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A model of the growth of hydrogen bubbles in
the electrolysis of water
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The growth of attached bubbles during the electrochemical evolution of hydrogen at a
horizontal cathode at the base of a quiescent, dilute aqueous solution is analysed using a
simple model of the process that includes the Butler–Volmer reaction model, the diffusion
and migration of electroactive species and a symmetry condition that approximately
accounts for the presence of periodically spaced bubbles on the electrode surface. The
diffusion controlled growth of a bubble approximately follows a t1/2 law when the spacing
of the bubbles on the electrode is large, departing slightly from it due to the non-uniformity
of the concentration of dissolved hydrogen in the supersaturated solution into which the
bubble grows, and approaches a t1/3 law when the spacing decreases. The space- and
time-averaged current density increases exponentially with the applied voltage for an
alkaline solution when the consumption of water in the reaction is not taken into account.
For an acidic solution, the average current density saturates to a transport limited value
that depends on bubble spacing. For a given voltage, the presence of attached bubbles
increases the average current density due to the decrease of the concentration overpotential
caused by the bubbles. The spacing of the bubbles on the electrode surface decreases
when the voltage increases if the maximum supersaturation at the electrode is imposed to
be constant. The result suggests that coalescence of attached bubbles will occur above a
certain voltage.

Key words: electrohydrodynamic effects

1. Introduction

Gas evolution reactions play an important role in many electrochemical processes
of interest. These reactions include hydrogen and oxygen evolution reactions
in water-splitting electrolyzers, chlorine and hydrogen evolution reactions in the
chloralkaline process, the CO2 reduction reaction for regenerating fuels and many others.
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The life cycle of a bubble at a gas-evolving electrode begins with the nucleation at
a suitable site of the electrode surface of a cluster of gas molecules from a solution
supersaturated with dissolved gas. The bubble grows by taking up dissolved gas that
reaches its surface by diffusion (Brandon & Kelsall 1985; Enríquez et al. 2014), and
detaches from the electrode when the buoyancy force, aided by hydrodynamic forces if
the liquid flows around the electrode (Eigeldinger & Vogt 2000), overcomes the surface
tension and electric forces that keep the bubble on the electrode surface (Brandon et al.
1985; Oguz & Prosperetti 1993; Lv et al. 2017). The detached bubble then drifts in the
liquid until it reaches the surface where the gas is collected. Coalescence of bubbles may
occur before and after detachment.

Bubbles affect the electrochemical reactions at the electrode in various ways. On the
one hand, attached bubbles cover a fraction of the electrode surface, which reduces the
wet surface where reactions occur and hinders the transport of mass and electric charge
between the electrode and the liquid. On the other hand, the bubbles are sinks of dissolved
gas, whose concentration decreases around them. Since the dissolved gas is the reaction
product, its decrease leads to a decrease of the rate of the backward reaction and thus
enhances gas evolution, opposing the effect of bubble coverage. The local density of
electric current passing between the electrode and the liquid is proportional to the local
rate of the electrochemical gas-evolving reaction, which in turn depends on the local
concentrations of reactants and products at the electrode and increases with the applied
voltage (see next section). To keep a given average current density in the presence of
attached bubbles, the reaction rate in the part of the electrode not covered by bubbles must
be higher than it was in the absence of bubbles. The variation of the applied voltage needed
to achieve this goal, or the variation of the average current density if the voltage is kept
constant, depends on which of the two effects dominates. Bubble coverage of the electrode
tends to increase the required voltage, while bubble-induced decrease of the dissolved gas
concentration tends to decrease it.

Correlating experimental data, Vogt & Balzer (2005) found that the bubble coverage
increases nearly as the power 0.3 of the surface-averaged current density. The effects on
bubble coverage of the electrode surface orientation and wettability, the composition and
velocity of the electrolyte, the bubble departure radius, the temperature and the pressure
have been investigated by a number of authors, and Vogt (2017) put forward comprehensive
scaling laws. The effect of attached bubbles on the electric resistance of the liquid was
analysed by Sides & Tobias (1980, 1982). The coupling of the two effects mentioned above
with the transport of dissolved gas has been much studied (Vogt 1978, 1990; Dukovic
& Tobias 1987; Leistra & Sides 1987; Gabrielli et al. 1989; Gabrielli, Huet & Nogueira
2005). The additional electric resistance of the liquid due to detached bubbles has been
studied using well-known models of the conductivity of a liquid with dispersed bubbles
together with models of the bubble distribution in the liquid. Detached bubbles also affect
the transport of reactants and products of the electrochemical reaction.

In this paper, a simple model of the evolution of hydrogen at a cathode during the
electrolysis of water is used to numerically analyse some of the issues mentioned above. A
dilute aqueous solution undergoes a reduction reaction generating hydrogen at a horizontal
cathode at the bottom of the liquid. The reaction rate is given by the Butler–Volmer model.
The liquid is quiescent, except for the displacement imposed by the growth of the bubbles,
and the transport of species in the liquid is due to diffusion and migration only. A layer
of liquid on the cathode is simulated, which is limited above by a plane parallel to the
cathode where the voltage relative to the cathode and the concentrations of all the species
are constant. The growth of a single bubble attached to the cathode is computed using
conditions of symmetry at some distance from the bubble to approximately account for
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Growth of hydrogen bubbles in the electrolysis of water

the effect of other bubbles growing with a given spacing on the electrode. Alkaline and
acidic solutions are considered, with and without a supporting electrolyte. The growth
of the bubble is slow due to the low concentration of electroactive species and to the
absence of liquid flow; the bubble is assumed to follow a sequence of equilibrium states,
and the distributions of species concentrations and electric potential around the bubble are
quasi-stationary. The electric current density averaged over the electrode surface and over
the time of growth of the bubble is computed as a function of the voltage applied between
the upper boundary and the electrode of the simulated half-cell. This current density is
found to increase with the voltage and, for a given voltage, it is larger than the current
density in the absence of bubbles. The result shows that the effect on the reaction rate of
the decrease of supersaturation around the bubbles dominates the effect of the decrease of
the active electrode area. The variation of the electrode potential due to both effects, and
the voltage drop across the liquid, are analysed. The variation of the bubble spacing with
applied voltage that leads to a constant maximum supersaturation on the electrode, which
is the model prediction of bubble coverage, is computed.

2. Model formulation

2.1. Electrode reactions
Water electrolysis in an alkaline solution occurs through the global electrochemical
reaction 2H2O + 2e− � H2 + 2OH− at the cathode of an electrolytic cell, and
2OH− � 1

2 O2 + H2O + 2e− at the anode. The cathode reaction includes reduction
of water molecules with adsorption of hydrogen, M + H2O + e− � MHads + OH−
(Volmer), where M denotes free sites at the electrode and MHads sites occupied
by an adsorbed hydrogen atom, followed by either or both of electrochemical
hydrogen desorption, MHads + H2O + e− � M + H2 + OH− (Heyrovsky) and chemical
desorption, 2MHads � 2M + H2 (Tafel). The hydroxide ions generated at the cathode
travel to the anode where the oxidation reaction mentioned above occurs through a
complex scheme, generating oxygen and recovering half of the water consumed at the
cathode.

In an acidic solution, water decomposes at the anode in the oxidation reaction H2O �
1
2 O2 + 2H+ + 2e−. The protons travel to the cathode (as hydronium ions H3O+) where
they are reduced in the reaction 2H+ + 2e− � H2, which includes the stage M + H+ +
e− � MHads followed by MHads + M + H+ + e− � 2M + H2 and/or 2MHads � 2M +
H2.

Alkaline water-splitting electrolyzers are a well-established technology. Most
commonly, the water contains a high concentration of KOH that displaces the H+–OH−
equilibrium toward increasing the concentration of OH− and increases the conductivity
of the liquid. The solutions around the electrodes are separated by a membrane that lets
pass OH− but not other ions. An acidic solution can be prepared by dissolving a strong
acid such as SO4H2 in water. This, however, is not used in industrial applications. Existing
acidic electrolyzers feature a proton exchange membrane instead of a liquid electrolyte.

