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A GENERALIZATION OF A THEOREM OF MAROTTO
KENICHI SHIRAIWA axp MASAHIRO KURATA

In 1975, Li and Yorke [3] found the following fact. Let f: I— I be
a continuous map of the compact interval I of the real line R into itself.
If f has a periodic point of minimal period three, then f exhibits chaotic
behavior. The above result is generalized by F.R. Marotto [4] in 1978 for
the multi-dimensional case as follows. Let f: R® — R" be a differentiable
map of the n-dimensional Euclidean space R" (n > 1) into itself. If f has
a snap-back repeller, then f exhibits chaotic behavior.

In this paper, we give a generalization of the above theorem of Marotto.
Our theorem can also be regarded as a generalization of the Smale’s re-
sults [6] on the transversal homoclinic point of a diffeomorphism.

§1. The Main Theorem

Let M be a smooth manifold of dimension n. We denote by T.(M)
the tangent space of M at a point x of M. Let f: M — M be a C'-map.
The tangent map of f at x€ M is denoted by T,f: T,(M)— T,,,(M).

Let z,e M be a fixed point of f. Then f is called a hyperbolic fixed
point if all the modulus of the eigenvalues of T, f: T,(M)— T,(M) are
different from 0 and 1. Define E*(resp. E*) to be the direct sum of the
generalized eigenspaces of T, f which correspond to the eigenvalues of
modulus less than 1 (resp. greater than 1). Then E° and E* are T, f-
invariant vector subspaces of T, (M), and T, (M) = E* D E*.

Let s = dim E* and u=dim E*. Fix a norm |- || on E* and E* For
r, > 0, we define Ei(r,) = {xe E*; ||x|| < ro} and E*(r,) = {xc E*; | x|| = r,}.
By stable manifold theorem, it is known that there are embeddings ¢*:
E(r)) > M and ¢*: E*(r,) — M for sufficiently small r, > 0 satisfying the
following conditions.

(1) ¢'0) = 2 and ¢(0) = 2,

(2) T': T(E(ry)) = E*— T, (M) and Tp": T(E*(r)) = E*— T, (M)
are injections.
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(3) If we put Wil(zy) = ¢*(E*(ry)) and Wi (2,) = ¢*(E*(r,)), then there
exists a neighborhood U of z, such that Wg.(z,) = {xe U; lim,_.. f*(x) =
z} and Wi(z) = {xe U; lim,_.. f~"(x) = 2}.

We call such Wg,(z) (resp. W (2,)) a local stable (resp. unstable)
manifold of f at z,

Now we fix a metric d on M.

Main THEOREM. Let f: M — M be a C'-map. Let z,e¢ M be a hyper-
bolic fixed point of f. Now we assume the following three conditions.

(1) u=dimE*>0.

(2) There exist a point z,€ Wi(2,) (z2,#%2,) and a positive integer m
such that f™(z,) € Wi(z,).

(8) There exists a u-dimensional disk B* embedded in Wg.(z,) such
that B* is a neighborhood of z, in W(z,), f™|B*: B*— M is an embedding,
and f™(BY) intersects Wi (2,) transversally at f™(z,).

Then the following conclusion holds.

(a) There is a positive integer N such that there is a periodic point
of f of minimal period p for any integer p = N.

(b) There is an uncountable set S (called a scrambled set) in M satis-
fying the following conditions.

(i) S does not contain any periodic points.

(il) f(Scs

(i) lim sup;-.. d(f*(x), f*(y)) > 0 for any x, ye S (x # y).

(iv) lim sup,... d(f*(x), f*(y)) > 0 for any x€ S and a periodic point y.

(v) There is an uncountable subset S, contained in S such that

lim inf,_.. d(f*(x), f“(y) =0 for any x, ye S, .

Remark 1. The above theorem holds if f: M — M is of class C' on a
neighborhood of 2z, and on a neighborhood of the orbit of z;.

Remark 2. In the above theorem 7, f™ may be degenerate.

Remark 3. In case u =dimM and f™(z) = 2, the above theorem
reduces to the theorem of Marotto.

Remark 4. If f is a diffeomorphim with f™(z)=z, then the above as-
sumption implies that f™(z,) is a transversal homoclinic point.

