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REFLECTION OF WATER WAVES FROM A VERTICAL
VORTEX SHEET IN WATER OF FINITE DEPTH
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Abstract

The reflection-transmission properties of water waves obliquely incident upon a vortex
sheet in water of finite depth are studied. The problem is reduced to that of solving two
integral equations. An accurate Galerkin solution is obtained which supports the use of
the “variational method” in water wave problems that has recently been questioned by
Kirby and Dalrymple. ’

1. Introduction

Even within the framework of linear theory, the study of the propagation of water
waves across a horizontally sheared current has proved to be remarkably difficuit.
The problem is basically non-separable and shares many features and difficulties
in common with the problem of propagation over varying bottom topography. A
‘good introduction to both of these is given by Mei [3] while Peregrine [6] gives a
thorough discussion of the whole matter of wave-current interactions. Two basic
lines of approach have been found to be fruitful, based upon the ratio of
wavelength to current scale length. The first assumes this ratio to be small and
leads to approximations of WKB type. Phenomena such as caustics can be
incorporated into these models. The second approach takes the opposite view-
point and represents the current by regions of constant velocity separated by one
or more vortex sheets. While the first case is the one of greater oceanographical
relevance, there are some coastal regions such as near river discharges or strong
tidal currents where the second approach might be of more significance. '
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In this paper we shall consider the propagation of waves across a single vortex
sheet in water of finite depth. The primary aim is to determine the reflection and
transmission coefficients. The shallow-water-theory solution of this problem has
been presented by Peregrine [6] (see also Mollo-Christensen [5]). The case of
infinite depth was treated by Evans [1] while Smith [7] gave an approximate
method of attack in water of finite depth. Recently, Tesoriero [8] extended Evans’
work to the finite depth case. His results agreed well with those of Evans when the
waves on both sides of the vortex sheet were short and with shallow water theory
when the waves on both sides of the vortex sheet were long. Both Evans and
Tesoriero reduced the problem to that of solving a pair of integral equations.
They both used simple two-term Galerkin approximations, following the lead set
by Miles [4] who studied propagation over a step change in depth. These types of
solutions are generally referred to as “ variational solutions” since the individual
elements of the scattering matrix (see Section 3) each satisfy a variational
principle and so ought to be able to be accurately approximated by simple means.
These variational solutions are widely used but have recently been called into
question by Kirby and Dalrymple [2]. The agreement between the results of
Tesoriero for short waves and those of Evans is encouraging but not conclusive
because both used the same sort of Galerkin approximation. _

It is the aim of this paper to test the validity of Tesoriero’s solution by
including more terms in the Galerkin approximation. We find that his solutions
are generally quite good, thus lending support to the variational method in this
context, and then go on to present accurate results for the reflection and
transmission coefficients. The problem itself is formulated in Section 2 and some
of its general properties discussed. Section 3 presents the method of solution used
and the results are presented and discussed in Section 4.

2. Formulation

- We consider the propagation of small-amplitude surface gravity waves on water
of constant density and depth. Axes are chosen so that the undisturbed free
surface is the x — z plane with the y-axis pointing vertically down. The ocean
bottom is at y = H. In the absence of wave motion, there are uniform current
velocities Uk and U,k in x > 0 and x < 0 respectively. Throughout this paper
we will use a subscript 1 to denote the region x > 0 and a subscript 2 to denote
the region x < 0. A wave of frequency w is assumed to be obliquely incident from
x = + o0. Thus, if @, is the velocity potential in region m,

®,=U,z+¢,(x,y)e P79 m=1,2,
where, without loss of generality, « > 0 and p > 0.
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It is convenient to non-dimensionalise lengths with respect to the depth H,
wavenumbers with respect to H ™!, velocities with respect to gw™' (the phase
speed of waves of frequency w in still water of infinite depth) and velocity
potentials with respect to awH, where a is a typical surface amplitude associated
with the incident wave. The dimensionless problem for the wave velocity potential
¢, is then given by:

9%, 9% 5
= = =0 for0<y<l,
St kg, =0 aty=0, m=12, (1)
ay
09, _
W =0 aty=1,

with the matching conditions

¢, = oy,
3¢, 3¢, } atx=0for0<y<1. (2)
azﬁ = al—a;
The first matching condition represents the fact that the pressure is continuous
across the vortex sheet. The second is the kinematic condition implying that a
particle remains on the sheet. Derivations may be found in Evans [1].
In these equations ¢ = pH and

of, = K, = 0(1-¢8,/0)",
where Q = w?H/g and B, = wlU, /g is the dimensionless current velocity in
region m. ’
The general solution in region m may be obtained via separation of variables
and, following Evans [1], will be written as

on(x,y) = sgnx{(Ame-"mlxw Boet)x, (3) + ¥ cme-"m'xwmu)}, 3)

n=1
where
Xm(y) = A,cosh R, (y ~ 1),
Ymn(¥) = Bpncosk,,,(y - 1),
A, =2RY?/(2R,, + sinh2R,,)"”,
and

B, = 2kY?/(2k,,, + sin2k,,.)">.
In these expressions, R, is the unique positive solution of
R,tanhR =K, |
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k. is the nth positive solution of
k,.tank, = -K

m

and
= (Re= @) o= (K2t )7

If /2 < 0, we naturally take only the solution which decays away from the vortex
sheet at x = 0. In region m, the set

{Xm(P)s ¥mn(¥);n=1,2,3,...}

forms a complete orthonormal set with respect to the weight function 1. The
function x,,(y) is the eigenfunction for the surface wave mode while the
functions v,,,( ) are the eigenfunctions for the evanescent modes trapped to the
vortex sheet. If /2 > 0, we may define §,, by

l,=R,cos8,, (0<86,<u/2)
and so
qg=R,sing,,.

Thus far, the formulation has been quite general. The specific case to be treated
here is that of a wave incident from x = + oo with U; = 0. Thus 8, = 0 and we
specify the angle of incidence 8,, Q(= K; now) and the dimensionless current
strength B, in region 2. These enable R, and k,,, to be found numerically from
which /2 and all other necessary quantities are easily found. If /2 > 0 we find the
angle of transmission #, from

q = R;sinf, = R,sind,.

With B, = 0, the x-component of the group velocity of a wave component
exp{i(/,x + gz — wt)] in region 2 is readily found to be

I,(tanh R, + R,sech®R,)
c =
& 2R,(1 - gB/K,)

Thus if 1 — ¢B8,/K, > 0, which means that @ — pU, > 0 in dimensional varia-
bles, and we take /, > 0, the transmitted wave in region 2 is represented by
exp(—il,x) = exp(il,|x]) in (3) as expected. However if 1 — ¢gB,/K; < 0 we must
take exp(il,x) as being the transmitted wave in order that the group velocity be
directed towards x = —o00. These two cases will be referred to as “normal” and
“anomalous” respectively.

One may also derive from (1), (2) and (3) the wave action flux conservation law
in the form

W{1B:1° =145} = -L{|B," 14,17, (4)
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by using the two-dimensional form of Green’s symmetrical identity. If /3 < 0, all
solutions are decaying at x = —oo and the right side of (4) is replaced by zero.

_This implies, as expected, than the incident wave is reflected with unchanged
amplitude in this case.

In the normal regime, A, exp(-i/,|x|) represents the incident wave, B, exp(il;|x|)
the reflected wave, B,exp(il,|x|) the transmitted wave and A4, =0 by the
radiation condition. The magnitudes R and T of the reflection and transmission
coefficients for free-surface amplitude are then found from (4) to be connected by

R+ T2{ K, cos 8,cosh® R, (2R, + sinh2R2)} 1 )

K,cos8,cosh’> R,(2R, + sinh2R,)

from which it follows that R? < 1, a situation referred to as “under-reflection”.
Setting R = 0 in (5) gives a value for T identical with that predicted by “slowly
varying” WKB theory which completely neglects the reflected wave. There is no
paradox in this: both the WKB and present theories conserve wave action flux
and so setting R = 0 in (5) must give the WKB transmission coefficient.