The electrode reactions mentioned above are not elementary processes. Each occurs
through a kinetic scheme that includes adsorption, several electron transfer reactions and
desorption. These elementary processes occur in thin non-neutral double layers on each
electrode surface and depend on the material and structure of the surface. A double layer
includes the excess or defect of electrons at the electrode surface; the compact Stern layer
containing molecules of the solvent and, sometimes, of specifically adsorbed neutral or
ionic species, at distances from the electrode of the order of their size; and the diffuse
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Gouy–Chapman layer where solvated ions are non-specifically adsorbed at distances from
the electrode of the order of their size or larger. The net charge in the double layer is null.
The thickness of the diffusive layer is determined by the balance of the electric and thermal
energies of the ions. For a 1:1 electrolyte, this thickness is (ε0εRT/2n0F2)1/2, where n0 is
the molar concentration of both ionic species outside the layer, ε0 and ε are the permittivity
of vacuum and the dielectric constant of the liquid, R and F are the universal gas constant
and the Faraday constant (product of the electron charge and the Avogadro number) and
T is the temperature of the liquid. In water at 300 K, for n0 = 0.1 mol l−1, this thickness
is approximately 10−9 m. The characteristic variation of the electric potential across the
double layer is RT/F = 30 mV at 300 K.

In this work, attention will be confined to the hydrogen evolution occurring at a cathode,
and the Butler–Volmer model will be used for the overall cathode reaction. In its simplest
form, this model gives the rate ω of the reaction (moles of hydrogen produced per unit
electrode area per unit time) in terms of the local concentrations of the species at the
cathode (but outside the double layer) and the local variation of electric potential across the
double layer. In what follows, the expression ‘values at the cathode surface’ is understood
to refer to the values of the variables immediately outside the double layer. Choosing the
zero of the electric potential at the cathode and calling φ0 the potential immediately outside
the double layer, the rate of the cathode reaction is taken to be

ω = Af e−Ef /RT eαf Fφ0/RTn2
H2O − Ab e−Eb/RT e−αbFφ0/RTn2

OHnH2 (2.1)

for an alkaline solution, and

ω = Af e−Ef /RT eαf Fφ0/RTn2
H − Ab e−Eb/RT e−αbFφ0/RTnH2 (2.2)

for an acidic solution.
Here, nj with j = H2O, OH, H, H2 are the molar concentrations of the water, hydroxide

ions, protons and hydrogen, Af and Ab are the pre-exponential factors for the forward and
backward reactions, Ef and Eb are their activation energies and αf and αb are the so-called
transfer coefficients, which must satisfy the condition αf + αb = 2 to ensure that (2.1) or
(2.2) reduces to the Nernst equilibrium relation when ω = 0.

The dependence of the reaction rate on the variation of electric potential across the
double layer is the defining feature of electrochemical reactions. It reflects the effect of
this difference of potential on the energy of the electrons at the cathode, and thus on the
rate of the reactions in which an electron is transferred between the cathode and some
species in the solution.

For given values of the concentrations of the species, the reaction will be in equilibrium
(equal rates of the forward and backward reactions) when φ0 has the value

φ
eq
0 = RT

2F
ln

Ab

Af
+ Ef − Eb

2F
+ RT

2F
ln

n2
OHnH2

n2
H2O

, (2.3a)

or

φ
eq
0 = RT

2F
ln

Ab

Af
+ Ef − Eb

2F
+ RT

2F
ln

nH2

n2
H

, (2.3b)

for alkaline or acidic solutions, respectively. Since the concentrations change from point
to point on the electrode and with time, it is convenient to introduce a reference state
with selected values of the concentrations. The standard reference state is conventionally
defined with the condition that the molar concentrations of the electroactive species be
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ns = 1 mol l−1 and that of water nw = 55.55 mol l−1 (pure water); see, e.g. Bard &
Faulkner (2001). Using a superscript s to denote standard conditions, the equilibrium value
of φ0 can be written as

φ
eq
0 = φ

eqs
0 + RT

2F
ln

(
n2

w

ns3

n2
OHnH2

n2
H2O

)
, (2.4a)

with

φ
eqs
0 = RT

2F
ln

(
Ab

Af

ns3

n2
w

)
+ Ef − Eb

2F
(2.4b)

in the alkaline case, and

φ
eq
0 = φ

eqs
0 + RT

2F
ln

nsnH2

n2
H

(2.5a)

with

φ
eqs
0 = RT

2F
ln

Ab

Af ns + Ef − Eb

2F
(2.5b)

in the acidic case.
The electric current flowing per unit electrode area when the reaction occurs is i =

2Fω, the factor 2 reflecting that two electrons are needed to form a molecule of hydrogen.
Separating the contributions of the forward and backward reactions, the current density
can be written as i = if − ib. In equilibrium, if = ib, and the common value is named the
exchange current, i0. In the standard state,

is0 = 2FAf e−Ef /RT eαf Fφ
eqs
0 /RTn2

w = 2FAb e−Eb/RT e−αbFφ
eqs
0 /RTns3

, (2.6)

in the alkaline case and

is0 = 2FAf e−Ef /RT eαf Fφ
eqs
0 /RTns2 = 2FAb e−Eb/RT e−αbFφ

eqs
0 /RTns, (2.7)

in the acidic case.
Both φ

eqs
0 and is0 depend only on the electrode material and structure and on the

temperature (and on the arbitrary choice of the concentrations in the standard state). The
values of Af e−Ef /RT and Ab e−Eb/RT can be written in terms of φ

eqs
0 and is0. Carrying them

to the expression of the reaction rate, we obtain

ω = iso
2F

[
exp(αf F(φ0 − φ

eqs
0 )/RT)

(
nH2O

nw

)2

− exp(−αbF(φ0 − φ
eqs
0 )/RT)

(nOH

ns

)2 nH2

ns

]
(2.8)

in the alkaline case, and

ω = iso
2F

[
exp(αf F(φ0 − φ

eqs
0 )/RT)

(nH

ns

)2 − exp(−αbF(φ0 − φ
eqs
0 )/RT)

nH2

ns

]
(2.9)

in the acidic case.
It is worth noticing that increasing nOH increases the rate of the backward reaction (the

second term of (2.8)) in the alkaline case, while increasing nH increases the rate of the
forward reaction (2.9) in the acidic case.
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x

r

θ

Bubble Bubble Bubble

φ = V n = nr nH2
 = nH2r

W

σ

φ = 0

φ0(r, t)

Double layer
(not analysed)

L

∇2n = 0

Quiescent liquid

∇ · (n∇φ) = 0

Cathode Cathode

Σb

nb

rc(t)

Figure 1. Definition sketch.

2.2. Conservation equations and electrode balances
As was mentioned before, this work focuses on the evolution of hydrogen bubbles at
a cathode under the simplest possible conditions. Figure 1 is a sketch of the proposed
model. The surface of the cathode is a horizontal plane, x = 0, at the bottom of the
liquid. The bubbles attached to the cathode grow due to the diffusion flux of dissolved
hydrogen reaching their surfaces. This diffusion flux is small because the concentrations
of electroactive species in the liquid are assumed to be small, so that the bubbles follow
a sequence of equilibrium shapes under the action of the gravity; see § 2.4 for details.
The liquid around the bubbles is quiescent except for the slow motion imposed by the
growth of the bubbles. To simplify the numerical computations, the unit cell of the
two-dimensional array of attached bubbles is replaced by a circular cylinder, which makes
the problem axisymmetric. The processes occurring at the cathode are approximately
decoupled from the rest of the electrolytic cell by using the following assumption. The
molar concentration of OH− (in the alkaline case) or of H+ (in the acidic case), as well
as the molar concentration of dissolved hydrogen and the electric potential relative to
the cathode all take constant values at a certain distance L above the cathode. Namely,
nOH = nr or nH = nr and nH2 = nH2r , φ = V at x = L, with nr, nH2r and V constant, and
nH2r ≤ ns, where ns is the saturation concentration of hydrogen in water. These conditions
can be approximately realized if the cathode is at the base of a recess of depth L and a
stream of electrolyte flows horizontally above the recess that makes the composition of
the liquid outside the recess uniform without inducing a significant flow inside. The anode
(not represented in figure 1) is a horizontal electrode much larger than the cathode and
located at a certain height above the recess, so that it acts as a non-polarizable electrode.

The condition that the concentrations of the electroactive species are small allows an
additional simplification because the activities of these species can be taken to be equal
to their concentrations. This condition is not satisfied in industrial electrolyzers, but the
simplifications it brings in are not expected to qualitatively change the character of the
solution.