Remark 5. Transversality condition in our assumption (3) is neces-
sary. We have an example which shows that without the transversality
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condition the conclusion of the main theorem does not hold.
Throughout this paper, we work under the assumption of the main
theorem and use the same notation.

§2. Main Lemma

Using the inverse function theorem, we know that there is an embed-
ding @: E*(r,) X E“r,) > M such that @®|E‘(r) X 0 = ¢° and ®|0 X E*(r)
=¢" for sufficiently small r, > 0. Therefore, we identify E*(r,) X E*(r,)
with a neighborhood of z, for sufficiently small r,. By this identification,
E«(r) (resp. E*(r)) is identified with Wg.(z,) (resp. Wi (z,)).

Since z, is a hyperbolic fixed point of f by our assumption, T, f is
non-degenerate. Also, we assume that 7,f is non-degenerate for any point
xe E*(r) X E*(r) (We replace r, > 0 a smaller value if necessary).

For xe E*(r,)) X EXr,), we write

:l’,m=<Tﬂj A > T,f-l=(Tf 4
B, T B, T

with respect to the product structure E*(r) X E*(r).
Put

@ = max {151, 1 T2 113,
_I];_ = max {| T4, | T2}

and

k = max {[{A.[, | B. 1, Il Az[l, | B |} ,

where x runs over E*(r;) X E*(r). Then, by our hyperbolicity assumption
on 2, the following inequalities hold on a sufficiently small neighborhood
E(r) X E*(r).

a<1, L<i,

b

() b _ 1y
a+k<1, b—k>1, and k<(_zl

Since z, € W (z,) by our assumption, we may assume that z € E%r,).
Choose a real number r such that 0 <r <r, and 2z ¢ E¥r).

For ¢ = s, u, =° denotes the natural projection from E*(r;) X Er)
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onto E°(r,). Since T,(E*(r) X E*(r)) = T(E*(r)) X TAE%r)) = E* X E*,
ve T.(E*(r,) X E*r)) is uniquely expressed as v = v° + v¥, v’ ¢ E°.

For a g-dimensional disk D’ in E’(r,), we denote its boundary in E’(r)
by oD-.

MaiNn LEMMA. Assume the same conditions of the main theorem. Let
B* be an u-dimensional disk in E(r), and let B* be an arbitrary s-dimen-
sional disk with the origin 0. If +: B* X B*— E*(r)) X E*(r,) is an embed-
ding such that |0 X B* is the inclusion map B* C E*(r)), then for any
> 0 and L > 0 there exists a positive integer N(v, ¢, L) satisfying the fol-
lowing conditions.

For any integer n = N(v, ¢, L), there is an embedding ¢ = ¢(+, ¢, L, n):
E(r) X B*— E*(r) X E*r,) satisfying the following eight conditions.

21) ¢E(r) xXy)CTy(B Xy  foryeB“

(22) [ (¢(E(r) X BY) C E(r) X E*(r).

(2.3) [™$@E(r) X B¥) C 8E*(r) X EX(r).

@2.4) zf"¢(x X B*) = x for xe E(r).

2.5) ||vY]| <el|v|| for any non-zero v in T(f"¢(E*(r) X ¥)), y € B~

2.6) |(Tf"(v)|| > L|v*| for any non-zero v in T(H(E(r) X ), y € B
@7 T < el (T )| and

2.8) |[(Tf ()| > L||v*|| for any non-zero v in T(f "¢(x X B¥), x e E(r).

Proof. Let r, and ¢, be real numbers such that r <r,<r, and 0 <e
< minf{e, 7,7, — r,r; — r;}.  Since the set {||v*||/||v*[|; v+ 0¢e T,(y(B* X y)),
y € B} is bounded, there exists an integer N, > 0 such that some s-dimen-
sional disk in f-™/(B°* X y) is ¢, C'-close to E(r,) for any n= N, and ye
B*. This is proved by the same argument as in the proof of the A-lemma
in J. Palis [5], if we note that the i-lemma holds uniformly with respect
to a disk family {y(B* X y); y € B*}.

