Principal signatures for higher-order program modules

MADS TOFTE
Department of Computer Science, University of Copenhagen, Denmark

Abstract

In this paper we present a language for programming with higher-order modules. ${ }^{\dagger}$ The language HML is based on Standard ML in that it provides structures, signatures and functors. In HML, functors can be declared inside structures and specified inside signatures; this is not possible in Standard ML. We present an operational semantics for the static semantics of HML signature expressions, with particular emphasis on the handling of sharing. As a justification for the semantics, we prove a theorem about the existence of principal signatures. This result is closely related to the existence of principal type schemes for functional programming languages with polymorphism.

Capsule review

One of the more successful and innovative features of Standard ML is its approach to modular programming. Interfaces, or signatures, describe the components of a program unit through type declarations and sharing specifications. Implementations, or structures, provide the actual code of a program unit, and are checked for conformance with their signatures. Implementations are combined using functors, functions mapping structures to structures. In Standard ML, functors are first-order; functors may not be passed as arguments or returned as results. This restriction has proved to be limitative in practice.

Standard ML is notable for having a rigorously defined static and dynamic semantics. The dynamic semantics defines the rules of evaluation, and is relatively standard. The static semantics defines a set of context-sensitive conditions that well-formed programs are required to satisfy, including the familiar typing constraints of the core language and analogous, but more complex, constraints at the module level. A critical property of the static semantics is the existence of principal signatures which summarize the compile-time properties of a module. This paper is concerned with extending this property to an extension of Standard ML with higher-order modules.

1 Introduction

Working on large programs involves manipulating large program units as well as working on the details of individual units. Such program units are sometimes called

[^0]modules, especially if the programming language in question allows the programmer to name units and combine them in a controlled fashion.

Since managing large collections of program modules is a central task in practical programming, it is not surprising that programming languages are going through a development of more and more powerful language constructs for programming with modules. In ADA there is a basic form of module, called a package; module interfaces can be written in programs and are called package interfaces. Finally, a generic package is a package which has been parameterized on a type, making it possible to separate the implementation of the type from its use.

Standard ML has similar concepts, namely structures, signatures and functors, due to MacQueen (1984). A structure can declare datatypes and functions that operate on these types. A signature can specify the names of types and functions, but it does not necessarily tie these specifications to actual datatypes and functions.

Perhaps the single most important construct in the ML Modules language is the concept of functor, the Standard ML notion of parametric module. A functor can be thought of as a map from structures to structures. Consider the following Standard ML functor:

As indicated by the boxes, this functor declaration is of the general form
functor funid (strid: sigexp) $\left\langle:\right.$ sigexp $\left.^{\prime}\right\rangle=$ strexp
Here funid is a functor identifier, strid is a structure identifier (the formal parameter) sigexp is a signature expression (the parameter signature) and strexp is a structure expression, called the body of the functor. When present, sigexp' is called the result signature. (Throughout this paper, the angle brackets \rangle enclose optional phrases.) The above functor F takes as argument a structure containing a type t and a value a and produces a structure containing a type pair and a value b.

Inside the functor body, one can refer to the components of the formal parameter - hence X.t and X.a in the above example. However, the references to the formal parameter strid must be valid assuming only what the parameter signature reveals about strid. Thus writing $X . z$ in the body of F would be illegal, for X is not specified to have a z component. More interestingly, writing ($X . a$) +1 in the body would be illegal, since X. a is of type t and t has not been specified to be the type of integers.

Practical advantages of programming with functors are:

1. One can write a program piece P, without first having to decide on the
implementation of the types and operations P depends on. P is simply made into the body of a functor F. As P is written, types and operations that are needed for P, but do not belong with P, are made into parameters of F.
2. A compiler can type-check F, even before the actual argument, to which F will eventually be applied, is written. Once F is type correct, one can usually forget about the details of the body of F and concentrate on the argument and result signatures.
3. When F eventually is applied to an actual argument structure S, it is automatically checked that S matches the parameter signature. If S does not match the argument signature (because one has forgotten to define some function in S, say) then an error message is produced. This eases the burden of keeping track of what has yet to be implemented.

It is perhaps not surprising that functors turn out to be so useful, for they are simply the modules variant of functions and it is well known that functions are useful in programming. Indeed, in functional programming languages, one insists that functions are values and as such can be stored in data structures, passed as arguments to functions, returned from functions, and so on. Similar generality is clearly in demand for parameterized modules. If one wants to write a piece of code which uses a functor F, but has no desire to write F just yet, the natural thing would be to write a functor G, parameterized on F :

```
functor G(X:sig \cdotsfunctor F: \cdots end) =
struct \cdots X.F ... end
```

Here G is an example of a higher-order functor, by which we mean a functor which is parameterized on a functor or returns a functor as result.

However, higher-order functors are not available in Standard ML. In this paper we present a skeletal language, HML, which is based on Standard ML, but admits higher-order functors. HML is not the first programming language with higher-order modules. Harper, Mitchell and Moggi (1990) propose a very elegant type-theoretic module concept which allows higher-order modules. Unfortunately, their approach does not address generativity, sharing and multiple structure views, all of which are important in Standard ML. In HML we do deal with these concepts and the resulting language is largely compatible with the first-order modules of Standard ML.

In this paper we do not present a complete semantics for HML. Dynamic semantics is not described at all and we omit the semantics of functor application and signature matching from the static semantics. What is left is the static semantics of signature expressions containing functor specifications. Such signatures are far from trivial to deal with, however. We shall justify our particular semantics for signature expressions by proving that if a signature expression is legal according to the semantics, then it has a so-called principal signature, the modules equivalent of principal type scheme (Milner, 1978; Damas and Milner, 1982).

In section 2 we give the grammar for HML and explain the language informally. In section 3 we define the static semantics of signature expressions and specifications
using 'natural semantics' (or 'relational semantics'). In section 4 we discuss the connection between sharing constraints and unification. In section 5 we prove a theorem called the realization theorem; in section 6 we prove the main result about principal signatures using a signature inference algorithm W which is presented at the same time. Finally, section 7 presents our conclusions.

2 A skeletal language

In this section we give an informal presentation of HML.

2.1 Grammar

We assume three disjoint, denumerably infinite identifier classes:

strid \in StrId	structure identifier long	
sigid \in SigId	signature identifier	
funid \in FunId	functor identifier long	

For each class X marked 'long' there is a class longX of long identifiers; if x ranges over X then longx ranges over longX. The syntax of these long identifiers is given by the following:

longx	$::=$	x
	strid $_{1} \cdots$ strid $_{n} \cdot x$	identifier
		qualified identifier $(n \geq 1)$

The phrase classes of HML are:

strexp	ϵ	StrExp	structure expression
funexp	ϵ	FunExp	functor expression
atstrdec	ϵ	AtStrDec	atomic structure-level declaration
strdec	ϵ	StrDec	structure-level declaration
sigexp	ϵ	SigExp	signature expression
funsigexp	\in	FunSigExp	functor signature expression
atspec	ϵ	AtSpec	atomic specification
spec	ϵ	Spec	specification
shareq	\in	SharEq	sharing equation
atprogram	\in	AtProgram	atomic program
program	\in	Program	program

For expository reasons, we present a grammar both for signatures (Fig. 1) and for structures and functors (Fig. 2) although it is only the language of Fig. 1 that we study in detail in this paper. Since Fig. 1 does not refer to the phrase classes defined in Fig. 2, the theorems we prove do not rely on a particular semantics for the constructs of Fig. 2. We write structure strid: sigexp = strexp for structure strid $=$ strexp:sigexp. Similarly, we write

$$
\text { functor funid (strid : sigexp) }\langle: \text { sigexp }\rangle=\text { strexp }
$$

for

$$
\text { functor funid }=\text { func strid }: \text { sigexp }=\text { strexp }\left\langle: \text { sigexp }^{\prime}\right\rangle
$$

$\left.\begin{array}{clll}\text { sigexp } & ::= & \begin{array}{l}\text { sig spec end } \\ \text { sigid } \\ \text { sigexp is strid } \text { sharing shareq }\end{array} & \begin{array}{l}\text { basic } \\ \text { signature identifier } \\ \text { sharing qualification }\end{array} \\ \text { funsigexp } & ::= & \begin{array}{l}\text { (strid }: \text { sigexp }_{1} \text {) sigexp } 2_{2}\end{array} & \text { functor signature }\end{array}\right\}$

Fig. 1. Grammar for signatures.

strexp	$::=$	struct strdec end longstrid funexp $($ strexp $)$ strexp: sigexp	generative structure identifier functor application signature constraint		
funexp	$::=$	func strid $:$ sigexp \Rightarrow strexp longfunid (funexp)	functor functor identifier		
atstrdec	$::=$	structure strid $=$ strexp functor funid $=$ funexp	structure functor		
strdec	$::=$	atstrdec $\langle;\rangle$ strdec atprogram	$::=$		
atstrdec					
signature sigid $=$ sigexp				\quad	sequence
:---					

Fig. 2. Grammar for structures and functors.

Thus func is the ' λ-abstraction of HML'. The scope of strid is strexp (and sigexp', if present). The func phrase form extends as far right as possible; with this convention, the grammar is unambiguous.

In a functor signature expression (strid : sigexp $_{1}$) sigexp $_{2}$ the scope of strid is $\operatorname{sigexp}_{2}$. In examples, we take the liberty to extend the structure-level declarations with declarations of values and types; similarly, we allow specifications of values and types.