Two types of electrolytes are considered. In one of them, a single substance is dissolved
in water which fully dissociates into two ionic species; OH− and the cation replacing H+
(for example K+) in the case of an alkaline solution, and H+ and the anion replacing
OH− (for example SO2−

4 ) in the case of an acidic solution. Calling n+ and n− the molar
concentrations of cations and anions, the conservation equations for these species in the
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absence of liquid flow are

∂n±
∂t

+ ∇ · j± = 0 with j± = ±n±κ±E − D±∇n±, (2.10)

where E = −∇φ is the electric field; κ± are the mobilities of the ions; and D± are their
diffusivities, which satisfy D± = RTκ±/|Z±|F, where Z± are the charge numbers of the
ions. In the case of an alkaline solution, Z− = −1 and Z+ > 0 depends on the species
dissolved in the liquid, while in the case of an acidic solution Z+ = 1 and Z− < 0 depends
on the species dissolved. In what follows, Z will be used to denote Z+ in the first case and
−Z− in the second.

The solution is quasi-neutral outside the double layer on the electrode surface, so that
the condition Z+n+ + Z−n− = 0 must be satisfied. Calling n the common value of Z+n+
and −Z−n−, the conservation equations can be linearly combined to give

∇ · [n(κ++κ−)E − (D+−D−)∇n] = 0 (2.11)

∂

∂t
(2n) + ∇ · [n(κ+−κ−)E − (D++D−)∇n] = 0. (2.12)

In quasi-stationary conditions, when the time derivative is negligible, these equations
reduce to

∇2n = 0 and ∇ · (n∇φ) = 0. (2.13a,b)

Analogously, the conservation equation for dissolved hydrogen, ∂nH2/∂t = DH2∇2nH2 ,
where DH2 is the diffusivity of hydrogen in water, reduces to

∇2nH2 = 0. (2.14)

At the edge of the double layer, in the part of the cathode surface not covered by
bubbles, the balances of the fluxes of ions and dissolved hydrogen coming in or out of
the double layer from/to the bulk of the liquid and the fluxes consumed or produced by the
electrochemical reaction read

D∓
∂n
∂x

∓ nκ∓
∂φ

∂x
= ∓2ω, D±

∂n
∂x

± nκ±
∂φ

∂x
= 0, −DH2

∂nH2

∂x
= ω, (2.15a–c)

where the upper signs are for the alkaline case and the lower signs for the acidic case.
These balances can be rewritten as

∂n
∂x

= ∓ 2Z
(1 + Z)D∓

ω,
∂n
∂x

± ZF
RT

n
∂φ

∂x
= 0, −DH2

∂nH2

∂x
= ω. (2.16a–c)

These conditions, together with the condition φ = φ0, are imposed at x = 0 neglecting the
thickness of the double layer.

In the alkaline case, the distribution of nH2O on the electrode is needed to evaluate
the reaction rate. Two different approximations will be used. One is to neglect water
consumption setting nH2O = nw everywhere, which is justified for dilute solutions with
nr � nw. Alternatively, water consumption may be approximately accounted for taking
nH2O = nw at x = L and assuming that water diffuses toward the electrode with a diffusion
coefficient DH2O, which is taken to be the self-diffusion coefficient of water. Leaving out
water evaporation, this approximation gives a linear relation between nH2O and n (see
(2.29b) below).

The second type of electrolytic solution to be considered contains a high concentration
of a supporting electrolyte in addition to the electroactive species. The supporting
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DOH DH DH2 DH2O

5.27 9.31 4.5 2.3

Table 1. Diffusion coefficients at 300 K, in units of 10−9 m2 s−1.

electrolyte does not take part in the electrode reactions but, owing to its high concentration,
increases very much the electric conductivity of the solution. This decreases the electric
field, so that the contribution of the migration to the flux of electroactive species (the first
term of j± in (2.10)) can be neglected, and the electric potential throughout the solution is
nearly equal to its value at the upper boundary x = L, where φ = V .

In addition, the contribution of the electroactive species to the density of space charge is
much smaller than that of the ions of the supporting electrolyte, so that the condition
of quasi-neutrality is enforced essentially by the supporting electrolyte and does not
impose an algebraic relation between the concentrations of the electroactive species.
Under quasi-stationary conditions, the conservation equations of these species and of the
dissolved hydrogen are ∇2n+ = ∇2n− = ∇2nH2 = 0. Moreover, since the flux of cations
of the electroactive electrolyte reaching the cathode is null for an alkaline solution, the
solution of the first of these equations with the idealized condition at x = L is that n+
is uniform, equal to its value at the upper boundary. Similarly, in the case of an acidic
solution, the flux of anions is null at the cathode and the second conservation equation
gives a uniform n− equal to its value at the upper boundary. Thus, only the distribution
of one ionic species needs to be computed in each case. With the notation n = n− in the
alkaline case and n = n+ in the acidic case, the equations and boundary conditions at the
electrode reduce to

∇2n = ∇2nH2 = 0, x = 0 : D∓
∂n
∂x

= ∓2ω, −DH2

∂nH2

∂x
= ω, (2.17a–c)

where, as before, the upper sign is for the alkaline case and the lower sign for the acidic
case. The reaction rate is

ω = is0
2F

[
exp(αf F(V − φ

eqs
0 )/RT)

(
nH2O

nw

)2

− exp(−αbF(V − φ
eqs
0 )/RT)

( n
ns

)2 nH2

ns

]
, (2.18)

in the alkaline case, and

ω = is0
2F

[
exp(αf F(V − φ

eqs
0 )/RT)

( n
ns

)2 − exp(−αbF(V − φ
eqs
0 )/RT)

nH2

ns

]
, (2.19)

in the acidic case.
The values of the diffusion coefficients of the different species are summarized in

table 1.
The remaining boundary conditions, completing the formulation of the problem, are the

same for the two types of electrolytic solutions.
At the upper boundary, x = L, the Dirichlet conditions n = nr, nH2 = nH2r , φ = V (and

nH2O = nw in the alkaline case), are imposed, with nr, nH2r , V and nw constant.
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2.3. Bubbles
The bubbles are assumed to contain hydrogen only, neglecting the evaporation of water
and other species. If Σb denotes the surface of a bubble, with unit normal nb pointing
toward the liquid (see figure 1), the fluxes of electroactive species reaching this surface
from the liquid must be zero, and the concentration of hydrogen at Σb is given by
the condition of local thermodynamic equilibrium. The first conditions read D±nb ·
∇n± ± n±κ±nb · ∇φ = 0, which can be combined to give nb · ∇n = nb · ∇φ = 0. The
equilibrium concentration of hydrogen at the liquid side of a planar interface is the
saturation concentration at the temperature of the system, ns, which is proportional to
the pressure of the gas on the interface (Henry’s law), being ns = 7.8 × 10−4 mol l−1

at normal temperature and pressure. When the interface is not planar, the equilibrium
concentration changes because the pressure of the gas is higher than the pressure of the
liquid. The effect is small but it is taken into account by writing nH2 = ns(1 + δpg/p0),
where p0 is the pressure of the liquid on the electrode and δpg is the excess of pressure of
the hydrogen in the bubble above p0.

The surface tension of the liquid (σ ) and its contact angle with the electrode (θ ) are
taken to be constant. Strictly, the surface tension depends on the variation of the electric
potential across the double layer at the bubble surface and on the species adsorbed in this
layer, which in turn depend on the local concentrations of the electrolyte and the conditions
of operation. Similarly, the contact angle depends on the conditions of the double layer
at the electrode surface (Bard & Faulkner 2001). The constant values approximation is
expected to be valid for dilute solutions.

The electric field inside the bubble is expected to be of the same order, V/L, as in the
liquid bulk when the electrode reaction is far from equilibrium. The net surface charge
density and the electric stress at the bubble surface are then of orders ε0V/L and ε0V2/L2,
respectively, and the ratio of this stress to the surface tension stress is of order ε0V2�c/σL2.
This is a small quantity, of the order of 10−10 when V is of the order of one volt and �c ∼ L.
The electric stress due to the net charge of the bubble surface does not affect the growth
of the bubble.

The dipolar interaction of the double layers at the electrode and bubble surfaces, which
depends on the pH of the solution and may have an effect on the bubble departure volume
(Brandon et al. 1985; Yang et al. 2018) is left out here.