The above fact implies that there exists a neighborhood V of B* in
B* x B* such that f*(y((B°* X ¥)N V)) is an s-dimensional disk, which is
& C'-close to E*(ry) and z°f"(y((B* X ¥)N V))DE*(r) for any ye B*. If we
take ¢, > 0 small enough, then f-"(y((B* X y)N V)) intersects with x X E*(r)
(x € E*(r)) in a single point for each y € B“*. We denote this point by x(x, ).
Now, define ¢: E*(r) X B*— E*(r,) X E*(r,) by
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#(x, y) = f"(x(x,y)  for (x,y)e E(r) X B*.

Then, the conditions (2.1)~(2.5) are clearly satisfied by the definition of

@.
If N, is large enough, then there is a neighborhood W of B* in (B*X
B*) such that for any non-zero v in T,(y(B* X y)) with ye B* and ze W

N(B° Xy) the inequality
1(Tf = I(Tf @) < 1

holds. Then,
(Tl = 1)1 W)l — AT ()|

> (b — BTl ,
and
ICTF 2o HT T =) || + I B (T w)"]|
& — BTl

(T Q)
A ITF )

< (b-—-=% LA S A\ By -

SELAC Ty T )

SbO—Rla+h<L.

The last inequality holds since b - k> 1, a + 2 < 1.
By the induction on 4 > 1, we have the following inequality

[T | > (b — R (Tf ")) |

for any ¢ = 1 and any non-zero ve T,(v(B° X ), where ye B*, ze WN

W(B* X ).
Now taking N > N, large enough, we have (2.6) for any n > N.
Replacing Tf-' (vesp. E* and E°®) by Tf (resp. E° and E¥), we have

(2.7 and (2.8) similarly.

§3. Construction of a map from a shift

First, we construct symbols, and using these symbols, we define a map
from a shift to M. This map is used in our proof of the main theorem.
There is a positive integer N, such that for any integer N,

LEMmA 1.
> N,, there are two embeddings
=01

¢t (E'(r) X E™(r;), E*(r) X BY) —> E*(r;) X E*(r»)

O <r<r,<r) of a pair of rectangles, where B} is a u-dimensional disk
contained in the interior of E“(r,), satisfying the following 11 conditions.
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(1) fYB(E(r) X BY)) C $(E(r) X E*(r))) () =0, 1)
(32) [ (pE(r) X 9By)) C $(E'(r) X (E*(r) — By))  (i,j =0,1).

(B.3)  (f")y: H,_((p(E(r) X 0B})) — H,_,(¢,(E*(r) X (E*(r)) — By))) is an
isomorphism, where H,_,( ) is the (u—1)-th homology group and (f"*),
is the induced homomorphism of ¥ (i,j = 0, 1).

(84) ='¢,(xX BY) consists of a single point for x € E*(r), and =°¢,(E*(r) X BY)
= E*(r) @E=0,1).

(3.5) #“fMg(E(r) X y) consists of a single point for ye B (i =0,1).
(38.6) 2|v'|| <||v¥|| for anmy non-zero v in T(f"'¢,(x X BY)), x€ E(r)

i=01).
3.7 2|v¥| <||v'|| for any non-zero v in T(¢(E*(r) X ¥)), y € B¢
i=0,1).
3.8) |[(TfY¥(v)“|| > 8||v*| for any non-zero v in T(g,(x X BY)), x € E(r)
=0,1).
(3.9) 8Tyl < ||v*|| for any non-zero v in T(¢(E*(r) X ¥)), y € B
i=0,1).

(3.10) If we put A, = ¢(E*(r) X BY) and A, = ¢,(E*(r) X BY),
then AonAl = ¢ .

(8.11) There exists an integer k (0 < k < N, — 1) such that f*(A)NfF(A,)
=¢for 0Si<N,—1land fYA)Nf(A)=¢ for0<i+k= N —1

Proof. Since z, € Wi (z,) = E*(r,) and z, + 2z, by our assumption, there
exists a positive number r, such that z ¢ E%r,), r, <r.. Let r be a suf-
ficiently small number such that 0 < r < r,, which we determine later.

Since f-!|E*(r)) is a contraction, there is a positive integer L such
that f~%(z) € E*(ry).