Example 2.1 Figure 3 shows an example of programming with first-order functors. First a signature MONOID is declared (a). Then two monoids Int and String are
end;
struct
type $\mathrm{t}=$ int
val $e=0$
fun plus (x, y) :int $=x+y$
end;
type $t=$ string
val $e=" "$
fun plus(s1,s2)=s1"s2
end

```
signature MONOID =
```

signature MONOID =
sig
sig
type t
type t
val e: t
val e: t
val plus: t * t -> t
val plus: t * t -> t
signature MPAIR $=$ sig
structure M: MONOID
structure N: MONOID end;
(d)

```
(a)
structure Int: MONOID=
(b)
structure String: MONOID= struct
(c)
end;
Prod(struct
            structure \(M=\) String
            structure \(N=\) Int
        end);
```

functor Prod(X: MPAIR):MONOID =

```
functor Prod(X: MPAIR):MONOID =
struct
struct
    type t = X.M.t * X.N.t
    type t = X.M.t * X.N.t
    val e = (X.M.e, X.N.e)
    val e = (X.M.e, X.N.e)
    fun plus((x1,x2),(y1,y2))=
    fun plus((x1,x2),(y1,y2))=
        (X.M.plus(x1,y1),
        (X.M.plus(x1,y1),
            X.N.plus(x2,y2))
```

 X.N.plus(x2,y2))
    ```
(e)
structure TitleAndAge \(=\)
(f)
... TitleAndAge.plus( student, ("M.Sc.",4))
(g)

Fig. 3. Examples of modules.
declared - see (b) and (c). Note that (a) specifies \(t\), e and plus without saying what they are. Int and String give different implementations of MONOID; for example, plus is addition of integers in Int but concatenation of strings in String. The signature constraints ': MONOID' in (b) and (c) serve to check that Int and Real really do match the MONOID signature. The next signature (d) can be matched by any structure that has substructures \(M\) and \(N\) both of which must match MONOID. Functor Prod (e) can create a monoid, namely the product of \(M\) and \(N\), for every structure X that matches MPAIR. At (f), functor Prod is applied. Notice that the actual argument is a structure which matches MPAIR. This application yields a structure, called TitleAndAge. The expression at ( g ) will graduate student by appending the string "M.Sc." to the title and 4 years to the age.

Example 2.2 Figure 4 illustrates the use of a higher-order functor, Square, which is declared at (h). Here 'functor Product: ( \(\mathrm{X}:\) MPAIR) MONOID' is an example of a functor specification. The body of Square is just the application of Product. Notice that Square is closed, i.e. it contains no free identifiers except signature identifiers; thus it can be compiled before functor Prod (Figure 3(e)) is written. Once Prod is
```

functor Square(X:
sig
functor Product: (X:MPAIR)MONOID
structure Y: MONOID
end): MONOID =
X.Product(
struct
structure M = X.Y
structure N = X.Y
end);
(i)
.. Plane.plus((1,3),(2,5))
(j)

```
```

structure Plane =

```
structure Plane =
    Square(
    Square(
        struct
        struct
            functor Product = Prod
            functor Product = Prod
            structure Y= Int
            structure Y= Int
            end);
```

 end);
    ```
(h)

Fig. 4. Use of higher-order functor.
```

structure A =
struct
structure B = struct end
functor F(X: sig end)= struct structure C = X end
structure D = struct end
end;
signature SIG =
sig
structure B: sig end
functor F: (X: MONOID) sig end
end;
structure A':SIG = A;

```

Fig. 5. A signature constraint can lead to multiple views of a structure.
declared, we can apply Square to a structure containing Prod, see (i). This gives a monoid, Plane, of integer pairs. At (j), we see a use of the Plane structure.

The reader will have noticed that it is sometimes a bit cumbersome to wrap up functor arguments in structures. In examples, we shall occationally use the following alternative phrase forms:
\begin{tabular}{cll} 
strexp & \(::=\) & funexp \((\) strdec \()\) \\
atstrdec & \(::=\) & functor funid \((\) spec \()\left\langle:\right.\) sigexp \(\left.{ }^{\prime}\right\rangle=\) strexp \\
funsigexp & \(::=\) & (spec) sigexp
\end{tabular}

\subsection*{2.2 Multiple views of structures}

In matching a structure \(S\) against a signature \(\Sigma\), the structure must have at least the components specified by \(\Sigma\). Moreover, the functor components of \(S\) must be at least as general as specified. Consider the declarations in Fig. 5. Here A has the components required by SIG plus an additional \(D\) structure. The declared functor \(F\) requires no more of its argument than the specified functor \(F\) and it produces at
```

sig
structure M: MONOID
structure N: MONOID
sharing type M.t = N.t
end

```
sig
structure M: MONOID structure \(N\) : MONOID sharing \(M=N\)
end
(a)

Fig. 6. Sharing specifications.
least as much as the specified F - note the contravariance in the argument position. Thus A matches SIG.

The structure A' has only the components specified by SIG. Moreover, the functor \(A^{\prime} . F\) is treated as having the functor signature specified in SIG. Thus it can only be applied to structures that match the specified parameter signature (i.e. MONOID) and the result of applying \(A^{\prime} . \mathrm{F}\) will be constrained by the specified result signature.

In the example, \(A\) and \(A^{\prime}\) can be thought of as different views of the same original structure. In particular, A.F and A'.F are 'really' the same functor, just seen through two different views. Similarly, if A had been able to declare a datatype or a value which was also specified in SIG then A' would contain that same datatype or value, although perhaps with a different view.

The Standard ML modules system makes it possible to determine statically whether two structures are (perhaps different) views of the same original structure. The basic rule is that an occurrence of a generative structure expression (i.e. an expression of the form struct strdec end) generates one fresh structure, provided the occurrence is not inside a functor body; otherwise, the occurrence generates a fresh structure each time the closest enclosing functor is called. As an example, the total number of structures generated by Fig. 3 is 4 ; if the declarations in Fig. 4 are subsequently executed, an additional three structures are generated.

\subsection*{2.3 Sharing}

A structure specification specifies a view of a structure, as opposed to a particular structure. It is sometimes necessary to specify that two specified structures must be (perhaps different) views of the same structure. This is particularly true of structure specifications in parameter signatures. For example, consider the following declaration:
```

functor F(X: sig structure M: MONOID; structure N: MONOID end) =
struct \cdotsX.M.plus(X.M.e,X.N.e) \cdots end

```

This functor is illegal, for good reasons. X.M.e and X.N.e have types X.M.t and X.N.t, respectively, so the plus operation does not make sense unless we have X.M.t \(=\) X.N.t. Since the body of the functor must be valid assuming only what the parameter signature specifies, we need to specify that the two types must be two views of the same (unknown) type. In ML, this is done with a type sharing specification. For example, one could replace the parameter signature above with the
structure \(\mathrm{A}=\) struct end;
signature SIG =
sig
    structure A1: sig end
    sharing A1 = A
end
(a)
```

functor F:(X: sig end)

```
functor F:(X: sig end)
    sig
    sig
        structure Y: sig end
        structure Y: sig end
        sharing Y = X
        sharing Y = X
    end
```

 end
    ```
(b)

Fig. 7. Sharing: (a) with declared structure and (b) between argument and result in a functor specification.
signature expression in Fig. 6(a). One can also specify sharing of entire structures, see Fig. 6(b). A specification that two structures \(S_{1}\) and \(S_{2}\) share implicitly is a specification that identically named structures and types visible in both structures share as well. For example, every structure which matches Fig. 6(b) also matches Fig. 6(a), but the converse is not true.

In HML we do not have type sharing (as we do not have types). However, besides the structure sharing form, HML makes it possible to qualify every signature expression by a sharing equation. For example, the signature in Fig. 6(b) can be written thus:

MPAIR is \(Y\) sharing Y.M \(=\) Y.N
in the scope of the declaration of MPAIR in Fig. 3. For all signature expressions of the form sigexp is strid sharing shareq the scope of the structure identifier strid is just the sharing equation shareq. Since this language construct serves to qualify a signature expression by a sharing equation, we call it a sharing qualification.

A structure identifier mentioned in a sharing equation must be in scope at the place the sharing equation occurs. Figure 6(b) specifies sharing between two specified structures. Figure 7(a) specifies sharing with a declared structure. Figure 7(b) specifies sharing between the argument and the result of a functor. As a final example, here is the 'identity' functor and, below it, the most accurate specification of it:
```

functor Id(X: sig end) = X
functor Id:(X: sig end) sig end is Y sharing Y=X

```

This functor can be applied to any structure \(S\) and returns a structure which shares with \(S\) but has no visible components! There is no way of declaring or specifying a functor which can be applied to all structures and returns its argument unchanged.

\subsection*{2.4 Local and overlapping specifications}

Like Standard ML, HML has local specifications. Local specifications can be used to express fairly advanced sharing constraints. One of the referees provided the following nice example:
```

functor H(
local structure A: sig end
in functor F: () sig structure B: sig end sharing B = A end

```
```

 end;
 functor G:(structure X: sig end
 structure Y: sig end
 sharing X=Y)sig end
): sig structure Z: sig end end =
 struct
structure X1 = F()
structure Y1 = F()
structure Z = G(structure X=X1.B; structure Y=Y1.B)
end;

```

Here local makes it possible to specify sharing between the results of different applications of \(F\). Thus the application of \(G\) is valid and would not be valid if the sharing specification in the specification of \(F\) were removed. Without the local specification, there seems to be no way of achieving this effect without making a a parameter of H .

The present semantics for signature expressions admits local specifications. It even allows overlapping sequential specifications, by which we mean specifications of the form atspec \(\langle;\rangle\) spec, where some structure- or functor-identifier is specified by both atspec and spec.

There are reasons why one might want to restrict the use of local and overlapping specifications in full HML. In particular, the concept of matching a structure against a signature appears to become considerably more complex, if signatures like the parameter signature of H are allowed. Local and overlapping specifications also complicate the semantics of signatures somewhat but, as we shall see, principal signatures can be inferred even so.

\section*{3 A static semantics of HML signatures}

In this section we present a relational semantics for signature expressions. We define principality and state the principality theorem.