The bubble has a hydrostatic shape at any time, its volume increasing slowly at the rate at
which dissolved hydrogen from the supersaturated liquid reaches its surface by diffusion,
and detachment is assumed to occur when a hydrostatic solution ceases to exist. In terms
of the capillary length �c = (σ/ρg)1/2, where ρ is the density the liquid and g is the
acceleration due to gravity, the volume of a bubble at detachment is Vbd = �3

cf1(θ), where
f1 is a known function. The excess of pressure of the gas in a bubble of volume Vb ≤ Vbd

above the pressure p0 of the liquid at the base of the bubble is δpg = ρg�cf2(Vb/�
3, θ),

where the function f2 is known (Bashforth & Adams 1883; Hartland & Hartley 1976;
Chester 1978; Longuet-Higgins, Kerman & Lunde 1991). The mass of hydrogen reaching
the surface of the bubble and vaporizing per unit time is ṁ = WH2DH2

∫
Σb

nb · ∇nH2 dA,
where WH2 is the molecular mass of hydrogen and the integral extends to the surface of
the bubble in contact with the liquid, Σb.

The temperature is assumed to be constant during the growth of the bubble, and
the density of each material element of gas in the bubble satisfies the equation of
state ρg = WH2pg/RT . The hydrogen that vaporized in a time interval dt′ about a
time t′, when the pressure in the bubble was pg(t′) = p0 + δpg(t′), occupied a volume
dV ′

b = RTṁ(t′) dt′/[WH2pg(t′)] at that time. At a later time t, when the pressure in
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the bubble is pg(t), the volume occupied by this gas is dVb = dV ′
bpg(t′)/pg(t) =

RTṁ(t′) dt′/[WH2pg(t)], and the total volume of the bubble is

Vb(t) = Vbi + RT
WH2pg(t)

∫ t

0
ṁ(t′) dt′, (2.20)

where Vbi is the initial volume of the bubble, when it begins to grow following nucleation.
This result can be recast as

dVb

dt
= RT

WH2pg(t)
ṁ(t) − RT

WH2pg(t)2

∫ t

0
ṁ(t′) dt′

dpg

dt
, (2.21)

where the first term on the right-hand side is the rate at which the volume of the bubble
increases due to the instantaneous vaporization of hydrogen while the second term is the
rate of change of the volume due to the expansion of the hydrogen that vaporized at earlier
times.

In the simplified axisymmetric problem, a single bubble is assumed to grow around
a point of the cathode surface. The effect of other bubbles growing on the cathode is
approximately accounted for by using zero derivative conditions for all the variables at a
given distance, W, from the axis of the bubble (see figure 1). This models the synchronous
growth of a two-dimensional array of equispaced bubbles.

No attempt is made to describe the nucleation of bubbles at the electrode surface.
Instead, the growth of a bubble is computed from an initial state when its volume, Vbi ,
is small compared with the volume at detachment. In the simulations discussed below, the
ratio of initial to final volume is 1/50, and the results are insensitive to the value of this
ratio.

2.4. Dimensionless variables
Cylindrical coordinates (x, r) will be used, where x is the distance to the cathode and r is
the distance to the symmetry axis of the central attached bubble (see figure 1). The surface
of this bubble is denoted fb(x, r, t) = 0, and the radius of its contact circle with the cathode
is rc(t).

For convenience, the electric potential relative to its equilibrium value in standard
conditions, φ̃ = φ − φ

eqs
0 , will be used instead of φ.

The problem can be written in dimensionless form scaling distances with the capillary
length �c = (σ/ρg)1/2, the redefined potential φ̃ with RT/F, the molar concentration of
water with nw and those of other species with the concentration nr of OH− (in the alkaline
case) or of H+ (in the acidic case) at the upper boundary x = L. The electric current
density i is scaled with FDOHnr/�c in the alkaline case and with FDHnr/�c in the acidic
case. In that follows, the dimensionless variables are denoted with the same symbols used
before for their dimensional counterparts.

In terms of these variables, the problem in the absence of supporting electrolyte
becomes

∇2n = 0, ∇ · (n∇φ̃) = 0, ∇2nH2 = 0 (2.22a–c)

with the boundary conditions

∂n
∂x

= ∓ 2Z
1 + Z

ω,
∂n
∂x

± Zn
∂φ̃

∂x
= 0, −DH2

∂nH2

∂x
= ω at x = 0, rc < r < W (2.23)

n = 1, φ̃ = Ṽ, nH2 = nH2r at x = L (2.24)
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Growth of hydrogen bubbles in the electrolysis of water

nb · ∇n = nb · ∇φ̃ = 0, nH2 = ns

(
1 + δpg

p0

)
at fb(x, r, t) = 0, (2.25a)

with

nb = ∇fb
|∇fb| (2.25b)

∂n
∂r

= ∂φ̃

∂r
= ∂nH2

∂r
= 0 at r = W (2.26)

where

ω = Da(eαf φ̃n2
H2O − Λ e−αbφ̃n2nH2) in the alkaline case, (2.27)

ω = Da(eαf φ̃n2 − Λ e−αbφ̃nH2) in the acidic case. (2.28)

Here, DH2 is the diffusivity of hydrogen scaled with DOH in the alkaline case and with
DH in the acidic case, ns is the saturation concentration of hydrogen at the pressure p0
of the liquid on the electrode scaled with nr, Ṽ = F(V − φ

eqs
0 )/RT is the dimensionless

voltage at the upper boundary relative to the standard equilibrium potential φ
eqs
0 and

−nbx = cos θ at the contact line r = rc(t). The parameters in the expressions of the
reaction rate are Da = is0�c/(2FDOHnr) and Λ = (nr/ns)3 in the alkaline case, and Da =
is0nr�c/(2FDHns2

) and Λ = ns/nr in the acidic case. In these dimensionless variables,
i = 2ω.

In the alkaline case, the dimensionless concentration of water is

nH2O = 1 or nH2O = 1 − nr

nw

1 + Z
Z

n − 1
DH2O

, (2.29a,b)

depending on whether water consumption is neglected or approximately taken into
account. In the second case, the diffusivity of water, DH2O, is scaled with DOH .

The solution of the problem depends on the dimensionless parameters Da, Λ, αf , Ṽ , θ ,
L, W, ns, nH2r and Z, in addition to the hydrogen diffusivity scaled with DOH or DH and
the diffusivity of water scaled with DOH , if water consumption is taken into account. The
parameter Λ is a consequence of the arbitrary choice of the standard state concentrations.
It would become unity if the standard state was defined as that with n and nH2 equal to nr
(in dimensional variables).

The dimensionless problem with a supporting electrolyte is

∇2n = ∇2nH2 = 0 (2.30)

∂n
∂x

= ∓2ω, −DH2

∂nH2

∂x
= ω at x = 0 (2.31)

n = 1, nH2 = nH2r at x = L (2.32)

nb · ∇n = 0, nH2 = ns(1 + δpg/p0) at fb(x, r, t) = 0 (2.33)

∂n
∂r

= ∂nH2

∂r
= 0 at r = W, (2.34)

and φ̃ in the expression (2.27) or (2.28) of the reaction rate replaced by Ṽ .
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In addition, in the alkaline case,

nH2O = 1 or nH2O = 1 − nr

nw

n − 1
DH2O

. (2.35a,b)

The quasi-stationary approximation used here may be marginally justified as follows.
Returning for a moment to dimensional variables, the characteristic size of a bubble is
�c, and the characteristic value of the mass of hydrogen reaching the bubble per unit time
is, at most (see § 4.1 for a refined estimation), ṁ ∼ WH2DH2�nH2�c, where �nH2 is the
difference between the maximum molar concentration of dissolved hydrogen (which is
attained at the electrode, where hydrogen is generated) and the saturation concentration at
the surface of the bubble, ns. The characteristic time of growth of a bubble is therefore tb
such that ρg�

3
c/tb ∼ ṁ, where ρg = WH2pg/RT ≈ WH2p0/RT is the characteristic density

of the hydrogen in the bubble. Thus, tb/tdif ∼ p0/(�nH2RT) with tdif = �2
c/DH2 . The

factor p0/(�nH2RT) depends on the supersaturation of the liquid. Calling S the maximum
value of the ratio nH2/ns, we have tb/tdif ∼ p0/[(S − 1)nsRT] ∼ 51.395/(S − 1) for
p0 = 105 Pa and T = 300 K. This is fairly large for all but the highest values of the
supersaturation expected, which justifies the quasi-stationary approximation in the region
of size �c around the bubbles. In what follows, non-stationary effects are neglected in the
whole domain x < L.