Let j: E*(r) X E¥(r) — E*(r,) X E*(r,) be the inclusion map. Let N, =
N(j, 1/2, 8) be the integer given in the main lemma. By the A-lemma, the
transversality condition of the main theorem, and the fact that f|E“(r,) is
an expansion, there are positive number N, > N, and an u-dimensional
disk D* in E*(r,) satisfying the following conditions.

(1) D* is a neighborhood of f-%(z,) in E*(r,).

(2) f"(f~%(=z)) e E*(r) and f**(D*)CE*(r) X E*(ry.
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(3) f¥(@D*) C EX(r) X (E*(r:) — E*(r)).

(4) 8|v*|| <|v*|| for any non-zero ve T(f¥:(D")).

(5) D*“N EXr)=¢.

(6) There exists a positive number r, such that f2(D*) < Int E*(r,)
— f(E*(ry)), and f~*(D*) N fX(D*) = ¢ for 1 < i < N, — L.

From conditions (3) and (4), z*|f¥*(D*): f¥s(D*) — E*(r,) is a diffeomorphism
onto its image, and its image contains E“(r). And there is a neighborhood
W of D* in E*(r,) X E*r,) such that

(7) =*o(f¥|W) is a submersion,

(8) fAW) N Er) X EXr) = ¢,

(9) fHW)C E*5) X E“(r;) — f'(E*(3) X Er,)) for some § > 0, and

10) & W)YNfx(W)y=¢ for 1<i< N, — L.

Therefore, there are positive number & and an embedding +: E*) X D*
— E*(r,) X E*(r,) satisfying the following conditions.

(11) +|D* is the inclusion map, and (E*(d") X D*) < W.

(12) =m0 f¥(y(E(d") X y)) consists of a single point for ye D",

(13) #(Y(x X D*) = x for x € E*(d).

(14) (E(@) X D“) N E«(r) X E*(r) = ¢.

If we take ¢ > 0 small enough, then we have the following condi-
tions.

(15) fY(y(E*(d) X D) € E*(r) X E*(r;)

(16) fY(W(E*(@) X 9DY) C E(r) X (E*(r)) — E*(r)).

17) 4|v*|| < |lv*| for any non-zero v in T(f"*(y(x X D¥))), x € E*{§).

By (17) we can take a small number p (0 < p < 1/2) such that

(18 2|(TF )|l <II(TfY() || if ve T(Y(E*(d") X D) and ||v*|| < p[[v*|l.

By a similar argument, we can take a large number L, > 0 such that

19 |[(Tf¥(v))*|| > Li*||v*|| for any non-zero

ve T(y(E*@") X D¥) with ||v*]] < pllv*], and

(20) [I(Tf™()y*|| < Ly||v*|| for any non-zero

ve T(W(E@) X y)), ye D"

Let N, = N(¥, p, 8L,) be the positive integer given in the main lemma,
and N, =N, + N,. Let ¢,: E5(r) X D*— E*(r) X E*(r) be defined by f~"*¢(y,
o, 8L, N,), where ¢(y, p, 8L;, N,) is given in the main lemma.

Let N, > N, be a given integer. Then, N, > N, > N, > N,. There-
fore, we have an embedding ¢(j, 1/2, 8, N,): E‘(r) X E*(r) — E*(ry) X Er,)
by the main lemma. Now, define ¢,;: E‘(r) X E*(r) — E*(r) X E*(r) by ¢
= f %0 g(j, 1/2, 8, Ny,
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Put By = E*(r) and B¥ = D*. Then, by our construction, (3.4) and
(3.5) are satisfied. By the definition of ¢, ¢, and (18), we see (3.6) holds.
Also, by the definition of ¢,, ¢, and the fact p < 1/2, (3.7) holds. (3.8) is
a consequence of the definition of ¢, ¢,, and (19). Also, (3.9) is a con-
sequence of the definition of ¢, ¢, and (20).

Now, we can extend ¢; (i = 0,1) to an embedding ¢,: E*(r) X E%(ry)
— E(r) X E*(r,) such that it satisfies conditions (3.1), (3.2), and ¢,(@E*(r)
X E“(r,)) C 0E*(r) X E*(r,). Then, (38.3) is a consequence of the fact that
*|f¥(D*) is a diffeomorphism and its image contains E*(r).