\subsection*{3.1 Notation}

When \(A\) and \(B\) are sets \(\operatorname{Fin}(A)\) denotes the set of finite subsets of \(A\), and \(A \xrightarrow{\text { fin }} B\) denotes the set of finite maps (partial functions with finite domain) from \(A\) to \(B\). The domain and range of a finite map, \(f\), are denoted \(\operatorname{Dom}(f)\) and \(\operatorname{Ran}(f)\). A finite map will often be written explicitly in the form \(\left\{a_{1} \mapsto b_{1}, \cdots, a_{k} \mapsto b_{k}\right\}, k \geq 0\); in particular the empty map is \(\}\). When \(f\) and \(g\) are finite maps the map \(f+g\), called \(f\) modified by \(g\), is the finite map with domain \(\operatorname{Dom}(f) \cup \operatorname{Dom}(g)\) and values
\[
(f+g)(a)=\text { if } a \in \operatorname{Dom}(g) \text { then } g(a) \text { else } f(a)
\]

The restriction of \(f\) to \(A\) is written \(f \downarrow A\). When \(A\) and \(B\) are sets \(A \uplus B\) denotes the disjoint union of \(A\) and \(B\). The above definitions are largely taken directly from the Definition of Standard ML (Milner et al., 1990).
\begin{tabular}{|c|c|c|}
\hline \(m\) & StrName & structure name \\
\hline \(N\) & NameSet \(=\) Fin(StrName) & e set \\
\hline G & SigEnv \(=\) SigId \(\xrightarrow{\text { 何 }}\) Sig & signature environment \\
\hline FE & FunEnv \(=\) FunId \(\xrightarrow{\text { fin }}\) FunSig & functor environment \\
\hline SE & StrEnv \(=\) StrId \(\xrightarrow{\text { fin }} \mathrm{Str}\) & structure environment \\
\hline \(S\) or ( \(m, E\) ) & \(\mathrm{Str}=\) StrName \(\times\) Env & structure \\
\hline \(E\) or (FE, SE) & Env \(=\) FunEnv \(\times\) StrEnv & environment \\
\hline \(\Sigma\) or (N)S & Sig \(=\) NameSet \(\times\) Str & signature \\
\hline \(\Phi\) or \((N)\left(S,\left(N^{\prime}\right) S^{\prime}\right)\) & FunSig \(=\) NameSet \(\times(\mathrm{Str} \times \mathrm{Sig})\) & functor signature \\
\hline \(B\) or \(N, G, E\) & Basis \(=\) NameSet \(\times\) SigEnv \(\times\) Env & basis \\
\hline A & ```
Asmb = EmptyAsmb }\uplus(Str\timesAsmb
EmptyAsmb ={\epsilon}
``` & assembly \\
\hline
\end{tabular}

Fig. 8. Semantic objects.

\subsection*{3.2 Assemblies and structures}

The term elaboration is used for that part of execution which pertains to the static semantics. The statement that some phrase phrase elaborates to a result \(D\), starting from \(C\), will be written \(C \vdash\) phrase \(\Rightarrow D\). Here \(C\) and \(D\) are so-called semantic objects. The semantic objects for HML are defined by the set equations in Fig. 8. We use \(\mathcal{O}\) to range over semantic objects. To explain the meaning of the semantic objects, in broard terms at least, let us start by considering the elaboration of structure expressions. The statement
\[
\begin{equation*}
A, B \vdash \operatorname{strexp} \Rightarrow S, A^{\prime} \tag{1}
\end{equation*}
\]
is read: in assembly \(A\) and basis \(B\) the structure expression strexp elaborates to structure \(S\) and a (perhaps expanded) assembly \(A^{\prime}\). The basis, \(B\), is used for looking up the meaning of the free identifiers of strexp - see Fig. 8. The structure \(S\) can be thought of as the static value of strexp. The assembly, \(A\), is essentially a list \(\left[S_{1}, \ldots, S_{n}\right]\) of structures - see Fig. 8. It acts as a static structure store. When a new structure is created, it is put into the assembly. It is possible to have restricted views of structures after they have originally been created and such restricted views can exist in places where the original structure is not in scope. In signature expressions sharing specifications can even specify different views of some purely hypothetical structure. The technical purpose of the assembly is to serve as a common frame of reference for different restricted views of the same structure.

We assume a denumerably infinite set StrName of structure names. We use \(m\) to range over structure names and \(N\) to range over finite sets of names. A structure name can be thought of as a unique name (or stamp) of the structure in question; name binding by nameset prefixes is used for delimiting the scope of uniqueness, as detailed below. A structure \(S\) is a pair (\(m, E\)), where \(E\) is an environment and \(m\) is the name of \(S\). Two structures \(S_{1}=\left(m_{1}, E_{1}\right)\) and \(S_{2}=\left(m_{2}, E_{2}\right)\) share if they have the same name, i.e. if \(m_{1}=m_{2}\).

An environment is a pair \(E=(F E, S E)\), where \(F E\) is a functor environment and \(S E\) is a structure environment. FE maps functor identifiers to functor signatures while \(S E\) maps structure identifiers to structures.
\[
\begin{aligned}
\operatorname{names}((m, E)) & =\{m\} \cup \operatorname{names}(E) \\
\operatorname{names}((F E, S E)) & =\operatorname{names}(F E) \cup \operatorname{names}(S E) \\
\operatorname{names}(G) & =\cup\{\operatorname{names}(G(\text { sigid })) \mid \text { sigid } \in \operatorname{Dom}(G)\} \\
\operatorname{names}(F E) & =\cup\{\operatorname{names}(F E(f \text { fuid })) \mid \text { funid } \in \operatorname{Dom}(F E)\} \\
\operatorname{names}(S E) & =\cup\{\operatorname{names}(\operatorname{SE}(\text { strid })) \mid \text { strid } \in \operatorname{Dom}(S E)\} \\
\operatorname{names}((N) S) & =\operatorname{names}(S) \backslash N \\
\operatorname{names}\left((N)\left(S,\left(N^{\prime}\right) S^{\prime}\right)\right) & =\left(\operatorname{names}(S) \cup \operatorname{names}\left(\left(N^{\prime}\right) S^{\prime}\right)\right) \backslash N \\
\operatorname{names}((N, G, E)) & =N \cup \operatorname{names}(G) \cup \text { names }(E) \\
\operatorname{names}(A) & =\cup\{\operatorname{names}(S) \mid S \text { is an element of the list } A\}
\end{aligned}
\]

\section*{Fig. 9. Names that occur free in objects.}

We often need to select parts of semantic objects - for example the name of a structure. In such cases we rely on variable names to indicate which part is selected. For instance ' \(m\) of \(S\) ' means 'the structure name of \(S\) '. Moreover, when a semantic object contains a finite map we shall 'apply' the object to an argument, relying on the syntactic class of the argument to determine the relevant function. For instance \(S(\) strid \()\) means (\(S E\) of (\(E\) of \(S\)))(strid). Furthermore, we use id to range over StrId \(\cup F u n I d\) and we write \(i d \in \operatorname{Dom}(E)\) to mean 'id \(\in \operatorname{StrId}\) and \(i d \in \operatorname{Dom}(S E\) of \(E)\) or \(i d \in\) Funld and \(i d \in \operatorname{Dom}(F E\) of \(E\)).

Modification extends to environments: \(E+E^{\prime}=\left(F E\right.\) of \(E+F E\) of \(E^{\prime}, S E\) of \(E+\) \(S E\) of \(E^{\prime}\)). Furthermore, it extends to bases, if we interpret + on name sets as set union. Hence \((N, G, E)+N_{1}=\left(N \cup N_{1}, G, E\right)\).

We shall often tacitly regard structure environments (or functor environments) as environments. An empty structure will often be written (\(m,\{ \}\)), which means (\(m,(\{ \},\{ \})\)).

A nameset prefix (\(N\)) in a signature or a functor signature binds names. In a signature \((N) S\), the scope of the binding of the names in \(N\) is \(S\). In a functor signature \((N)\left(S,\left(N^{\prime}\right) S^{\prime}\right)\), the scope of \((N)\) is \(\left(S,\left(N^{\prime}\right) S^{\prime}\right)\) (and the scope of \(\left(N^{\prime}\right)\) is \(\left.S^{\prime}\right)\). Signatures and functor signatures will be explained in sections 3.3 and section 3.6, respectively.

Nameset prefixes give rise to the notions of free and bound occurrences of names, in the usual way. For any semantic object \(\mathcal{O}\), the set of names that occur free in \(\mathcal{O}\), written names \((\mathcal{O})\), is defined by the equations in Fig. 9. Semantic objects that can be obtained from each other by renaming of bound names are considered equal.

The proper substructures of \(S=(m,(F E, S E))\) are the members of the range of \(S E\) and their proper substructures. The substructures of \(S\) are \(S\) itself and its proper substructures.

For any semantic object \(\mathcal{O}\) the semantic objects occurring inside \(\mathcal{O}\) are the objects from which it is built, according to Fig. 8, and all the objects that occur inside them. The objects occurring in \(\mathcal{O}\) are \(\mathcal{O}\) and all the objects that occur inside \(\mathcal{O}\). For instance, the structure \(S^{\prime}\) occurs in the signature \(\left(N^{\prime}\right) S^{\prime}\), which in turn occurs in the
functor signature \((N)\left(S,\left(N^{\prime}\right) S^{\prime}\right)\). Notice that not every structure which occurs in a structure \(S\) is necessarily a substructure of \(S\). For example, \(S_{1}\) and \(S_{2}\) occur in the structure \(S=\left(m,\left(\left\{f \mapsto\left(N_{1}\right)\left(S_{1},\left(N_{2}\right) S_{2}\right)\right\},\{ \}\right)\right)\), and so do all the structures that occur in \(S_{1}\) and \(S_{2}\), even though \(S\) has no proper substructures.

A structure (\(m, E\)) occurs free in \(A\) if (\(m, E\)) occurs in \(A\) at a position where the \(m\) is free in \(A\).

Sharing is hereditary from structures to substructures. Formally, we define:

\section*{Definition 1 (Consistency)}

A semantic object \(\mathcal{O}\) is said to be consistent if (after changing bound names to make all nameset prefixes in \(\mathcal{O}\) disjoint) for all \(S_{1}\) and \(S_{2}\) occurring in \(\mathcal{O}\) and for every strid, if \(m\) of \(S_{1}=m\) of \(S_{2}\) and \(S_{1}(\) strid \()\) and \(S_{2}(\) strid \()\) exist, then \(m\) of \(S_{1}(\) strid \()=m\) of \(S_{2}(\) strid \()\).

Notice that consistency does not impose a constraint on common functor components of \(S_{1}\) and \(S_{2}\). Thus the two structures A and A' of Fig. 5 are consistent. Consistency applies to specified structures as well as declared structures. Thus the following signature expression is legal:
```

sig
structure A1: sig functor F: (X: sig end)sig end end
structure A2: sig functor F: (X: sig structure B: sig end end)
sig structure B: sig end end
end
sharing A1 = A2
end

```

Any real functor \(F\) which matches both the above specifications will have to be applicable to any structure and will then have to produce a structure with a \(B\) substructure. However, no attempt is made to synthesize this information from the two specifications.

It is sometimes helpful to think of an assembly \(A\) as a directed edge- and node-labelled graph. There is one node in the graph for every structure name \(m \in \operatorname{names}(A)\); in addition, there is a special node labelled functor. Furthermore, whenever \((m, E)=(m,(F E, S E))\) occurs free in \(A\) and \(\left(m^{\prime}, E^{\prime}\right)=S E(\) strid \()\), for some strid, there is precisely one edge labelled strid going from the node labelled \(m\) to the node labelled \(m^{\prime}\). Also, for all funid in the domain of \(F E\), there is an edge labelled funid from the node labelled \(m\) to the node labelled functor. Informally, we refer to this graph as \(\operatorname{Graph}(A)\).

The reason why there are no edges emanating from the functor node is that the assembly is used as a consistent frame of reference concerning sharing, but there is no way of specifying sharing of functors.

Corresponding to the notion of a graph being a subgraph of another, we have the following definition:

\section*{Definition 2 (Cover)}

Let \(\mathcal{O}_{1}\) and \(\mathcal{O}_{2}\) be semantic objects and \(N\) a name set. We say that \(\mathcal{O}_{2}\) covers \(\mathcal{O}_{1}\) on \(N\) if \(N \cap \operatorname{names}\left(\mathcal{O}_{1}\right) \subseteq \operatorname{names}\left(\mathcal{O}_{2}\right)\) and also for all \(\left(m, E_{1}\right)\) and for all id \(\in \operatorname{Dom} E_{1}\) if (\(m, E_{1}\)) occurs free in \(\mathcal{O}_{1}\) and \(m \in N\), then there exists an \(E_{2}\) such that (\(m, E_{2}\)) occurs
```