Even leaving out the factor p0/(�nH2RT), the diffusion time tdif is very large, of the
order of 0.4 h. In practical applications, it is essential to speed up the growth of the
bubbles by stirring the liquid. This has two effects. On the one hand, stirring leads to
diffusion layers whose thickness may be small compared with the size of the bubbles, thus
increasing the fluxes of electroactive species toward the electrode and the flux of dissolved
hydrogen toward the bubbles. On the other hand, stirring reduces the size of the bubbles
at detachment. If the evolution of the bubbles is sufficiently fast, detached bubbles are
numerous and buoyancy induces a flow that enhances stirring. None of this, however, is
taken into account in the model formulated here.

Turning back to dimensionless variables and scaling the time with (�2
c/DH2)( p0/nrRT),

the excess of pressure δpg with p0 and the volume of the bubble with �3
c , the time evolution

equation for the volume of the bubble is

dVb

dt
= ṁ

1 + δpg
− 1

(1 + δpg)2
dδpg

dt

∫ t

0
ṁ(t′) dt′ with ṁ =

∫
Σb

nb · ∇nH2 dA, (2.36)

while the shape of the bubble is the equilibrium shape with volume Vb.
The solution of the problem is computed stepwise. At a given time, for a certain

shape of the bubble and its associated δpg, the distributions of n, nH2 and φ̃ (in the
case without supporting electrolyte) are determined by solving the stationary problem
formulated above. This allows us to compute the evaporation rate ṁ and thus update the
bubble volume and its excess pressure δpg.

The average current density on the electrode surface is

ı̄(t) =
2π
∫ W

rc
2ωr dr

πW2 . (2.37)

3. Stationary solution in the absence of bubbles

The distributions of the variables in the absence of bubbles depend only on the distance to
the electrode.
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Growth of hydrogen bubbles in the electrolysis of water

Consider first the case without supporting electrolyte. For a given current density i, the
solution of (2.22)–(2.24) is

n = 1 ∓ Z
1 + Z

i(x − L),

φ̃ = Ṽ ∓ 1
Z

ln
[

1 ∓ Zi
1 + Z

(x − L)

]
,

nH2 = nH2r − i
2DH2

(x − L),

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

where, again, the upper (lower) signs are for the alkaline (acidic) case. In particular,
at x = 0, n = 1 ± ZiL/(1 + Z), φ̃ ≡ φ̃0 = Ṽ ∓ ln[1 ± ZiL/(1 + Z)]/Z and nH2 = nH2r +
iL/2DH2 . (Notice that Ṽ − φ̃0 = ± ln[1 ± ZiL/(1 + Z)]/Z is not a linear function of the
current density; Ohm’s law in its usual form does not hold owing to the space variation
of n.) Carrying these values and nH2O from (2.29a,b) to (2.27) or (2.28), we find the
current–voltage characteristic

i = 2Da

[
eαf Ṽ

(
1 + ZiL

1 + Z

)−αf /Z (
1 − nr

nw

iL
DH2O

)2

−Λ e−αbṼ
(

1 + ZiL
1 + Z

)2+αb/Z (
nH2r + iL

2DH2

)]
(3.2)

in the alkaline case, and

i = 2Da

[
eαf Ṽ

(
1 − ZiL

1 + Z

)2+αf /Z

−Λ e−αbṼ
(

1 − ZiL
1 + Z

)−αb/Z (
nH2r + iL

2DH2

)]
(3.3)

in the acidic case.
The results are shown in figure 2 for αf = αb = 1, Z = 1, L = 6, the values of

the diffusivities in table 1 and various values of Da and Λ, corresponding to the
dimensional values is0 = 0.001, 0.1, 10 A m−2 and infinity, with nr = 0.1 (solid curves)
and 0.5 mol l−1 (dashed curves). In all the cases, the concentration of hydrogen at x = L
is 4 × 10−4 mol l−1, smaller than the saturation concentration 7.8 × 10−4 mol l−1. The
curves in figure 2(a) show results for the alkaline case without accounting for water
consumption (formally by letting DH2O → ∞ in (3.2)). The uppermost curve in each figure
shows results in the limit of infinitely fast, Nernstian reactions, Da → ∞.

As can be seen, the dimensionless current density i increases with the exchange current
(with Da in dimensionless variables) in both cases. In the alkaline case, i decreases when
the concentration of the solution nr, thus nOH , is increased, because this decreases Da and
increases Λ and the rate of the backward reaction. In the acidic case, i increases with nr,
thus nH , because now this increases Da and decreases Λ. As noted at the end of § 2.1,
OH− is a product of the electrolytic reaction in the alkaline case, while H+ is a reactant in
the acidic case.

In the acidic case, the asymptotic value of the current density for large Ṽ is the limiting
current density iL = (1 + Z)/(LZ) at which the concentration of H+ at the electrode tends
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Figure 2. Dimensionless current density i as a function of the dimensionless voltage Ṽ for alkaline (a) and
acidic (b) solutions without supporting electrolyte. Solid curves are for nr = 0.1 mol l−1 and dashed curves for
nr = 0.5 mol l−1. In each case, is0 = 10−3, 0.1, 10 A m−2 and infinity, increasing from right to left. The inset
in panel (a) shows the effect of water consumption. The horizontal asymptotes at the right-hand side of the
inset are not realistic because the dilute solution approximation fails well before the reaction becomes diffusion
limited. It is the effect of a moderate decrease of the water concentration at the cathode that is of interest in
figure 5(a) below.

to zero. No limiting current density exists in the alkaline case if water consumption is
neglected. Then the current density increases exponentially with the applied voltage, at a
rate that increases with the dimensionless exchange current Da and decreases when Λ is
increased. If water consumption is approximately taken into account, the current density
increases less rapidly with Ṽ; see inset of figure 2(a). A saturation current density iL =
DH2Onw/(nrL) is eventually approached in the inset at which nH2O is zero at the electrode.
However, the computation of this horizontal asymptote is not realistic because the dilute
solution approximation would fail well before the concentration of water becomes small.

With a high concentration of a supporting electrolyte, the solution of (2.30)–(2.32) is

n = 1 ∓ i(x − L), nH2 = nH2r − i
2DH2

(x − L), (3.4a,b)

so that n = 1 ± iL and nH2 = nH2r + iL/2DH2 at x = 0. Carrying this and nH2O from
(2.35a,b) to the expression of the reaction rate, we find

i = 2Da

[
eαf Ṽ

(
1 − nr

nw

iL
DH2O

)2

− Λ e−αbṼ(1 + iL)2
(

nH2r + iL
2DH2

)]
(3.5)

in the alkaline case, and

i = 2Da
[

eαf Ṽ(1 − iL)2 − Λ e−αbṼ
(

nH2r + iL
2DH2

)]
(3.6)

in the acidic case. Both are shown in figure 3 for the same values of the dimensionless
parameters as in figure 2. (In the absence of water consumption in figure 3a).

The main quantitative difference with figure 2 occurs in the acidic case. The limiting
current density is now iL = 1/L, which for Z = 1 is half the limiting current in figure 2.
The concentration of H+ decreases faster than before toward the electrode because the
transport of cations is due only to diffusion, unaided by migration.
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Figure 3. Dimensionless current density i as a function of the dimensionless voltage Ṽ for alkaline (a) and
acidic (b) solutions with a high concentration of a supporting electrolyte. Solid curves are for nr = 0.1 mol l−1

and dashed curves for nr = 0.5 mol l−1. In each case, is0 = 10−3, 0.1 and 10 A m−2, increasing from right to
left.

t

ṁ
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Figure 4. (a) Mass of hydrogen vaporizing per unit time as a function of the cubic root of the bubble volume,
and (b) cubic root of the bubble volume as a function of time, in linear and logarithmic scales (inset), for
some sample cases. Solid: acidic, Ṽ = 2 and 5, W = 1; dashed: acidic, Ṽ = 2 and 5, W = 3; dash-double-dot:
alkaline, Ṽ = −2, W = 1; dash-dot: alkaline, Ṽ = −2, W = 3. For comparison, the dotted lines in (a) have
slope 1, and the dotted lines at the lower part of (b) are V1/3

b = 0.3t1/2 and V1/3
b = 0.4t1/3. Symbols in the

log–log inset are experimental results of Brandon & Kelsall (1985) for a Pt micro-electrode of 25 μm diameter
at two values of the electrode current, 10 μA (up triangles) and 20 μA (down triangles), with the time and the
bubble volume multiplied by arbitrary factors.