By the definition of ¢, and (14), f¢,(E*(r) X B¥) N E*(r) X E“(r) = ¢.
Also, it follows from the definition that f¥¢,(E*(r) X By) = f~"o-"9¢(j, 1/2,
8, N)E*(r) X By) C f-¥o-¥(E(r) X EXr)) C E*(r) X E¥r), since N, — N, =
N, — N, = N, > N, = N(j, 1/2,8). Therefore, f"¢,(E*(r) X Bt) N fV¢y(E(r)
X BY) = ¢. This proves (3.10).

Finally, put £ = N, + L. Then, 0<A2<N,+ N, = N, <N, By (10)
and our construction, f¥(4,) N fi(A) C (W) N 5 (W) = ¢ for k<i<
N,. Thus, f%(A;)) N fi(A) = ¢ for k<i < N, Also, if 0 i<k f5(4) N
fi(A) = ¢ by (9). Finally, if 0 < i < N,, fi(4,) C E*(r) X E%r). Therefore,
by the fact that f*(4,) € f4(W) and (8), we have f“(A) N f{(A,) = ¢ for 0
< i< N, This completes the proof.

Let 3 = {A,, A,}* be a two-sided shift on two symbols A, and A,. By
definition, an element of 3 is a bisequence a = (a,);cz such that a, = A,
or A, for each ic Z, where Z is the set of integers. The metric d on ¥
is defined by d(a, b) = > ., 1/2'"d(a,, b,), where a = (a,), b = (b)), d(a;, b))
=0 if a, = b,, and d(a;, b,) =1 if a, # b,. By this metric ¥ is a compact
metric space.

Now, define integers k(a, i) and n(a, i) for a = (a,) € 2 as follows.

. N, if a, = A,
ka9 = {M if @, = A,
J’z’lk(a,j) ifi>0
n(a, i) ="
l—i ka,j) ifi<0
j=-1

Define a subset F-i(a) of M as follows,
(fk(a,O)Iao)—l 0. o(fk(a,i-l)[ai_l)-l(ai) ifi>0
F-a) = a ifi=0
freh(- s fre (@) N g ) N )N a) Na, i i <0,
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Then for 4, m > 0, (M_,cisn F*(a) 3 x if and only if f**9(x)eq, for 0 < i
< m, and there exist y, € a, with f*@(y) =y,,,for -4 <i<0and y, = x.

PropositioN 1. (a) (Niez F~%a) consists of a single point of M for
each ae 2.

(b) A map p: ¥ — M defined by p(a) = (Niez F%a) (acX) is con-
tinuous.

(c) If there exists an integer i >0 such that a,+ b, for a = (a,), b=
(b)) € 2, then p(a) + p(d).

(@) If Ny= N, then poe = f"op, where ¢: 2 — 3 is the shift map
defined by o(a) = (b), b, = a,,, for ic Z.

Proof. Tt follows from (3.1)~(3.3) that (M_,q;<0 F~“(a) # ¢ for any ac
2 and positive integer ¢ (cf. Kurata [2], 50-51). Let m be any positive
integer. For a = (a,) €2, we define b = (b)) by b, = a,,,, i€ Z. Then,
if x is a point of (M_gumsizo F @@ o - o(f @™ Va,_ )" (x) C
(M-tsizm F*a). This implies that (\_,c;<. £ (a) # ¢ for any positive inte-
gers £ and m. Since (\_,c;<n F'-'(a) is compact, (,cz F*(a) + ¢ for each
acl.

In order to prove (a), we shall prove the following assertion (x) by
induction.
(*) Let x be a point of (M;c; F~%a). Then, the following formula holds

for any integer ¢ = 0.

0 F~@ ¢ B@@; 2rd)) X E*@); 2r3)),

where E°(y;r’) denotes the s-dimensional disk in E’(r;) with the center y
and the radius r’ (¢ = s, w).

If £ =0, () follows from the fact A, C E¥(r) X E“(r) (i =0,1). Now,
assume that (x) holds for some Z = 0.

For a = (a)e 2, let b = (b,) (resp. ¢ = (¢;)) be an element of 3 given
by b, = a,,, (resp. ¢, = a;_,), i€ Z. Then,

@D Nisen F4a) C (fla) Mg F74B) N X215 F ().
Let xe Miez FUa), y€(MNicz Fi(b), we (Niez F'(c) be such that f*=-2(w)
= x, ff0(x) = y.