structure A =
struct
structure B= struct end
structure C= struct end
end;

```
```

signature SIG =

```
signature SIG =
sig
sig
 structure B: sig end
 structure B: sig end
end;
end;
structure A':SIG = A;
```

structure A':SIG = A;

```

Fig. 10. A simple example of coercive signature matching.
\[
(\mathrm{m} 1,\{\mathrm{~B} \mapsto(\mathrm{~m} 2,\{ \}), \mathrm{C} \mapsto(\mathrm{~m} 3,\{ \})\})
\]
(a)
\[
(\mathrm{m} 1,\{\mathrm{~B} \mapsto(\mathrm{~m} 2,\{ \})\})
\]
(c)

(b)

(d)

Fig. 11. The structure A of Fig. 10 elaborates to (a), pictured at (b), whereas A' elaborates to (c), pictured at (d).
free in \(\mathcal{O}_{2}\) and id \(\in \operatorname{Dom} E_{2}\). We say that \(\mathcal{O}_{2}\) covers \(\mathcal{O}_{1}\) if \(\mathcal{O}_{2}\) covers \(\mathcal{O}_{1}\) on names \(\left(\mathcal{O}_{1}\right)\). We say that \(\mathcal{O}_{2}\) is a conservative cover of \(\mathcal{O}_{1}\) if \(\mathcal{O}_{2}\) covers \(\mathcal{O}_{1}\) and \(\mathcal{O}_{1}\) covers \(\mathcal{O}_{2}\) on names \(\left(\mathcal{O}_{1}\right)\).

To take an example, if \(A, B \vdash \operatorname{strexp} \Rightarrow S, A^{\prime}\) and \(A\) covers \(B\) then \(A^{\prime}\) covers \(A\) and \(S\). Moverover, \(A^{\prime}\) will be a conservative cover of \(A\), for once a structure is generated, there is no way of adding components to it.

It is also useful to think of structures as edge- and node-labelled trees. For example, consider the declarations in Fig. 10. The structures they elaborate to are shown in Fig. 11. Note that trees can be labelled by the same structure name and yet have a different 'shape'.

Another approach, due to Aponte (1992; 1993), is to represent a cut-down view by decorating some of the components of the original as inaccessible, as indicated by the dashed line in Fig. 12(b).

The technique used in the present paper (using an assembly and requiring consistency and cover) and the technique used by Aponte (including invisble components in structures) both serve to ensure that consistency is preserved during elaboration.

(a)

(b)

Fig. 12. Different views of structures can be represented as trees that have the same shape but differ in what components they make visible.

In the former case, a 'global' data structure is used; in the latter case, local information in structures is used, together with the invariant that if two structures share, then they must have the same shape.

\subsection*{3.3 Signatures}

Elaboration of a signature expression takes the following form:
\[
\begin{equation*}
A, B \vdash \text { sigexp } \Rightarrow \Sigma \tag{2}
\end{equation*}
\]
where \(A\) is an assembly, \(B\) is a basis and \(\Sigma\) is a signature, the static value of sigexp. Note that the elaboration does not produce an assembly. This is because signature expressions and specifications have no way of generating new structures. On the contrary, \(\Sigma\) is a 'generic' (or flexible) structure which perhaps can be matched by many 'real' (or rigid) structures. Harper, Milner and Tofte (1987) make this distinction by defining a signature \(\Sigma\) to be an object of the form \((N) S\) where \(S\) is a structure and \((N)\) is a nameset prefix. Whenever an actual structure, \(S^{\prime}\), is matched against \((N) S\), one can instantiate the bound names to corresponding names in \(S^{\prime}\). A signature (\(N\)) \(S\) is closed, if it contains no free names. An HML signature expression elaborates to a closed signature, unless it specifies sharing with a structure which is declared or specified outside the signature expression.

In ModL (Harper et al., 1987), the first-order version of HML, there is a close correspondance between the type discipline for modules and Milner's type discipline for functional languages (Milner, 1987), namely:

\section*{Modules Language Functional Language}
```

structure, S type, \tau
signature, }\Sigma=(N)S\quad\mathrm{ type scheme, }\sigma=\forall\mp@subsup{\alpha}{1}{}\cdots\mp@subsup{\alpha}{n}{}.

```

However, HML structures can contain functor signatures, which in turn contain signatures, so there is nested quantification in HML signatures. The algorithm in section 6 finds principal signatures for all legal signature expressions even so.

To have an easy way of distinguishing the substructures of a structure from the other structures that can occur in it, we define a function 'skel' (for skeleton) as follows:
\[
\begin{aligned}
\operatorname{skel}(m, E) & =(m, \operatorname{skel}(E)) \\
\operatorname{skel}(F E, S E) & =(\operatorname{skel}(F E), \operatorname{skel}(S E)) \\
\operatorname{skel}\left(\left\{\text { strid }_{1} \mapsto S_{1}, \ldots, \text { strid }_{k} \mapsto S_{k}\right\}\right) & =\left\{\text { strid }_{1} \mapsto \operatorname{skel}\left(S_{1}\right), \ldots,\right. \\
& \\
\operatorname{strid} & \\
\operatorname{skel}\left(\left\{\text { funid }_{1} \mapsto \Phi_{1}, \ldots, \text { funid }_{k} \mapsto \Phi_{k}\right\}\right) & =\left\{\text { funid }_{1} \mapsto \Phi_{0}, \ldots, \text { funid }_{k} \mapsto \Phi_{0}\right\}
\end{aligned}
\]
where \(\Phi_{0}\) is a arbitrary closed functor signature.
Definition 3 (Well-formedness)
A semantic object \(\mathcal{O}\) is well-formed if
1. all semantic objects occurring inside \(\mathcal{O}\) are well-formed;
2. if \(\mathcal{O}\) is signature \((N) S\) then \(N \subseteq\) names \((S)\), and also, whenever (\(m, E\)) occurs free in \(S\) and \(m \notin N\), then \(N \cap\) names \((\operatorname{skel}(E))=\emptyset\);
3. if \(\mathcal{O}\) is a functor signature \((N)\left(S,\left(N^{\prime}\right) S^{\prime}\right)\) then \((N) S\) is well-formed and also, whenever (\(m^{\prime}, E^{\prime}\)) occurs free in \(S^{\prime}\) and \(m^{\prime} \notin N \cup N^{\prime}\), then \(N \cap \operatorname{names}\left(\operatorname{skel}\left(E^{\prime}\right)\right)=\emptyset\);

The reader might wonder whether the condition \(N \cap \operatorname{names}(\operatorname{skel}(E))=\emptyset\) in item (2) of the above definition is equivalent to the simpler \(N \cap\) names \((E)=\emptyset\). The chosen definition admits strictly more signature expressions than the simpler one. For an example, consider the declarations
```

structure A = struct functor f(X: sig end) = struct end end
signature Sig =
sig
local structure B: sig end
in functor f(X: sig end is B' sharing B' = B) sig end
end
end is A' sharing A' = A

```

Here Sig denotes the signature
\[
\left(\left\{m_{2}\right\}\right)\left(m_{1},\left\{f \mapsto(\emptyset)\left(\left(m_{2},\{ \}\right),\left(\left\{m_{3}\right\}\right)\left(m_{3},\{ \}\right)\right)\right\}\right)
\]
where \(m_{1}\) is the name of A . This signature is well-formed according to the chosen definition, but not according to the simplified one. Note that consistency does not force the functor components of \(A\) ' and \(A\) to have the same functor signatures. It appears that if local and overlapping specifications were omitted from the language, the simpler definition could be chosen without affecting the class of legal signature expressions. In the presence of local and overlapping specifications and the liberal notion of consistency of functor components, we need to admit the above signature as a well-formed signature, in order for the principality theorem to hold.

As a general principle, we wish to rule out elaborations of the form \(A, B \vdash\) sigexp \(\Rightarrow \Sigma\) where \(\Sigma\) is unmatchable. Such signature expressions are useless. Indeed, they are obstructive to practical programming, when used as parameter signatures in functors. Thus a signature expression will be illegal if it specifies sharing between rigid
```

structure A = struct end;

```
structure A = struct end;
structure B = struct end;
structure B = struct end;
signature BADSIG1 =
signature BADSIG1 =
sig
sig
 sharing A = B
 sharing A = B
end;
```

end;

```
```

structure A = struct end;

```
structure A = struct end;
signature BADSIG2 =
signature BADSIG2 =
sig
sig
 structure A' :
 structure A' :
 sig structure B: sig end end
 sig structure B: sig end end
 sharing A' = A
 sharing A' = A
end;
```

end;

```
(b)

Fig. 13. The two signatures above are illegal. In the case of (a), there is an attempt to identify to different rigid structures; in the case of (b), there is an attempt to specify a non-existent component of a rigid structure.
```

sig
structure P1: sig structure Q: sig end end
structure P2: sig end
structure P3: sig structure Q: sig end end
sharing P1=P2 sharing P2=P3
end

```

Fig. 14. Consistency and cover together ensure that sharing equations become transitive. Hence the above signature expression implicitly specifies sharing between P1.Q and P3.Q.
```