In the anomalous regime, group velocity considerations outlined above require
us to take B, = 0 and A4,exp(~il,|x|) to be the transmitted wave. In this case, T2
in (5) is replaced by -T2 and hence R? > 1, a situation referred to as “over-re-
flection”. In the special case w — pU, = -w, it follows that K, = K, and hence
that R, = R;. The surface wave eigenfunctions on each side of the vortex sheet
are then identical and no evanescent modes are needed to satisfy the matching
conditions (2) at x = 0. However we readily find from these conditions that R
and T are both infinite. This is sometimes called “resonant over-reflection”. For
the infinite depth case, Evans [1] noted the equality of the surface wave eigenfunc-
tions when w — pU, = —w. However, he incorrectly identified B, exp(il,|x|) as the
transmitted wave and put 4, = 0. In both the finite and infinite depth cases, this
leads to the conclusion that R = 0 and T = 1, i.e. perfect transmission with no
reflection. Group velocity considerations also show the assertion in his paper that
R and T, expressed as functions of B,, are symmetric about B, = cosecf, to be
incorrect. '

In reality, there will always be a shear layer of finite thickness rather than a
vortex sheet. This implies that the waves will always encounter a critical layer
where w — pU, = 0 before entering the over-reflective regime. The relationship
between the actual reflection and transmission coefficients in this case and those
calculated assuming a vortex sheet is a subject worthy of further investigation.
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3. The integral equations

Following the lines set out by Evans {1], one may readily reduce our problem to
that of solving for 0 < y < 1 the integral equation

2 anln+ BIxalD) = [} G20
where
6(n) = 6(10) = £ E Kepibban(7)nlt)
and
(3) = () = a(») (by )
where

%m(y) = a¢m/ax|x-0‘

The only essential difference between our problem and that of Evans is that, in
the kernel G(y,t) of the integral equation, his integral over the continuous
spectrum of evanescent modes in the infinite depth case is here replaced by an
infinite sum over the discrete spectrum of evanescent modes which occurs in the
finite depth case.

The problem may further be reduced to that of solving for 0 < y < 1 the pair
of integral equations

d,(y)= j(;l G(y,t)u,(t)dt; m=1,2, (6)

where

d,(¥) = X m(¥)-

Once this has been done, we find the so-called scattering matrix S from

sm=jo1 d (Du,()dt;  (m,n)=1,2.

The wave velocity potential amplitudes on either side of the vortex sheet are then
connected by

(Bl Bz)T = ~7(A1 Az)T,
where

T=(L+iS) (£~ iS)
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and
e L, 0
o 4
From these, the (complex) reflection and transmission coefficients for free surface
height may readily be found.

Thus, the problem ultimately reduces to that of solving (6). Tesoriero [8] sought
an approximate 2-term Galerkin solution of the form

2
u,(t)= Y w,d,(t); m=1,2. (7
s=1
His results for R and T agreed quite well with shallow water theory when K, and
K, were both small and with those of Evans [1] when they were both large. As
mentioned earlier, this type of “variational solution” was introduced into the
water-wave literature by Miles [4] and has been widely used every since. The
solution of Evans [1] is of this kind. That author also applied the variational
method to a_different problem for which an exact solution was available.
Agreement was generally good. More recently, however, Kirby and Dalrymple {2]
have cast doubts on the accuracy of the variational method when applied to
propagation over a trench by comparing its predictions with those obtained by
other means.
It is one purpose of this paper to investigate the accuracy of (7) in this context
by including more terms in the approximation. Specifically, we take N eigenfunc-
tions from each side and so seek an approximate 2 N-term Galerkin solution of

the form
2N
u,(t) = Y w,d(1), m=12, (8)
s=1 .
where
d;(t) = a;x;(t) forj=1,2
and

d2j+1(t) = ax‘l’lj(t)
dyjea(t) = az‘l’z;(‘)
Substituting this into (6), multiplying by d,,(y) and integrating from 0 to 1 gives
F=WE, 9)
where the 2 X 2N matrix F is given by

Son = [ dn()do(3) &

} j=12,...,N—1.
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and the 2N X 2N symmetric matrix E by
11
en=[ [ G(y,)d,(»)d,(c) dyar.
0 0

Once the equations (9) have been solved for W, the scattering matrix is found
from

. 2N
Sm" = Z wnsfm.r'
s=1
From this, the reflection and transmission coefficients are found as outlined
above.