Define j=0if ¢ = A, and j =1 if ¢, = A,. Then, there is a point
w' € E*(r) such that ¢,(w’ X BY)sw since wec, For yeg,(w X BY) N
B X 1), put C(¥) = {2; d(x*(2), #*(¥)) < &, z€ 6(E(r) 1)}, and for y/' €
fravg (B(r)XE"), t'e By, put CU(y") = {z; d(z,y')<e[8, ze @ g (Er)
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X t")}, where ¢ = 2r(1/2)’. Note that z'¢,(x’ X B¥) = x’ and #'(y) = =*(w)
= w’. Then, by using the inductive hypothesis, we have the following.
(22) Nz Fe) C E(@'(w); &) X E*x(w); ¢) C (n*|co) (E*(z*(w); €))
= U{C(¥);y e ¢,(w X B}
By (3.9), the following inequality holds.
d(z* o f*@(2), n° o f¥@0(y)) < §d(z*(2), =°(¥)),
for z, y e g(E(r) X 1) .

Since f@-vg (E*(r) X t) C E*(r) X ¢ by (3.5), it follows that

d(@* o f*@D(2), 1% o fX@=D(y)) = d(f*(2), f*“~"(¥)) .

Therefore, f*=-(C(y")) C C'(f**-2(y)). This and (22) imply the following.

(23) fe (Mg Fe) CU{C'(Y"); " € f* (g’ X BY))}.
Define h=0if g, = A, and h =1 if ¢, = A,. Let 2’ ¢ B* be a point
such that x e ¢,(E‘(r) X 2) C a,. For x’ e ¢,(E(r) X '), put

B'(x) = {z; d(z*(2), n*f**"(x)) <, 2€[**V¢,(t X B}), &’ € $,(¢ X B}
and
B(x) = {z;d(z, ') < ¢/8, z€ ¢,(t X BY), x' € ¢,(t X B¥)}.
Then, by using the inductive hypothesis, we have the following.

0, F-1(8) N f7*™a) C E*(x'(y); &) X E%x*(y); ) N [ (a0)
CE")E* @ ()5 &) N fH*Pg,(E(r) X By)
= U {@)E"@"(3);€) N fHV¢a( X By} .

1€ ES(r)
Note that (ﬂu)—l(n.u(y)) m fk(a,O)(ao) —_ fk(a,0)¢h(Es(r) X z/) and n_ufk(a,O)(x/) — n.u(y).
Then, we have

() F=(6) N f**(a) C U {B(x); &’ € g(E*(r) X 2))} .

li1se

By (3.8) and the definition of B'(x’) we have the following.

249 (f7*a0) (Miuse F4B)) C U{B'(x'); &’ € gp(E(r) X 2')}
Combining (21), (23) and (24), we have

(25) NMiiisen F4@) € {(UB'(&); %" € ¢a(E(r) X 2}

N (U{C'(¥"); y" efr @ 2g,(w' X By)}).

By definition and (3.5), if y” € f*»Vg.(w' X BY), d(@,y"’) = d(=*(),
*(y")) <e¢/8 for 2 € C'(y"”) and z*(2') = z*(y"). Similarly, by (3.4) and de-
finition, if &’ € ¢,(E*(r) X 2), d(z, ) = d(z*(2), z*(x")) < ¢/8 for 2z’ e C'(y")
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and z°(z) = n°(x’). These facts and (3.6), (3.7) imply that

(26) B'(x)N C'(y") C E(x’(x); ¢/2) X E“(n*(x); ¢/2) for any x' € ¢,(E(r)
X 2) and y” € f¥»=Vg . (w' X BY).

Therefore, (25) and (26) imply that

N Fa)c Es(ns(x); i) > E“(n“(x); f_).
151 Se+1 2 2

Thus () holds for ¢ + 1, and this proves (x) for any ¢ = 0.
It is clear that (x) implies (a).
Now, we reformulate (x) as follows.