sig
structure P: sig structure Q: sig end end
sharing P.Q=P
end

```

Fig. 15. Cyclic structures cannot be declared and are therefore also banned in signatures.
structures that are manifestly different, see Fig. 13(a) for an example. Furthermore, a signature expression will be illegal if it postulates the existence of components that are manifestly nonexistent, see Fig. 13 (b) for an example.

More ambitiously, we wish to ensure that an elaboration \(A, B \vdash \operatorname{sigexp} \Rightarrow(N) S\) is possible only if the entire elaboration tree which has \(A, B \vdash \operatorname{sigexp} \Rightarrow(N) S\) as its conclusion does not involve such bad sharing specifications. We achieve this by arranging that every elaboration tree which proves \(A, B \vdash \operatorname{sigexp} \Rightarrow(N) S\) is of the form

where \(N \cap \operatorname{names}(A, B)=\emptyset\) and \(A^{\prime}\) is a consistent assembly which covers \(A, S\) and all free structures above the node \(A^{\prime}, B \vdash \operatorname{sigexp} \Rightarrow S\). If sigexp has no local or overlapping sequential specifications, then simply taking \(A^{\prime}=(S, A)\) will do.

Example 3.1 Let sigexp be the signature expression in Fig. 14. Let \(A\) be the empty assembly and \(B\) the empty basis. To obtain \(A^{\prime}, B \vdash \operatorname{sigexp} \Rightarrow S\) with \(A^{\prime}\) consistent, we must make sure not just that P1, P2 and P3 have the same name, but also that P1.Q and P3.Q have the same name, even though we have not explicity stated sharing between P1 and P3. Consistency, as we have defined it, is not a transitive relation. But consistency combined with cover makes sharing equations transitive.

As in Standard ML, we shall also ban cyclic specifications, like the one in Fig. 15, for such a specification cannot be matched by any real structure.

\section*{Definition 4 (Cycle-freedom)}

A semantic object \(\mathcal{O}\) is cycle-free if (after changing bound names to make all nameset prefixes in \(\mathcal{O}\) disjoint) it contains no cycle of structure names; that is, there is no sequence \(m_{0}, \cdots, m_{k-1}, m_{k}=m_{0},(k>0)\), of structure names such that, for each \(i(0 \leq i<k)\) some structure with name \(m_{i}\) occurring in \(\mathcal{O}\) has a proper substructure with name \(m_{i+1}\).

The definitions of well-formedness, cycle-freedom and consistency easily extend to pairs of semantic objects. The conjunction of these three concepts is called admissibility:

\section*{Definition 5 (Admissibility)}

A semantic object (typically an assembly) \(A\) is admissible if it is consistent, cycle-free and well-formed. We say that \(A_{2}\) is an admissible cover of \(A_{1}\), written \(A_{1} \sqsubseteq A_{2}\), if the pair \(\left(A_{1}, A_{2}\right)\) is admissible and \(A_{2}\) covers \(A_{1}\). We say that \(A_{2}\) is a conservative admissible cover of \(A_{1}\), written \(A_{1} \unlhd A_{2}\), if the pair (\(A_{1}, A_{2}\)) is admissible and \(A_{2}\) is a conservative cover of \(A_{1}\). We say that \(A\) and \(A^{\prime}\) are equivalent, written \(A_{1} \sim A_{2}\), if \(A_{1} \sqsubseteq A_{2}\) and \(A_{2} \sqsubseteq A_{1}\).

Both \(\sqsubseteq\) and \(\unlhd\) are preorders. Note that \(A \unlhd A^{\prime}\) implies \(A \sqsubseteq A^{\prime}\).
When \(A\) is an admissible assembly then the definition of \(\operatorname{Graph}(A)\) makes sense: the well-formedness of \(A\) ensures that whenever \(m\) is a node in the graph (i.e. \(m \in \operatorname{names}(A))\) and \((m, E)=\left(m,(F E, S E)\right.\)) occurs free in \(A\) and \(\left(m^{\prime}, E^{\prime}\right)=S E(\) strid \()\), for some strid, then \(m^{\prime}\) is free in \(A\) and therefore a node in the graph. Moreover, \(\operatorname{Graph}(A)\) is a directed acyclic graph satisfying that whenever
\[
m \xrightarrow{\text { strid }} m^{\prime} \quad m \xrightarrow{\text { strid }} m^{\prime \prime}
\]
are both in the graph then \(m^{\prime}=m^{\prime \prime}\).

\subsection*{3.4 Realization}

The approach to signature elaboration which we outlined above is not particularly operational, as one has to 'guess' a good conservative cover \(A^{\prime}\) of \(A\) when sigexp is to be elaborated in \(A\). However, as we shall see later, an algorithm can gradually build up an assembly during a syntax-directed traversal of the signature expression. The algorihm must be able to add components to flexible (i.e. specified) structures, although it must not add components to rigid (e.g. declared) structures.

When the algorithm meets a sharing equation, it invokes a unification algorithm on the current assembly and tries to identify the names of the structures that are specified to share. This may recursively involve identification of names of common substructures. The unification either fails (by which is meant that it aborts with a special message fail) or it produces a substitution from structure names to structure names.

We shall express the distinction between rigid and flexible structures by keeping the names of all the structures that are considered rigid in a special place in the basis: a structure name \(m\) is rigid in \(B\), if \(m \in N\) of \(B\).

The substitutions produced by structure unification are referred to as realizations (Harper et al., 1987; Tofte, 1988; Milner et al., 1990):

\section*{Definition 6 (Realization)}

Let \(\varphi\) be a map \(\varphi: \operatorname{StrName} \rightarrow \operatorname{StrName}\). The support of \(\varphi\), written \(\operatorname{Supp}(\varphi)\), is the set of names \(m\) such that \(\varphi(m) \neq m\). The map \(\varphi\) is a realization if \(\operatorname{Supp}(\varphi)\) is finite. The yield of \(\varphi\), written Yield \((\varphi)\), is the set \(\{\varphi(m) \mid m \in \operatorname{Supp}(\varphi)\}\).

Realizations \(\varphi\) are extended to apply to all semantic objects; their effect is to replace each free name \(n\) by \(\varphi(n)\). In applying \(\varphi\) to an object with bound names, such as a signature \((N) S\), first bound names must be changed to avoid name capture. Application is extended to name sets \(N\) as follows: \(\varphi(N)=\{\varphi(n) \mid n \in N\}\). We often omit parentheses from applications: \(\varphi A\) means \(\varphi(A)\). A realization \(\varphi\) is fixed on \(N\) if \(\varphi(n)=n\), for all \(n \in N\).

In polymorphic type disciplines one usually has a substitution lemma along the lines: for all substitutions \(S\), if \(A \vdash e: \tau\) then \(S(A) \vdash e: S(\tau)\). One reason why such a lemma is important is that it is precisely by applying a substitution to a typing statement \(A \vdash e: \tau\) that the textual context of \(e\) can influence the typing of \(e\). Let us try to use the same idea on elaboration statements \(A, B \vdash \operatorname{sigexp} \Rightarrow S\). Here the idea would be that applying a realization \(\varphi\) to this statement should correspond to letting sharing equations in the textual context of sigexp influence the typing of sigexp. Just applying a realization to \(A\) and \(B\) can certainly identify names, but we also need to be able to 'add' components to flexible structures in \(A\); the latter operation is less trivial to model by substitution, as is known from work on polymorphic record typing (Wand, 1989; Rémy, 1989). It is possible to use a record type discipline to express the widening of structures (Aponte, 1992, 1993). We have chosen a different approach, namely to consider \(\varphi\) to be a relation between semantic objects, expressed in terms of (very elementary) category theory.

\section*{Definition 7 (The category \(K\))}
\(K\) is the category defined as follows. An object \(O\) of \(K\) is a pair \((A, B) \in\) Asmb \(\times\) Basis satisfying \(A \sqsupseteq B\). The set of objects of \(K\) is denoted Obj . For all objects \(O_{1}=\) \(\left(A_{1}, B_{1}\right)=\left(A_{1},\left(N_{1}, G_{1}, E_{1}\right)\right)\) and \(O_{2}=\left(A_{2}, B_{2}\right)\), and for every realization \(\varphi\), there is a morphism \(O_{1} \xrightarrow{\varphi} O_{2}\) if \(\varphi\) is fixed on \(N_{1}, \varphi\left(B_{1}\right)=B_{2}, \varphi\left(A_{1}\right) \sqsubseteq A_{2}\) and \(A_{1}\) covers \(A_{2}\) on \(N_{1}\).

The condition ' \(A_{1}\) covers \(A_{2}\) on \(N_{1}\) ' prevents realization from adding components to any structure, whose name is rigid in \(B_{1}\) - a sensible condition since a rigid structure cannot be extended with more structures, once generated. Notice that \(O_{1} \xrightarrow{\varphi} O_{2}\) implies \(\varphi\left(B_{1}\right)=\varphi\left(N_{1}, G_{1}, E_{1}\right)=\left(N_{1}, \varphi G_{1}, \varphi E_{1}\right)=B_{2}\). Thus, even though \(O_{1} \xrightarrow{\varphi} O_{2}\) can 'widen' structures in \(A_{1}\), it does not affect the shape of structures in \(B_{1}\) - once structures get into the basis, they do not change shape.

It is convenient not to require \(\operatorname{Supp}(\varphi) \subseteq\) names \((O)\) in the above definition. Morphisms \(O_{1} \xrightarrow{\varphi} O_{2}\) and \(O_{1} \xrightarrow{\varphi^{\prime}} O_{2}\) between \(O_{1}\) and \(O_{2}\) are equal if \(\varphi(n)=\varphi^{\prime}(n)\), for all \(n \in\) names \(O_{1}\). Notice that this is weaker than demanding \(\varphi=\varphi^{\prime}\). Composition in \(K\) is the natural extension of composition of realizations. Thus, that a diagram of the form

commutes does not imply \(\varphi=\psi \circ \varphi^{*}\), but it does imply that the restrictions of these two maps to the set names \((O)\) are equal.

\subsection*{3.5 Principal signatures}

The inference rules define what elaborations are possible, without saying how one decides whether a given signature expression elaborates. The advantage of using such 'liberal' inference rules is that one can give rules for sharing without having to spell out unification or rules for applying realizations. This is similar to the situation in Milner's polymorphic type discipline, where liberal inference rules are used without reference to any particular unification procedure.

In both disciplines the question arises, whether one can elaborate phrases to a 'best' (or 'principal') result. In the Damas-Milner type discipline (Damas and Milner, 1982) it is the case that every expression elaborates to a principal type scheme, if it elaborates at all. Similarly, for first-order ML modules, a signature elaborates to a principal signature, if it elaborates at all (Tofte, 1988; Milner and Tofte, 1991).

The existence of principal signatures is more than just evidence of a certain technical coherence in the semantics; it is also essential for the practical use of the modules system. Assume that sigexp is the parameter signature of some functor \(F\) and that sigexp elaborates to a principal signature \(\Sigma=(N) S\). From \(\Sigma\) there is a simple way of achieving a structure which has precisely the sharing and the components that every structure which matches sigexp must have - in other words, from \(\Sigma\) one can get a 'template' structure which can be used as a prototype of all structures that match sigexp. Indeed, in the first order language, \(S\) is precisely such a structure (provided \(\Sigma=(N) S\) is principal for sigexp and the name set \(N\) is suitably 'new'). It is therefore possible to elaborate the body of \(F\) under the assumption that the formal parameter of \(F\) is bound to \(S\). If there were no principal signature, but perhaps five good candidates for \(S\), which one should be used inside the body of \(F\) ? The ability to elaborate functor declarations (without knowing the identity of the structures it will later be applied to) is crucial to the practical use of the modules system (see the Introduction). Thus it is worth the effort to design the language in such a way that one can prove that principal signatures exist.

We shall now define the notion of principal signature formally. First, let us say that a structure \(S^{\prime}\) is an instance of a signature \(\Sigma=(N) S\), written \(\Sigma \geq S^{\prime}\), if there exists a realization \(\varphi\) such that \(\operatorname{Supp}(\varphi) \subseteq N\) and \(\varphi(S)=S^{\prime}\).

\section*{Definition 8 (Principal signature)}

We say that a signature \(\Sigma\) is principal for sigexp in \(O=(A, B)\) if \(O \in \mathrm{Obj}\) and, writing \(\Sigma\) in the form \((N) S\) where \(N \cap \operatorname{names}(A)=\emptyset\),
1. There exists an \(A^{\prime}\) such that \(A \unlhd A^{\prime}\) and \(A^{\prime}, B \vdash \operatorname{sigexp} \Rightarrow S\)
2. For all \(O^{\prime}, \varphi\) and \(S^{\prime}\), if \(O \xrightarrow{\varphi} O^{\prime}\) and \(O^{\prime} \vdash \operatorname{sigexp} \Rightarrow S^{\prime}\) then \(\varphi(\Sigma) \geq S^{\prime}\)

Item 1 of this definition should be fairly natural on the background of the discussion in the previous sections. To understand item 2, consider the special case where \(\varphi\) is the identity map Id. Then the condition is that if \((A, B) \in \mathrm{Obj}\) and \(\left(A^{\prime}, B\right) \in \operatorname{Obj}\) and \(A \sqsubseteq A^{\prime}\) and \(A\) covers \(A^{\prime}\) on the \(N\)-set of \(B\) and \(A^{\prime}, B \vdash\) sigexp \(\Rightarrow S^{\prime}\) then \(\Sigma \geq S^{\prime}\). In other words, even if the context should later widen flexible structures in \(A, \Sigma\) would still be general enough that all possible results of the elaboration in the widened assembly could be obtained by instantiation of \(\Sigma\). This may seem
surprising at first, since sigexp can specify sharing with some of the flexible structures in the basis. However, recall that structures are only being widened in the assembly, not in the basis; the free structures of a principal signature all stem from the basis, so they will not have been widened.

Now item (2) merely says that principality is preserved not just under widening of flexible structures in the assembly, but also under full realization, as defined in the category \(K\).

One might ask whether the condition \(A \unlhd A^{\prime}\) in item 1 could be \(A \sqsubseteq A^{\prime}\) instead. Here the answer is that the latter would be too weak. We want to ensure that \(A\) covers not just \(\Sigma\) but also structures that occur (free) in the proof of \(A, B \vdash\) sigexp \(\Rightarrow \Sigma\) and share with structures in \(A\). (Recall that in general, when local and overlapping sequential specifications are allowed, not all such structures need be visible in \(\Sigma\).)

We can now state the principality theorem:

\section*{Theorem 3.1 (Principal signatures)}

Let \(B\) be a basis, \(A\) an assembly, let \(A \sqsupseteq B, A \unlhd A^{\prime}\) and \(A^{\prime}, B \vdash \operatorname{sigexp} \Rightarrow S\), for some \(S\). Then there exists a principal signature for sigexp in \(A, B\).

\subsection*{3.6 Functor signatures}

A functor specification
\[
\begin{equation*}
\text { functor funid: }\left(\text { strid }: ~^{\text {sigexp }}{ }_{1}\right) \text { sigexp }_{2} \tag{3}
\end{equation*}
\]
specifies a functor which it must be possible to apply to any structure which matches sigexp \(_{1}\); moreover, the functor must satisfy that the result of the application matches \(\operatorname{sig}^{\exp } 2_{2}\). It is possible to specify sharing between argument and result. It is also possible to specify sharing with structures specified or declared outside the functor specification. If legal, the specification (3) elaborates to a functor environment of the form \{funid \(\mapsto \Phi\) \} where \(\Phi\) is a functor signature \(\left(N_{1}\right)\left(S_{1},\left(N_{2}\right) S_{2}\right)\). Here \(\left(N_{1}\right) S_{1}\) is the principal signature for sigexp \({ }_{1}\); no other signature for \(\operatorname{sig}^{\exp }{ }_{1}\) is of interest, for \(\left(N_{1}\right) S_{1}\) accurately captures what every structure must satisfy in order to match sigexp \(p_{1}\). Moreover, \(\left(N_{2}\right) S_{2}\) is the principal signature for sigexp \(p_{2}\) in a basis in which strid has been bound to \(S_{1}\). Since there may be sharing between argument and result, the scope of \(\left(N_{1}\right)\) is both \(S_{1}\) and \(\left(N_{2}\right) S_{2}\). Because \(\left(N_{2}\right) S_{2}\) is required to be principal, only those names that have been specified to share with the formal parameter strid (or with external structures) will be free in \(\left(N_{2}\right) S_{2}\).

Example 3.2 Consider the (legal) specification of F in Fig. 16(b). Let \(S=(m,\{Q \mapsto\) (\(\left.\left.m^{\prime},\{ \}\right)\right\}\)), let \(B=(\emptyset,\{ \},\{\mathrm{P} \mapsto S\})\) and let \(A\) be just \(S\). The functor signature expression for F elaborates to the following functor signature in \(A, B:(\emptyset)((m,\{ \}),(\emptyset) S)\). If the sharing qualifications were dropped, it would elaborate to the functor signature \(\left(\left\{m_{1}\right\}\right)\left(\left(m_{1},\{ \}\right),\left(\left\{m_{2}, m_{3}\right\}\right)\left(m_{2},\left\{Q \mapsto\left(m_{3},\{ \}\right)\right\}\right)\right)\)

It is important that funid can be applied to any structure which matches sigexp \(p_{1}\). Therefore, we cannot allow sigexp \({ }_{2}\) to widen a structure whose name is in \(N_{1}\) - see Fig. 16(a) for an example. On the other hand, sigexp \({ }_{2}\) can contribute components
```

