest wells with high
production are most likely to have serious fluid leakage issues. It is important to note that Deviated Hole
and Horizontal Hole have almost no impact on serious fluid leakage. A challenge is the imbalanced
number of classes that leads to low sensitivity forcing predictive models to classify more majority class
(nonserious leakage). A combination of undersampling and oversampling techniques was considered to
adjust the class distribution of training data and feed more balanced data to predictive model. Under-
sampling was randomly applied for the instances with missing well properties. LU unconditional
simulation was utilized for oversampling because of reduced computational cost and quantifying
uncertainty. K-fold cross-validation after resampling resulted in severe overoptimism and overfitting.
The correct approach was to resample the training folds of each split for K-fold cross-validation to train
separate models. The most reliable class ratio was chosen at the point where the metrics have similar
performance. The predictions from each trained model on validation and test sets were aggregated by
predicting the class that gets the most votes. Model training with more balanced class data reduces false
negative estimation and increases the sensitivity. The integration of Random Forest and Logistic

Figure 16. (a) Mean of 100 predicted probabilities of serious fluid leakage for 1,000 wells. (b) Location
map for 488 wells with the probability higher than 0.6 in (a). (c) Location map for 136 wells with the

probability higher than 0.8 in (a).
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Regression as Soft Voting leads to a more reliable prediction. This classifier can be used to detect serious
fluid leakage for oil and gas wells in Alberta. However, there is no one-size-fits-all solution and the
optimal combinationmay vary for different data sets. It is crucial to keep inmind that optimal performance
can only be achieved by experimenting with various combinations of sampling ratio and classifiers, as
different data sets have different characteristics. The method outlined in this article can be utilized to train
a robust classifier for any oil and gas production field. This should be helpful for the development of cost-
effective field testing approaches that result in environmental advantages by identifying and prioritizing
amendment of the leakiest wells.
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