()’ N F@c E‘(nsp(a); 2r(%—)> X E“(n“p(a) ; 2r(%))

where p(a) = (\ F~%a), acZ, and 4 = 0.
1€Z

From this formula and the definition of the metric on X, continuity of
p: 2 — M is easily proved.

By the definition of p, it is clear that f**“(p(a)) e a, for any i = 0.
Let a = (a;), b = (b;) be elements of 3 such that a, = b, for some i = 0.
Then, it is clear that f**?(p(a)) # f*®*(p(d)) since A,N A, = ¢. Thus, p(a)
# p(b).

Finally, if V, = N,, then it is clear from the definition that poc =
fY¥ 0. This completes the proof.

§4. Proof of the Main Theorem

In this section, we give a proof of the main theorem.

Let N = 2N,. Let p be an integer greater than N. Put N,=p — N..
Then N, = N, and p = N, + N,. We apply Proposition 1 in this case.

Define a = (a,)e X by a,, = A, and a,,, = A, for i€ Z. Put x = p(a)
= () F-%a). Then, f**"(x)ea, for i > 0, and there are x, € ¢, such that
fr@i(x;) = x,,, for j <0 and x, = x. Put y = f?(x) = fY*V(x) = fr*(x).
Then, f®9(y) = fred+@d(x) = fr@*D(x). Hence f"*?(y)e€ a,,,=a, for i>
0. Put y,=f"*%(x;) for j <0. Then, y, € a;,, = a; and f**(y,) = f**P(x,,,)
= y;.; for j <0 and y,=y. Therefore, y € (\;cz F~*(a) = p(a) Thus, y =
p(a) = x. This proves f?(x) = «x.

Next, we shall prove that p is the minimal period of x.

By definition, x€ 4,, f"(x)e A,, and A,NA, = ¢. Since z,€ 4, is a
fixed point of f, x + z,.
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Since N, = N, and p = N, + N,, N, = p/2. By the similar argument
as in the proof of the main lemma, f{(x’) € E*(r) X E*(r,) for 0 <i < N, if
x’ € A,. Let d be the minimal period of x.

If d <p, then d < p/2 since d is a divisor of p. Therefore, d < N,.
This implies that fi(x)e E*(r,) X E¥r,) for 0 <i < d and fi(x) = x. But
this is impossible by Hartman’s theorem [1], since x = z,. (We replace r
for a smaller value if necessary to apply Hartman’s theorem.) This com-
pletes the proof of (a) of the main theorem.

Next, we prove (b) of the main theorem. In this case, we take N, =
N,. Then, combining Proposition 1 and Lemma 1, we have the following
proposition.

ProrosiTioN 2. Under the assumption of the main theorem, we have
the following properties.

4.1) p: ¥ —> M is a continuous map, and p(a) = p(b) if a, + b, for some
i >0, where a = (a,), b = (b)e 2.

(42) fYop=poa.
(43 ANA=4¢.

(4.4) There is an integer k (0 < k < N, — 1) such that f*(A) N fi(A) = ¢
for 0<i<N,—1, and flA)Nf(A) =¢ for 0S i+ k=N, —1.

Now, we can prove the conclusion (b) of the main theorem using Pro-
position 2. Our proof is similar to the one in Li and Yorke [3] and Marotto
[4].

For a = (a,) € 2, let R(a, n) be the number of a,/’s which is equal to
A, for 0<i<n. Foreach we(0,1), choose an element a* = (a¥) € X' satis-
fying the following conditions.

(1) If ¥ = A, then i = k* for some ke Z .

(2) lim,.. R(@”, n)/n = w.

Put A = f*, and put S, = {h*(p(a®)); we (0,1), h = 0}. Then, A(S,) C
S, by definition. Also, by (4.2), S, = p{c*(@*); we (0,1),k = 0} D pla“;we
(0, 1)}. By (1), (2), and (4.1), it is clear that p{a”; we (0, 1)} is uncountable.
Hence S, is an uncountable subset of M.

Suppose that x = h*(p(a®)) = p(e"(a®)) € S, be a periodic point of h.
Since hi(x) = h**"(p(a®)) = p(a**™(a®)), h'(x) € a?,, for any i = 0 by the defi-
nition of p and ¢. Therefore, by (4.3) a? must be periodic in i for suf-
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ficiently large i. But this is impossible by (1) and (2). Thus S, does not
contain any periodic point of A.