sig
functor F:
(X: sig end)
sig structure Y:sig end
end is X' sharing X'=X
end

```
(a)
```

```
sig
```

```
```

```
sig
```

```
 structure P : sig end
 functor F :
 (\(X\) : sig end is \(X^{\prime}\) sharing \(X^{\prime}=P\))
 sig
 structure \(Q\) : sig end
 end is \(R\) sharing \(R=X\)
end
(b)

Fig. 16. Sharing between argument and result in a functor specification cannot contribute components to a structure whose name is quantified in \(\Sigma_{1}\), the principal signature for the argument signature expression. Hence (a) is illegal. However, sharing can expand the assembly with new components of structures that are free in \(\Sigma_{1}\), so (b) is legal.
to flexible structures in the assembly in which it is elaborated - see Fig. 16(b) for an example. This is manifest in the inference rule:
\[
\begin{aligned}
& A, B \vdash \operatorname{sigexp}_{1} \Rightarrow\left(N_{1}\right) S_{1} \quad N_{1} \cap \text { names } A=\emptyset \\
& \frac{\left(S_{1}, A\right), B+N_{1}+\{\text { strid } \text { 次 }\} \vdash \text { sigexp }{ }_{2} \Rightarrow \Sigma_{2}}{A, B \vdash\left(\text { strid: } \text { sigexp }_{1}\right) \operatorname{sigexp}_{2} \Rightarrow\left(N_{1}\right)\left(S_{1}, \Sigma_{2}\right)}
\end{aligned}
\]

Note that we extend the assembly with \(S_{1}\). Since \(\left(S_{1}, A\right)\) has to cover the elaboration of sigexp \(2_{2}\), any \(N_{1}\)-bound structure postuated to exist by \(\operatorname{sigexp}_{2}\) must really be in \(S_{1}\). In other words, the argument signature specification must specify all the \(N_{1}\)-bound structures that \(\operatorname{sig}^{\exp } 2_{2}\) refers to. Also, since we add the set \(N_{1}\) to the rigid names of \(B\), realization on \((A, B)\) cannot add components of \(N_{1}\)-bound structures to the assembly.

\subsection*{3.7 Inference rules}

The inference rules appear below. All the conclusions of the rules are of the form
\[
A, B \triangleright \text { phrase } \Rightarrow P
\]

Here phrase is a specification, signature expression, functor signature expression or a sharing equation.

In the premises of the rules, ' \(A, B \vdash\) phrase \(\Rightarrow P\) ' abbreviates ' \(A \sqsupseteq(B, P)\) and \(A, B \triangleright\) phrase \(\Rightarrow P^{\prime}\); for example, rule 4 in its expanded form is
\[
\frac{A \sqsupseteq(B, E) \quad A, B \triangleright \operatorname{spec} \Rightarrow E}{A, B \triangleright \operatorname{sig} \text { spec end } \Rightarrow(m, E)}
\]

We say that phrase elaborates to \(P\) in \((A, B)\), written \(A, B \vdash\) phrase \(\Rightarrow P\), if \(A \sqsupseteq(B, P)\) and there is an inference tree which satisfies all the side-conditions on the rules and has \(A, B \triangleright\) phrase \(\Rightarrow P\) as its conclusion.

There is one rule for each production in Fig. 1, plus rule 7, which concerns principal signatures. A sample elaboration is shown after the inference rules.

\section*{Signature expressions \\ \[
A, B \triangleright \text { sigexp } \Rightarrow S
\]}
\[
\begin{gather*}
\frac{A, B \vdash \text { spec } \Rightarrow E}{A, B \triangleright \text { sig spec end } \Rightarrow(m, E)} \tag{4}\\
\frac{B(\text { sigid }) \geq S}{A, B \triangleright \text { sigid } \Rightarrow S} \tag{5}\\
\frac{A, B \vdash \text { sigexp } \Rightarrow S \quad A, B+\{\text { strid } \mapsto S\} \vdash \text { shareq } \Rightarrow\}}{A, B \triangleright \text { sigexp } \text { is strid sharing shareq } \Rightarrow S} \tag{6}
\end{gather*}
\]
\[
A, B \triangleright \text { sigexp } \Rightarrow \Sigma
\]
\[
\begin{equation*}
\frac{\Sigma \text { principal for sigexp in } A, B}{A, B \triangleright \text { sigexp } \Rightarrow \Sigma} \tag{7}
\end{equation*}
\]

\section*{Functor signature expressions}
\[
A, B \triangleright \text { funsigexp } \Rightarrow \Phi
\]
\[
\begin{align*}
& A, B \vdash \operatorname{sigexp}_{1} \Rightarrow(N) S \quad N \cap \text { names } A=\emptyset \\
& \frac{(S, A), B+N+\{\text { strid } \mapsto S\} \vdash \operatorname{sigexp}_{2} \Rightarrow \Sigma}{A, B \triangleright\left(\text { strid }: \text { sigexp }_{1}\right) \text { sigexp }_{2} \Rightarrow(N)(S, \Sigma)} \tag{8}
\end{align*}
\]

\section*{Atomic specifications}
\(A, B \triangleright\) atspec \(\Rightarrow E\)
\[
\begin{gather*}
A, B \vdash \text { sigexp } \Rightarrow S \\
\overline{A, B \triangleright \text { structure strid:sigexp } \Rightarrow\{\text { strid } \mapsto S\}} \tag{9}\\
\frac{A, B \vdash \text { funsigexp } \Rightarrow \Phi}{A, B \triangleright \text { functor funid:funsigexp } \Rightarrow\{\text { funid } \mapsto \Phi\}} \tag{10}\\
\frac{A, B \vdash \text { shareq } \Rightarrow\}}{A, B \triangleright \text { sharing shareq } \Rightarrow\}} \tag{11}\\
\frac{A, B \vdash \text { spec }_{1} \Rightarrow E_{1} \quad A, B+E_{1} \vdash \text { spec }_{2} \Rightarrow E_{2}}{A, B \triangleright \text { local } \text { spec }_{1} \text { in } \text { spec }_{2} \text { end } \Rightarrow E_{2}} \tag{12}
\end{gather*}
\]

Specifications
\[
A, B \triangleright \text { spec } \Rightarrow E
\]
\[
\begin{gather*}
\overline{A, B \triangleright \quad \Rightarrow\{ \}} \tag{13}\\
\frac{A, B \vdash \text { atspec }_{1} \Rightarrow E_{1} \quad A, B+E_{1}+\text { spec }_{2} \Rightarrow E_{2}}{A, B \triangleright \text { atspec }_{1}\langle;\rangle \text { spec }_{2} \Rightarrow E_{1}+E_{2}} \tag{14}
\end{gather*}
\]
```