4. Results and discussion

4.1. Growth of a bubble
Figure 4(a) shows, for a few sample cases, the mass of hydrogen vaporizing per unit time as
a function of the size of the bubble, defined as the cubic root of its volume, and figure 4(b)
shows this size as a function of time. As can be seen, for the largest bubble spacing used
(W = 3; dashed and dash-dot curves), the vaporization flux increases almost linearly with
the size of the bubble and, after an initial stage, the size roughly approaches the t1/2

law that is often assumed for diffusion controlled growth (Scriven 1959; Westerheide
& Westwater 1961; Glas & Westwater 1964). The small departure from this law can be
rationalized by noticing that the bubble grows in a region where the supersaturation is
not uniform but decreases with the distance to the electrode. The diffusion flux reaching
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most of the bubble surface is of order DH2�nH2/V1/3
b , where, refining the estimation of

§ 2.4, �nH2 is the difference between the concentrations of dissolved hydrogen far from
the bubble but at distances to the electrode of order V1/3

b and at the surface of the bubble,
where it is nearly ns. Since the first concentration decreases as V1/3

b increases, the diffusion
flux decays faster than 1/V1/3

b and, accordingly, the size of the bubble increases less
rapidly than the square root of time. A similar effect has been experimentally observed
in the evaporation of a superheated liquid whose temperature decreases away from the
wall where vapour bubbles grow; see Biasi, Stipari & Tozzi (1971). On the theoretical
side, see the analysis of Cheh & Tobias (1968) for a hemispherical bubble growing on an
electrode in a non-uniform concentration field, and the references therein.

For smaller bubble spacing (W = 1; solid and dash-double-dot curves in figure 4), the
vaporization flux is nearly constant and the size of the bubble seems to approach a t1/3 law
during the last stages of the growth. This power law corresponds to the so-called direct
injection regime (see, e.g. Verhaart, de Jonge & van Stralen 1980; Brandon & Kelsall
1985), in which all the hydrogen generated at the electrode gets into the bubble. This is
typical of micro- or nano-electrodes, in which the size of the bubble is large compared with
the size of the electrode during much of the bubble growth. Then hydrogen is generated
only around the base of the bubble, where a steep concentration gradient develops that
drives the dissolved hydrogen toward the bubble. In the configuration at hand, with a large
electrode and many attached bubbles, this regime can be approached when the bubbles are
closely spaced, leaving only small interbubble gaps for the hydrogen to escape.

Symbols in figure 4(b) are experimental results of Brandon & Kelsall (1985) for a
micro-electrode of 25 μm diameter and two values of the electrode current. In these
experiments, the conditions of the bubble (which is anchored close to the periphery of
the micro-electrode) and the surrounding electrolyte are quite different from those for
an infinite electrode, leading to different values of the growth time and the final volume
of the bubble. These magnitudes have been multiplied by arbitrary factors to fit them in
figure 4(b), but the result still shows that, after an initial stage of fast growth, the time
variation of the bubble size approaches a t1/3 law.

Van der Linde et al. (2017, 2018) devised an experiment allowing controlled nucleation
and growth of a sequence of millimetre sized bubbles at a nucleation site consisting of a
hydrophobic pit at the top of a pillar microfabricated on a silicon electrode. The growth
of each bubble follows a t1/2 law, but with a proportionality coefficient that changes from
bubble to bubble in response to the time variation of the hydrogen concentration in the
surrounding electrolyte. The authors analyse this variation in detail with a view to improve
the efficiency of water-splitting cells by means of micro-structured surfaces. Relying on
similar ideas, Peñas et al. (2019) use an hydrophobic site to induce nucleation outside the
electrode surface, which in their experiments in a ring surrounding the nucleation site,
thereby avoiding electrode coverage. All these experiments were carried out at constant
current rather than constant voltage, which prevent direct comparison with the results of
figure 4 for large bubble spacing.

4.2. Current density
The dimensionless current density averaged on the electrode surface (2.37) is further
averaged over the growth time of a bubble. The result, 〈i〉, is shown in figures 5 and 6
as a function of the voltage Ṽ for various values of Da and Λ. Figure 5 shows results in
the absence of a supporting electrolyte, and figure 6 is for the case of a high concentration
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Figure 5. Space- and time-averaged current density as a function of the voltage Ṽ , for alkaline solutions (a)
and acidic solutions (b), without supporting electrolyte. Shown are results for W = 1, θ = 45◦, values of other
parameters used in § 3, and nr = 0.1 mol l−1, is0 = 10−3 A m−2 (pluses), nr = 0.1 mol l−1, is0 = 0.1 A m−2

(crosses), nr = 0.1 mol l−1, is0 = 10 A m−2 (starts) and nr = 0.5 mol l−1, is0 = 10 A m−2 (open squares). For
comparison, the thin curves show the current density in the absence of bubbles for the same values of the
parameters. Solid curves are for nr = 0.1 mol l−1, with is0 increasing from right to left, and the dashed curve
is for nr = 0.5 mol l−1, i0 = 10 A m−2. In addition, the filled squares and the chain curve in (a) are results for
nr = 0.5 mol l−1, is0 = 10 A m−2 taking water consumption into account and the triangles and the chain curve
in (b) are results for nr = 0.1 mol l−1, is0 infinite.

of supporting electrolyte. The thin curves in these figures show the current density in the
absence of bubbles, already presented in figures 2 and 3, and the symbols are numerical
results. As can be seen, the average current density 〈i〉 nearly coincides with the current
density in the absence of bubbles at small values of Ṽ , and increases faster than it when
Ṽ increases, reflecting that the presence of bubbles enhances the gas-evolving reaction. In
the alkaline case, without water consumption effects (figures 5a and 6a) the effect of the
bubbles is moderate. In the acidic cases (figures 5b and 6b) the effect is more pronounced
and increases with the exchange current and with nr.

In the acidic case, a transport limited state is approached for large values of Ṽ in which
the average current density tends to a value different from the limiting current density in
the absence of bubbles. In this transport limited state, n tends to zero in the region of
the electrode not covered by bubbles. The limiting distribution of n can be computed using
this condition instead of the first condition (2.23) or (2.31). The limiting distribution of nH2
can then be computed replacing the third condition (2.23) or the second condition (2.31)
by DH2∂nH2/∂x = −[(1 + Z)/2Z]∂n/∂x or DH2∂nH2 = −1

2∂n/∂x at x = 0. Both limiting
distributions are independent of kinetic parameters and depend only on the geometrical
parameters L and W and on nH2r and ns. The electric potential in the case without
supporting electrolyte can finally be determined using the second condition (2.23), which
gives an electric field that diverges at the electrode. The transport limited current density
averaged on the electrode and its time-averaged value are

ı̄L(t) = 1 + Z
Z

2π

∫ W

rc

∂n/∂x|x=0r dr

πW2 and 〈i〉L = 1
Tb

∫ Tb

0
ı̄L dt (4.1a,b)
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Figure 6. Space- and time-averaged current density as a function of the voltage Ṽ , for alkaline solutions (a)
and acidic solutions (b), with a high concentration of a supporting electrolyte. Shown are results for W = 1, θ =
45◦, values of other parameters used in § 3, and nr = 0.1 mol l−1, is0 = 10−3 A m−2 (pluses), nr = 0.1 mol l−1,
is0 = 0.1 A m−2 (crosses), nr = 0.1 mol l−1, is0 = 10 A m−2 (starts) and nr = 0.5 mol l−1, is0 = 10 A m−2

(open squares). For comparison, the thin curves show the current density in the absence of bubbles for the
same values of the parameters. Solid curves are for nr = 0.1 mol l−1, with is0 increasing from right to left, and
the dashed curve is for nr = 0.5 mol l−1, is0 = 10 A m−2.