The approximate solution employed here preserves the symmetry of the scatter-
ing matrix and the wave action flux conservation law becomes an identity in the
elements of S; i.e. to within the limits of round-off error, wave action flux is
conserved by this approximation. All the integrals involved in the F and E
matrices are elementary. However, some care is needed for short waves since, for
example, terms such as sinh 2R, which occur in the normalization constants 4,
can overflow for large R,,. A careful examination shows that the A,, are only ever
needed in the combinations 4, sinh R, and 4,,cosh R,,. For large R,,, say 50 or
larger, these may both be replaced by the asymptotic form (2R,,)'/2 Evaluation
of R and T at R, = 50 using both forms showed no differences. In this and
similar ways, the problem of overflow was avoided.

4. Results and discussion

The numerical procedure outlined above was implemented on a VAX 11 /780
at Melbourne University. Using double precision FORTRAN, this gives about 16
decimal digits. The linear equations (9) were solved using the IMSL subroutine
LEQIS. The number of terms used in the kernel of the integral equations (6) was
increased until the method had converged. Typically, 80 terms were needed but
fewer sufficed for smaller values of B8,. In fact, sufficient accuracy for the drawing
of graphs could generally be obtained with about 20 terms. There is also the
question of the number of terms to use in the Galerkin approximation (8). One
might naively expect that more terms would lead to greater accuracy. While this is
generally true for small N, there is a practical limit imposed by the fact that the
2N X 2N matrix E becomes more and more ill-conditioned as N increases.

It has been pointed out by a referee that this kind of behaviour is only to be
expected from the general properties of Fredholm equations of the first kind and
that there is usually an optimum number of terms at which the L,-norm of the
error in (6) is minimised. Typically, N = 5 was about as far as we could go on our
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machine before the effects of the ill-conditioning became serious. However, as we
shall see, this is generally more than enough terms for accurate results to be
obtained.

We begin by presenting a typical example with K, =3 and 6, = 45° In
Figures 1,2 and 3 we show the amplitudes of the transmission and reflection
coefficients as well as the phase of the reflection coefficient for -3 < B, < B,
where B, is the value of B, at which /, =0, ie. 8, = 90°. Beyond this value
(B.=0.2376... for these particular parameters) the waves are totally reflected
from the vortex sheet until, for very large B8,, wave propagation is again possible
in the over-reflective regime. The phase of the transmission coefficient has not
been shown since it is very close to zero—never more than 5° in magnitude. In
plotting the reflection coefficient we have adopted the sign convention advocated
by Smith [7]; namely to associate a negative sign with the magnitude (and make
the appropriate change of 180° to the phase) for 8, < 0. For relatively short
waves at least, this makes the phase of the reflection coefficient continuous as S,
passes through zero and removes the cusp in the magnitude at 8, = 0. These three
figures show the results of the two-term, four-term and eight-term Galerkin
solutions (8). The six-term results are indistinguishable from the eight-term ones.
In Figures 1 and 2 we have also shown the results of the averaging method of

0 1 1 1 1 1 ! 1
-3 -2 -1 0 1

g

Figure 1. Transmission coefficient magnitude for K; = 3 and 8, = 45°. Shown are the results of the
2-term( ), 4&-term (—~ — — —) and 8-term (————) Galerkin solutions as well as
those of Smith’s averaging method (—— — ——) and the WKB method (- —~ -).
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Figure 2. As for Figure 1 except that the magnitude of the reflection coefficient is shown. This is
defined as having the same sign as the dimensionless current f8,. There is no WKB solution.