structure $P=$
struct
structure $Q=$ struct end
end;
signature $\operatorname{SIG}=$
$\operatorname{sig}^{(3)}$
structure $P$ ' : sig end
functor F: (X:
sig ${ }^{(4)}$
structure $P$ '':
sig
structure Q: sig end
end
sharing $P^{\prime \prime}=P$ '
end ${ }^{(4)}$ ): sig end
sharing $P^{\prime}=P$
end ${ }^{(3)}$;

```

Fig. 17. Embedded functor signature.

\section*{Sharing equations}
\[
A, B \triangleright \text { shareq } \Rightarrow\}
\]
\[
\begin{equation*}
\frac{m \text { of } B\left(\text { longstrid }_{1}\right)=m \text { of } B\left(\text { longstrid }_{2}\right)}{A, B \triangleright \text { longstrid }_{1}=\text { longstrid }_{2} \Rightarrow\{ \}} \tag{15}
\end{equation*}
\]

Rules 7 and 8 have already been explained. In rule 4 we can freely choose \(m\) so as to satisfy the side-condition on rule 15 . Similarly, rule 5 allows us to take any instance of the signature \(B\) (sigid).

In rule 7, the side-condition that \(\Sigma\) be principal for sigexp in \(A, B\) implies that there exists an \(A^{\prime}\) such that \(A \unlhd A^{\prime}\) and \(A^{\prime}, B \vdash \operatorname{sigexp} \Rightarrow S\) and \(\Sigma=(N) S\), for some \(N\) with \(N \cap \operatorname{names}(A)=\emptyset\). In doing inductive proofs on the depth of inference, we include the depth of the proof of \(A^{\prime}, B \vdash \operatorname{sigexp} \Rightarrow S\) when we count the depth of the proof of \(A, B \vdash\) sigexp \(\Rightarrow \Sigma\). This makes sense because the depth of a proof of \(A^{\prime}, B \vdash \operatorname{sig} \exp \Rightarrow S\) can be determined from the syntactic structure of sigexp alone.

As an example of the use of the rules, the elaboration of the program in Fig. 17 is summarised in Fig. 18. It illustrates most features of the inference system. The specifications of \(P\) ' and \(F\) are referred to as \(s p e c_{P}\), and \(s p e c_{F}\), respectively. The signature expressions sig \({ }^{(i)} \ldots\) end \(^{(i)}\) are abbreviated \(\operatorname{sigexp}_{i}(i=3,4)\). We assume that the assembly and the basis are empty at the outset. After the elaboration of the structure declaration we have \(B=\left\{\mathrm{P} \mapsto S_{\mathrm{P}}\right\}\) and \(A=\left[S_{\mathrm{P}}\right]\), where \(S_{\mathrm{P}}=(\mathrm{m} 1,\{\mathrm{Q} \mapsto\) \((\mathrm{m} 2,\{ \})\})\). The elaboration then proceeds as outlined in Fig. 18.

\section*{Lemma 3.1}

Let \(A_{1} \sim A_{2}\). Then \(\Sigma\) is principal for sigexp in \(\left(A_{1}, B\right)\) if and only if \(\Sigma\) is principal for sigexp in \(\left(A_{2}, B\right)\). Moreover, \(A_{1}, B \vdash\) phrase \(\Rightarrow P\) if and only if \(A_{2}, B \vdash\) phrase \(\Rightarrow P\).

\[
A^{\prime \prime}=\left(S_{4}, A^{\prime}\right)
\]
\[
\begin{equation*}
\left.S_{4}=\left(\mathrm{m} 4,\left\{\mathrm{P}^{\prime}\right) \mapsto S_{\mathrm{P}}\right\}\right) \tag{7}
\end{equation*}
\]
\[
A^{\prime}, B_{1} \vdash \operatorname{sigexp}_{4} \Rightarrow\left(N_{4}\right) S_{4}
\]
\[
N_{4}=\{m 4\}
\]
\[
\left(\begin{array}{l}
8 \\
(10)
\end{array}\right.
\]
\[
E_{\mathrm{F}}=\{\mathrm{F} \mapsto \Phi\}
\]
\[
\begin{aligned}
A^{\prime}, B \vdash \operatorname{spec}_{\mathrm{P}}, \Rightarrow E_{\mathrm{P}}, \quad A^{\prime}, B_{1} \vdash \operatorname{spec} \mathrm{~F}_{\mathrm{F}} \Rightarrow E_{\mathrm{F}} \\
{ }_{(14)}
\end{aligned}
\]
\[
B_{2}=B_{1}+E_{F}
\]

\[
\begin{array}{r}
A^{\prime}=\left(S_{3}, A\right) ; S_{3}=\left(\mathrm{m} 3, E_{\mathrm{P}},+E_{\mathrm{F}}\right) \\
S_{\mathrm{P}}=(\mathrm{m} 1,\{\mathrm{Q} \mapsto(\mathrm{~m} 2,\{ \})\}) \\
A=\left[S_{\mathrm{P}}\right] ; B=\left\{\mathrm{P} \mapsto S_{\mathrm{P}}\right\} ; N_{3}=\{\mathrm{m} 3\}
\end{array}
\]

Fig. 18. An elaboration tree.

In other words, it is the graph of an assembly that matters to elaboration, rather than the assembly itself.

The side-conditions concerning admissibility and cover may have left the reader wondering whether an implementation has to enforce these constraints every time it tries to make an inference step. This is not the case. Indeed, assuming that the input \((A, B)\) to the algorithm satisfies \(A \sqsupseteq B\), then any attempt to violate the sideconditions can be detected by the unification algorithm which deals with the sharing equations.

We have now completed our presentation of the semantics. The rest of the paper is organised as follows. In section 4 we discuss structure unification. In section 5.1 we prove that elaboration is preserved under realization and in section 6 we present an algorithm for inferring principal signatures and prove it correct.

\section*{4 Unification}

Finding a principal signature involves solving sharing equations. Consider the problem of deciding, for given assembly \(A\) and basis \(B\), whether the sharing equation
\[
\begin{equation*}
\text { longstrid }_{1}=\text { longstrid }_{2} \tag{16}
\end{equation*}
\]
can be satisfied. Assume \(B\left(\right.\) longstrid \(\left._{1}\right)=\left(m_{1}, E_{1}\right)\) and \(B\left(\right.\) longstrid \(\left._{2}\right)=\left(m_{2}, E_{2}\right)\). We wish to obtain that \(m_{1}\) and \(m_{2}\) are equal (cf. the side-condition on rule 15). Thus we seek a realization \(\varphi\) such that \(\varphi\left(m_{1}\right)=\varphi\left(m_{2}\right)\). Since the sharing constraint (16) implicitly specifies sharing between all common substructures of longstrid \({ }_{1}\) and longstrid \(_{2}\) (whether visible or not), \(\varphi\) may have to make further name identifications. To be precise, we want \(\varphi(A)\) to be admissible; the well-formedness of \(\varphi(A)\) follows from the well-formedness of \(A\) so it is the consistency and cycle-freedom of \(\varphi(A)\) that is important here.

But \(\varphi\) has to satisfy more. First, \(\varphi\) must be fixed on \(N\) of \(B\), i.e. we must have \(\varphi(m)=m\), for all \(m \in(N\) of \(B)\). Also, applying a realization must not have the effect of widening rigid structures, i.e. we must have that \(A\) covers \(\varphi(A)\) on \(N\) of \(B\). We collect these properties in the following definition:

\section*{Definition 9 (Unifier)}

Let \(A\) be an admissible assembly, let \(m_{1}\) and \(m_{2}\) be names that occcur free in \(A\) and let \(N\) be a name set. A realization \(\varphi\) is a unifier for \(m_{1}\) and \(m_{2}\) in \(A\) under \(N\) if \(\varphi\left(m_{1}\right)=\varphi\left(m_{2}\right), \varphi(A)\) is admissible, \(\varphi\) is fixed on \(N\) and \(A\) covers \(\varphi(A)\) on \(N\).

As in the case of ordinary first-order term unification, there is a notion of most general unifier:

\section*{Definition 10 (Most general unifier)}

Let \(\varphi^{*}\) be a unifier for \(m_{1}\) and \(m_{2}\) in \(A\) under \(N\). Then \(\varphi^{*}\) is said to be most general if whenever \(\varphi\) is a unifier for \(m_{1}\) and \(m_{2}\) in \(A\) under \(N\) there exists a realization \(\varphi^{\prime}\) which is fixed on \(N\) and satisfies \(\varphi^{\prime}\left(\varphi^{*}(A)\right)=\varphi(A)\).

Also, there exists an algorithm Unify which satisfies the following property:

\section*{Theorem 4.1 (Unification)}

Let \(A\) be an admissible assembly, \(N\) be a name set, and let \(m_{1}\) and \(m_{2}\) be names occurring free in \(A\). If there exists some unifier for \(m_{1}\) and \(m_{2}\) in \(A\) under \(N\) then \(\operatorname{Unify}\left(A, N,\left(m_{1}, m_{2}\right)\right)\) returns a most general unifier for \(m_{1}\) and \(m_{2}\) in \(A\) under \(N\). Otherwise, \(\operatorname{Unify}\left(A, N,\left(m_{2}, m_{2}\right)\right)\) fails.