(with the factor (1 + Z)/Z removed in the case with supporting electrolyte). Here, Tb is
the growth time of a bubble, up to detachment. Despite the fact that ∂n/∂x|x=0 tends to
zero at the contact line, the value of ı̄(t), and thus of 〈i〉, is higher than iL in the absence
of bubbles for the values of L and W considered. This is because ∂n/∂x|x=0 overshoots
above its limiting value 1/L in the absence of bubbles. For example 〈i〉L = 0.451, 0.356
and 0.341 for W = 1, 2 and 3, respectively, with L = 6, nH2r = 4 × 10−3, ns = 7.8 × 10−3

and Z = 1 without supporting electrolyte. These values are to be compared with iL = 1/3
in the absence of bubbles.

4.3. Distributions of variables at the electrode
The most significant feature of the solution is perhaps the decrease of the concentration of
dissolved hydrogen, nH2 , around each bubble. On the electrode surface, this concentration
increases from a minimum value close to the saturation concentration at the contact line to
a maximum at the points farthest from the bubbles. At the beginning of the growth process,
the maximum concentration is approximately the hydrogen concentration in the absence of
bubbles when the bubble spacing W is large, and smaller than this value when the spacing
is decreased. As the bubbles grow, the maximum hydrogen concentration decreases in all
cases. The hydrogen concentration increases with the concentration of the solution, nr, and
with the applied voltage Ṽ . The bubble-induced decrease of nH2 enhances the gas-evolving
reaction by decreasing the rate of the backward reaction.

The electric potential at the edge of the double layer, φ̃0, is equal to the applied voltage
Ṽ when the liquid contains a high concentration of supporting electrolyte. In the absence
of supporting electrolyte, φ̃0 has only small space variations on the electrode. During
most of the growth time, it increases slightly with distance to the contact line. When the
bubble spacing is small (W = 1 and below), the maximum φ̃0 changes with time from
slightly smaller to slightly larger than its value without bubbles, while φ̃0 is everywhere
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smaller than without bubbles when W is larger. The value of φ̃0 increases with Ṽ and
decreases slightly when nr is increased. The minimum value of φ̃0, at the contact line,
decreases with time. Similarly, the concentration at the electrode of OH− (in the alkaline
case) or H+ (in the acidic case) is nearly uniform and close to its value without bubbles. It
slightly decreases around the contact line, to a minimum that decreases with time, while
its value far from the contact line is slightly larger than without bubbles when the bubble
spacing is small, and slightly smaller than this value when the spacing is increased. The
space variations of φ̃0 and n on the electrode decrease with the exchange current (Da in
dimensionless variables).

The distribution of current density on the electrode is a consequence of these features.
At small and moderate voltages, the current density increases around the bubbles at
early times, reflecting the decrease of hydrogen concentration. At these times, the current
density far from the bubbles is close to the current density without bubbles when the
bubble spacing is large, and above this value when the spacing is decreased. At later times,
the current density increases far from the bubbles and tends to become more uniform, until
the effect of the decrease of φ̃0 around the contact line comes into play and decreases
the current density in this region. The effect of the space variation of φ̃0 and n appears
earlier at higher voltages, decreasing the current density around the contact line, where it
reaches a minimum. In addition, the current density decreases with time everywhere on
the electrode.

The current density tends to become uniform in the part of the electrode not covered
with bubbles when Da and i itself are small. The result was obtained by Dukovic & Tobias
(1987) in the framework of a different model. It can be rationalized by noticing that φ̃0
diverges logarithmically when Da → ∞, while the space variations of φ̃ in the cell, and
thus the variations of φ̃0 at the electrode, as well as the variations of the concentrations of
the reactants, are all small, of order i.

4.4. Overpotentials
When the electrode reaction is at equilibrium (ω = 0), the concentrations of all the
species are uniform at their values at the upper boundary x = L; i.e. n = 1, nH2 = nH2r ,
nH2O = 1 in dimensionless variables. The value of φ̃0 is then φ̃

eq
0 = 1

2 ln Λ + 1
2 ln nH2r .

The overpotential is the variation of φ̃0 about this equilibrium value when the reaction
proceeds at a given non-zero rate. It can be decomposed into two parts. First, the transport
of species to and from the electrode associated with the given rate of the reaction causes
variations of the species concentrations at the electrode (at the edge of the double layer)
relative to the values they had when the reaction was at equilibrium. The variation of φ̃0
needed for the reaction to be at equilibrium with the modified values of the concentrations
at the electrode is the concentration overpotential δφ̃0c = 1

2 ln nH2/nH2r + ln n − ln nH2O in
the alkaline case, and δφ̃0c = 1

2 ln nH2/nH2r − ln n in the acidic case. In each case, δφ̃0c is
the sum of contributions of the species taking part in the reaction. The additional variation
of φ̃0 needed for the reaction to proceed at the given rate is the activation overpotential
δφ̃0a = φ̃0 − φ̃

eq
0 − δφ̃0c , which is an increasing function of the reaction rate.

Bubbles are known to affect the reaction rate in various manners; see Zhao, Ren & Luo
(2019) for a recent review. On the one hand, since nucleation, the bubbles are sinks of
dissolved hydrogen, and therefore decrease the supersaturation of the liquid surrounding
them below the value it would have without bubbles. Since the rate of the backward
reaction increases with the concentration of hydrogen at the electrode, the presence of
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bubbles decreases this rate and thus enhances the gas evolution reaction. This effect is
reflected in a decrease of the first term of the concentration overpotential. On the other
hand, the attached bubbles cover a fraction of the electrode surface, rendering it inactive
for electrochemical reactions. To keep a given average current density, the rate of the
reaction must increase in the active part of the electrode surface, thereby increasing the
activation overpotential. The two effects oppose each other. The net variation they induce
of the voltage required to keep a given current density, or of the current density at a given
voltage, depends on which of them dominates. There are also other effects of the bubbles
that cannot be described with the model used here because they depend on the presence of
many detached bubbles in the liquid. One of these is the increase of the ohmic resistance
of the liquid due to these bubbles (additional to the increase due to attached bubbles), and
another is the contribution of detached bubbles to the stirring of the liquid, which enhances
the transport of reactants and products.

In the presence of bubbles, the concentration and activation overpotentials are functions
of the position on the electrode and of time during the growth of a bubble. Inspection
of the numerical solutions shows that the variations of these overpotentials due to the
bubbles are more pronounced around the contact line but do not vanish on the rest of the
electrode for the bubble spacings considered. Values of the overpotentials averaged over
the active area of the electrode and over time are shown in figures 7 and 8 as functions
of the applied voltage for various values of the solution concentration and the exchange
current (Λ and Da in dimensionless variables). For comparison, thin curves show the
overpotentials without bubbles. Results are shown for the alkaline case without accounting
for water consumption (a,b,c) and for the acidic case (d,e, f ) in the absence (figure 7) and
in the presence (figure 8) of supporting electrolyte. The results are qualitatively similar in
both figures.

As can be seen, the concentration overpotential due to the variation of the concentration
of hydrogen (solid curves) is an increasing function of the voltage in the alkaline case,
for which there is no limiting current density, and reaches a plateau in the acidic
case when the current density approaches its maximum. In both cases, this part of
the concentration overpotential decreases in the presence of bubbles. The part of the
concentration overpotential due to the variation of the concentrations of OH− or H+
(dotted curves) tends to increase linearly with Ṽ and is nearly independent of the presence
of bubbles. Finally, the activation overpotential (dashed curves) is rather different in the
two cases. In the alkaline case, it increases slightly with the applied voltage, reaches a
shallow maximum and eventually tends to zero when Ṽ → ∞. In the acidic case, δφ̃0a
increases linearly with the voltage, keeping this trend in the transport limited regime for
high voltages. The activation overpotential increases in the presence of bubbles. In the
alkaline case, the bubble-induced decrease of the concentration overpotential is close to
the increase of the activation overpotential, so that φ̃0 is nearly the same with and without
bubbles for a given current density. In the acidic case, the bubble-induced decrease of the
concentration overpotential is larger than the bubble-induced increase of the activation
overpotential, so that the bubbles decrease the value of φ̃0 for a given average current
density, in line with the results in figures 5 and 6.