180 T T T T T T T

120

—60 L 1 1 1 1 1 I
-3 -2 -1 0 i

Figure 3. As for Figure 2, showing the phase in degrees of the reflection coefficient. Smith’s method
gives no information on this quantity.
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i

Smith [7], adapted to water of finite depth, and, in Figure 1, the WKB transmis-
sion coefficient amplitude is also shown. Neither of these methods gives ‘any
phase information nor considers the influence of the evanescent modes.

The results depicted in Figures 1,2 and 3 are broadly typical of all cases we
have investigated; namely that the two-term Galerkin solution, which is in fact
that of Tesoriero [8), is really quite adequate for most purposes especially for
small values of B,. This conclusion supports the use of the “ variational method”
as applied to this particular problem: good results are obtained from simple
approximations. It should also be noted that only small values of B, are of any
physical relevance since 8, = wlU,/g = 0.64U, /1 if U, is measured in meters per
second and 7 is the wave period in seconds.

We now proceed to investigate the effects of finite depth on the reflection and
transmission coefficients. In Figures 4 and 5 we show the reflection and transmis-
sion coefficients for various values of K, (i.e. for various depths if we fix the wave
frequency) for an angle of incidence #, = 30°. Figures 6 and 7 show the same
things for @, = 60° In all these Figures, we used six terms in the Galerkin
solution (8); the eight-term results being virtually indistinguishable. From these it
is seen that for strong opposing currents the magnitudes of the reflection and
transmission coefficients are decreasing functions of K, i.e., the shallower the

1.0 T T T T T T

i 8,=30° | l

-1 O i 1 1 1 1 1 1
-3 -2 -1 0 1
Figure 4. Reflection coefficient magnitude when 0, = 30° for K, = 0.1 (————), K; = 0.5
(-~ — - =), K1 =10(— ——)and K, =60 (— — —).|
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-3 -2 -1 0 1

S

L

-1.0 1 ] 1 1 1 1 1
-3 -2 -1 0 1
Figure 6. As for Figure 4 with §, = 60° and (— — — —) now represents K, = 0.25.
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water, the larger they are. For weak opposing currents and for following currents
this is seen to be not necessarily true. Indeed the critical value of B, at which
R — 1is not even a monotone function of K,. Shallow water theory predicts that
R = 0at B, = K}/? [cosec8, — secd,] as well as at B, = 0. This may be deduced
from expressions given in [5]. For small but finite K;, our computations indicate
that the magnitude of R has a minimum near this value of B8,. This is clearly seen
in Figures 4 and 6 for K; = 0.1. Interestingly, a minimum still occurs, but is less
- dramatic, for larger values of K.

We close by presenting some results in the over-reflective regime. Figures 8 and
9 show the reflections and transmission coefficients when 6, = 45° for K, = 0.1
and K; = 4.0. Only the over-reflective values are shown and eight Galerkin terms
were used. The curious features evident near B, = 2.5 when K, = 0.1 and near
B, = 3.5 when K, = 4.0 are quite genuine. They also occur when 2,4 or 6
Galerkin terms are used. Indeed, there is very little difference between the results
obtained with 2, 4, 6 or 8 Galerkin terms.

In summary, our results bridge the gap between the shallow water results of
Peregrine [6] and the deep water results of Evans [1). They also lend support to
the use of the variational method in water wave problems involving discontinui-

ties.
4 T T T T T T T
T ]
0 1 1 1 ] 1 1
-3 -2 -1 0 1
Figure 7. As for Figure 5 with , = 60° and (— — — - ) again representing K, = 0.25.
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40

o e — — e ——— -

101

Figure 8. The reflection coefficient magnitude as a function of 8, when 8, = 45° in the over-reflec-
tive regime when K; = 0.1 (- - -) and K; = 4.0 (—). Only the results for the over-reflective regimes
(which start at B, = 0.7533 --- and B, = 2.5980 -:-) are shown. Resonant over-reflection occurs
when 8, = 0.8795 --- and B, = 2.8265 ---.

40

Ty T T T T
|
11
L - 4
(IR
1l
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Figure 9. As for Figure 8, showing the transmission coefficient magnitude.
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