Suppose that x = A"(p(a@®)), y = h™(p(a*’)) € S,, and x # y. Then, h'(x)
€a?.,and hY(y)ea¥,. By (1) and (2), there exists an infinite number of
i’s such that a¥,; + a%,;. Since 4, N A, = ¢, and A, and A, are compact,
the distance L of A, and A, is positive. Therefore, there are infinite num-
ber of I’s such that d(hi(x), h(y)) = L > 0.

Thus, we have the following

(3) limsup,.. d(h'(x), A (y)) = L >0 for x, ye S, (x = y).

By a similar argument as above, we can prove that the above (3) holds
for any x € S, and any periodic point y e p(2) of A.

Let y be a periodic point of 2 in M — p(2). Then, the positive orbit
orb; (¥) = {h'(y); i = 0} of ¥ under A is a finite set disjoint from the com-
pact set p(¥) which contains S,. Therefore, the following (4) holds.

(4) lim sup,.. d(hi(x), h'(y)) > 0 for x€ S, and a periodic point y of A.

Put S = {f%x); x€ S,, k= 0}. Then, SO S, and f(S) C S by definition.
Therefore, S is an uncountable set.

If ye S is a periodic point of f, then there is an integer i = 0 such
that f(y)e S, and fi(y) is a periodic point of A = f¥. But S, does not
contain any periodic points of A& as stated before. Therefore, S does not
contain any periodic points of f.

Let 5 = {4, f(A), - -+, (A, 4, f(A), - - -, [V (A)}? be the two-
sided shift on 2N, symbols, and let X, be a subshift of finite type with the
following transition matrix.

Then, by definition an element of X, is a bisequence of symbols con-
sisting of the blocks of symbols of the forms A,, f(4,), - --, " '(4,) and A,,

f(A1)7 Tty fNo_l(Al)'
Define a map p,: 2, — M by the following manner. For a = (a)€c 2,
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Di(a) is a point x € M satisfying the following two conditions.

(5) fi(x)ea, for i = 0,

(6) For each i <0, there is a point y, € «; such that f(y,.,) =y, and
Yo = X.

By Proposition 1 (a), there is a unique point x € M satisfying (5) and
(6). Similarly to Proposition 1, we have the following proposition.

ProposiTiON 3. (a) p;: 2, — M is a continuous map.

(b) If there exists an integer i = N, such that o, = B, for a = (a,), B
= (B) € 2,, then p(a) + pi(B).

(¢) pioa; = fop,, where o,: 2, — 3, is the shift map of X,.

(d) For each a = (a,)e X, define tla) = (a) be an element of X, such
that ayy.; = f(a) for 0 j< N, — 1, and ic Z. Then, t: ¥ — 2, is con-
tinuous, p;ot = p, and ¢ ot = tog.

Now, we come back to the proof of the theorem. By Proposition 2,
Proposition 3, and the definition of S, S = {p,cd*ot(a*); we (0,1), 2 = 0}.
By a similar argument using the properties (4.2) and (5), we can prove the
conclusions (iii) and (iv) of (b) of the main theorem.

Finally, let x =po¢™(a*),y=poo™@@*') € S,. Suppose that m = n. Then,
m 4+ i and n + i cannot be squares of some integers for { = k* — n + s,
1< s<£ 2k — (m— n). By the condition (1), we have a*,; = a%,; for i =
F=n+s1<s<2k— (m—n) If wetend & to infinity, we have the
following.

lim inf d(¢"**(a®), ™ *'(@*)) = 0 .

Gro0
Since p: 3 — M is uniformly continuous,

lim inf d(p - 0.(a®), p o 0*(a*")) = lim inf d(h*(x), B¥(y)) = 0 .

i—oo

Since A = f*,

lim inf d(f¥(x), f4(y)) < lim inf d(h*(x), A¥(y))-
Thus

lim inf d(fi(x), f(y») =0 for x, ye S, .

This completes the proof.

Remark 6. If we replace the condition (1) by the following condition
(1) if a? = A,, then i =k’ some ke Z, and if we construct the set S
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similarly, then we can prove the same conclusion (b). Furthermore, (v)
holds for x, ye S.
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