The linear increase of δφ̃0c with Ṽ in the alkaline case reflects the exponential increase
of the reaction rate, and thus of nH2 and n at the electrode. The boundedness of δφ̃0a
reflects that the backward reaction is always important.

In the acidic case, the space- and time-averaged concentration of H+ at the electrode
tends to zero linearly as 〈i〉 → 〈i〉L, the potential φ̃0 diverges logarithmically to keep
2Da n2 exp(αf φ̃0) = O(〈i〉L), and Ṽ − φ̃0 also diverges logarithmically. This accounts
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Ṽ Ṽ

Figure 7. Space- and time-averaged overpotentials as functions of the voltage Ṽ . Left-hand side panels are
for alkaline solutions and right-hand side panels are for acidic solutions, both without supporting electrolyte.
Results are shown for W = 1, θ = 45◦, the same values of other parameters as in § 3, and values of Da and
Λ corresponding to nr = 0.1 mol l−1, is0 = 0.1 A m−2 (a,d); nr = 0.1 mol l−1, is0 = 10 A m−2 (b,e); and
nr = 0.5 mol l−1, is0 = 10 A m−2 (c, f ). In each case, solid curves are the contribution of dissolved hydrogen
to the concentration overpotential, dotted curves are the contribution of OH− or H+ to the concentration
overpotential, and dashed curves are the activation overpotential. Thin curves show these magnitudes in the
absence of bubbles.

for the linear trends of δφ̃0a and the part of δφ̃0c due to H+, because ln n ∼ φ̃0 ∼
− ln(〈i〉L − 〈i〉) ∼ Ṽ . These results are analogous to the results of § 3 without bubbles,
with 〈i〉L playing the role of iL. The similarity is not unexpected because the integrals of
the vertical diffusion and migration fluxes of ions, −∂n/∂x and nEx, across horizontal
planes spanning the liquid are conserved as in the absence of bubbles.

Figure 9 shows the potential drop across the cell as a function of the applied voltage for
alkaline and acidic solutions without supporting electrolyte. This drop is not proportional
to the current density. In the alkaline case, without accounting for water consumption,
the linear trend for large Ṽ reflects the combination of a current density that increases
exponentially with φ̃0 and a potential drop that is expected to increase as the logarithm of
the current density (as in the absence of bubbles; see § 3). In the acidic case, the linear
trend is accounted for by the estimations of the previous paragraph.

4.5. Constant maximum supersaturation
Up to now, the bubble spacing W has been taken to be a constant parameter of the
problem. The maximum supersaturation, defined as S = max nH2/ns at each instant of
time, is attained at the points of the electrode farthest from the bubbles, and increases
when the voltage is increased keeping W constant. This is not realistic. The real maximum
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Figure 8. Space- and time-averaged overpotentials as functions of the voltage Ṽ . Left-hand side panels are
for alkaline solutions and right-hand side panels are for acidic solutions, both with a high concentration of a
supporting electrolyte. Results are shown for the same values of the parameters as in figure 7.
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Figure 9. Mean potential drop across the cell for alkaline (a) and acidic (b) solutions, with nr = 0.1 mol l−1,
is0 = 0.1 A m−2 (solid), nr = 0.1 mol l−1, is0 = 10 A m−2 (dashed) and nr = 0.5 mol l−1, is0 = 10 A m−2

(dotted). Parameters αf , Z, θ , L, W, ns and nH2r have the same values as in § 3 and figure 5.

supersaturation at which bubbles appear is high and difficult to measure, but recent
results using nanoelectrodes to avoid the complexity of multiple nucleation sites (German
et al. 2018) suggest that it is independent of the voltage for a given dissolved gas. To
approximately account for this fact in the framework of the present model, additional
computations have been carried out in which W is a function of the voltage such that the
maximum supersaturation has a given, constant value at the beginning of the growth, when
the volume of the bubble is 1/50 of its volume at detachment. The average current density
computed in these conditions is shown in figure 10(a) as a function of the voltage for
various values of S in a case of acidic solution without supporting electrolyte. Figure 10(b)
shows the variation of the spacing W with the voltage.

The results show that infinitely spaced bubbles first appear when the voltage reaches
a certain value that increases with the chosen maximum supersaturation, and the bubble
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Figure 10. Space- and time-averaged current density 〈i〉 (a) and bubble spacing W (b) as functions of the
voltage Ṽ computed with the condition that the maximum supersaturation S be constant at the beginning of
the bubble growth. Results are shown for an acidic solution with nr = 0.1 mol l−1, is0 = 10 A m−2 (Λ = 10,
Da = 4.96 × 10−3) without supporting electrolyte, with S = 6.42 (pluses), 15.64 (crosses), 33.75 (stars) and
93.18 (open squares), and for nr = 0.1 mol l−1, is0 = 0.1 A m−2 (Λ = 10, Da = 4.96 × 10−5), with S = 6.42
(filled squares). The solid curve in (a) shows the current density in the absence of bubbles. Parameters αf , Z,
θ , L, ns and nH2r have the same values as in § 3 and figure 5.

spacing decreases when the voltage is increased above this value. For the three lower
values of S in figure 10, the surfaces of neighbouring bubbles come into contact at the
instant of detachment when the voltage reaches a critical value. This heralds coalescence
of attached bubbles at higher voltages.

The spacing W seems to level off with increasing voltage at the highest value of S in
figure 10, for which no coalescence appears in the range of voltages where a solution has
been computed.

Finally, since quasi-hydrostatic bubbles follow a constant path of shapes and volumes
up to detachment, the inverse of the square of W is proportional to the fraction of the
electrode area covered by bubbles predicted by the model.

Apparently, the coalescence of attached bubbles drives the system into a mode in which
upward gas jets rising from the electrode coexist with downward liquid columns falling
onto it, and the hydrodynamic instability of this mode is connected to the transition
between the mode of gas evolution discussed in this article (analogous to the pool mode
of boiling heat transfer) and modes in which a gas film blankets the electrode (analogous
to the film mode of boiling heat transfer). The electric current density attains a maximum
at the voltage of this transition and falls rapidly when the voltage is further increased.
Unfortunately these modes and transitions are beyond the scope of the quasi-hydrostatic
approximation used here.

5. Conclusions

The evolution of hydrogen at a cathode has been analysed using the Butler–Volmer model
to compute the rate of the electrochemical reaction around an attached hydrogen bubble
that grows slowly on top of a horizontal electrode at the bottom of a dilute, aqueous
electrolyte. The liquid is quiescent and is bounded above by a horizontal plane where
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the voltage and the concentrations of all the species are constant. Symmetry conditions
are used to simulate the effect of other bubbles growing on the electrode.

When the spacing of the bubbles on the electrode is large compared with the size of a
bubble at detachment, the total flux of hydrogen reaching a bubble increases nearly linearly
with the size of the bubble, leading to a size that nearly follows the t1/2 law expected for
diffusion growth in a uniformly supersaturated liquid. The decrease of the supersaturation
with distance to the electrode is felt in the region where the bubble grows, causing a
slight lag of the bubble size behind the t1/2 law. When the bubble spacing decreases, the
interbubble gaps become narrow and most of the hydrogen generated at the electrode gets
into the bubbles. This leads to a bubble size that increases nearly as t1/3 during the last
stages of the growth.

For dilute alkaline solutions, when the consumption of water is ignored, the space- and
time-averaged current density increases exponentially with voltage above its equilibrium
value. The current density also increases with the exchange current of the reaction, and
decreases when the concentration of OH− increases, as this increases the rate of the
backward reaction.

For acidic solutions, the average current density increases with the exchange current and
with the concentration of H+. At high voltages, the current density tends to a transport
limited value that decreases when the spacing of the bubbles increases (though this is not
displayed in figures 5 and 6) and when a high concentration of a supporting electrolyte is
added to the water.

In both cases, the average current density is higher than the current density in the
absence of bubbles, showing that the bubble-induced decrease of the concentration
overpotential overcomes the increase of the activation overpotential due to the partial
coverage of the electrode surface with bubbles. The concentration and activations
overpotentials, as well as the electric potential drop across the liquid, are discussed for
alkaline and acidic solutions.

The bubble spacing must decrease with increasing voltage to keep the maximum
supersaturation constant. Computations carried out in these conditions give an estimation
of the voltage and current density at which coalescence of attached bubbles first occur.
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