We shall not spell out the details of the algorithm here, nor shall we prove the above theorem, for there are several similar algorithms and proofs in the literature, e.g. algorithms by Ait-Kaci (1986), Rémy (1989) and Aponte (1992). The following outline of an algorithm is based on the Commentary of Standard ML (Milner and Tofte, 1991), which we refer to as 'the Commentary' in what follows. Unify first builds the smallest equivalence relation \(\equiv\) on names \((A)\) satisfying that (a) \(m_{1} \equiv m_{2}\) and (b) for all \(m, n, m^{\prime}, n^{\prime}\) and strid if \(m \equiv n\) and
\[
m \xrightarrow{\text { strid }} m^{\prime} \quad n \xrightarrow{\text { strid }} n^{\prime}
\]
are both in \(\operatorname{Graph}(A)\) then \(m^{\prime} \equiv n^{\prime}\). From \(\equiv\) it is easy to see whether a unifier exists; if it does, a most general unifier with kernel \(\equiv\) is returned. In HML, failure can only happen because of an attempt to identify two different rigid names (i.e. two names that are both in \(N\)) or an attempt to add a component to a rigid structure.

Notice that unification does not have to make functor components equal. This is because consistency (Definition 1) does not require functor components to be equal.

\section*{5 The Realization Theorem}

In this section we prove that elaboration is preserved under realization. In order to prove this fact, we need the following lemma, which is taken from the Commentary (Milner and Tofte, 1991).

\section*{Lemma 5.1}

For any signature \(\Sigma\), structure \(S\) and realization \(\varphi\), if \(\Sigma \geq S\) then \(\varphi(\Sigma) \geq \varphi(S)\).

\section*{Proof}

Write \(\Sigma\) as \((N) S^{\prime}\), assuming w.l.o.g. that \((\operatorname{Supp} \varphi \cup \operatorname{Yield} \varphi) \cap N=\emptyset\). Then \(\varphi \Sigma=\) \(\varphi\left((N) S^{\prime}\right)=(N) \varphi S^{\prime}\). So it suffices to find a realization \(\psi\) such that Supp \(\psi \subseteq N\) and \(\psi\left(\varphi\left(S^{\prime}\right)\right)=\varphi(S)\).

Now since \(\Sigma \geq S\) there exists \(\psi^{\prime}\) such that \(\operatorname{Supp}\left(\psi^{\prime}\right) \subseteq N\) and \(\psi^{\prime}\left(S^{\prime}\right)=S\). Define \(\psi\) to be the restriction of \(\varphi \circ \psi^{\prime}\) to \(N\), i.e. \(\psi n=\varphi\left(\psi^{\prime}(n)\right)\) if \(n \in N\) and \(\psi(n)=n\) if \(n \notin N\).

To prove \(\psi\left(\varphi\left(S^{\prime}\right)\right)=\varphi(S)\), it is enough to show that \(\psi(\varphi(n))=\varphi\left(\psi^{\prime}(n)\right)\) for every \(n \in\) names \(\left(S^{\prime}\right)\); this is now straightforward, considering the two cases \(n \in N\) and \(n \notin N\) separately.

We also need the following two lemmas, which state that cover and admissible cover are preserved under realization:

\section*{Lemma 5.2}

If \(A_{2}\) covers \(A_{1}\) then \(\varphi\left(A_{2}\right)\) covers \(\varphi\left(A_{1}\right)\).

\section*{Proof}

We have to prove that \(\varphi\left(A_{2}\right)\) covers \(\varphi\left(A_{1}\right)\) on names \(\left(\varphi\left(A_{1}\right)\right)\). Since names \(\left(A_{1}\right) \subseteq\) \(\operatorname{names}\left(A_{2}\right)\) we have \(\operatorname{names}\left(\varphi\left(A_{1}\right)\right) \subseteq \operatorname{names}\left(\varphi\left(A_{2}\right)\right)\) as required. Let \(\left(m, E_{1}\right)\) be a structure occurring free in \(\varphi\left(A_{1}\right)\), and let id be a structure- or functor identifier in the domain of \(E_{1}\). Then (\(m, E_{1}\)) \(=\varphi\left(m^{\prime}, E_{1}^{\prime}\right)\), for some (\(m^{\prime}, E_{1}^{\prime}\)) occurring free in \(A_{1}\). Since id \(\in \operatorname{Dom}\left(E_{1}^{\prime}\right)\) and \(A_{2}\) covers \(A_{1}\), there exists a \(E_{2}^{\prime}\) such that (\(m^{\prime}, E_{2}^{\prime}\)) occurs free in \(A_{2}\) and id \(\in \operatorname{Dom}\left(E_{2}^{\prime}\right)\). Thus \(\varphi\left(m^{\prime}, E_{2}^{\prime}\right)=\left(m, \varphi\left(E_{2}^{\prime}\right)\right)\) occurs free in \(\varphi\left(A_{2}\right)\) with id \(\in \operatorname{Dom}\left(\varphi\left(E_{2}^{\prime}\right)\right)\), showing that \(\varphi\left(A_{2}\right)\) covers \(\varphi\left(A_{1}\right)\).

\section*{Lemma 5.3}

If \(A_{1} \sqsubseteq A_{2}\) and \(\varphi\left(A_{2}\right)\) is admissible, then \(\varphi\left(A_{1}\right) \sqsubseteq \varphi\left(A_{2}\right)\).

\section*{Proof}

We have that \(\varphi\left(A_{2}\right)\) covers \(\varphi\left(A_{1}\right)\), by Lemma 5.2. It remains to prove that the pair (\(\varphi\left(A_{2}\right), \varphi\left(A_{1}\right)\)) is admissible. For all assemblies \(A\), if \(A\) is well-formed, then so is \(\varphi(A)\). In particular, \(\left(\varphi\left(A_{2}\right), \varphi\left(A_{1}\right)\right)\) is well-formed. Also, \(\left(\varphi\left(A_{2}\right), \varphi\left(A_{1}\right)\right)\) is consistent, because \(\left(A_{2}, A_{1}\right)\) is consistent, \(A_{2}\) covers \(A_{1}\) and \(\varphi\left(A_{2}\right)\) is consistent. Finally, \(\left(\varphi\left(A_{2}\right), \varphi\left(A_{1}\right)\right)\) is cycle-free, because \(\varphi\left(A_{2}\right)\) is cycle-free and \(\varphi\left(A_{2}\right)\) covers \(\varphi\left(A_{1}\right)\).
Theorem 5.1
Let phrase be a signature expression, a specification, a sharing equation or a functor signature expression. If \(O \vdash\) phrase \(\Rightarrow P\) and \(O \xrightarrow{\varphi} O^{\prime}\) then \(O^{\prime} \vdash\) phrase \(\Rightarrow \varphi(P)\).

\section*{Proof}

We use induction on the depth of inference. There is one case for each inference rule.
In all the cases the argument that \(O^{\prime} \triangleright\) phrase \(\Rightarrow \varphi(P)\) implies \(O^{\prime} \vdash\) phrase \(\Rightarrow \varphi(P)\) is the same: since \(O \vdash\) phrase \(\Rightarrow P\) we have \(P \sqsubseteq(A\) of \(O)\); thus by Lemma 5.3, \(\varphi(P) \sqsubseteq \varphi(A\) of \(O) \sqsubseteq A\) of \(O^{\prime}\), since \(O \xrightarrow{\varphi} O^{\prime}\). Thus \(\varphi(P) \sqsubseteq A\) of \(O^{\prime}\), showing \(O^{\prime} \vdash\) phrase \(\Rightarrow \varphi(P)\). In each case it will therefore suffice to prove \(O^{\prime} \triangleright\) phrase \(\Rightarrow \varphi(P)\). The cases for rules (4), (6) and (9)-(15) are all straightforward arguments. We show only the first of these, as an example.

\section*{Rule 4, sigexp \(\equiv\) sig spec end}

Let \((A, B)=O\) and \(\left(A^{\prime}, B^{\prime}\right)=O^{\prime}\). Assume \(O \xrightarrow{\varphi} O^{\prime}\) and \(O \vdash\) sig spec end \(\Rightarrow S\). Then \(S=(m, E)\) and \(O \vdash \operatorname{spec} \Rightarrow E\), for some \(m\) and \(E\). By induction we have \(O^{\prime} \vdash\) spec \(\Rightarrow \varphi E\). Thus \(O^{\prime} \triangleright\) sig spec end \(\Rightarrow(\varphi m, \varphi E)\), by rule 4.

\section*{Rule 5, sigexp \(\equiv\) sigid}

Let \((A, B)=O\) and \(\left(A^{\prime}, B^{\prime}\right)=O^{\prime}\). Assume \(O \xrightarrow{\varphi} O^{\prime}\) and \(O \vdash\) sigid \(\Rightarrow S\). By rule 5 we have \(B(\) sigid \() \geq S\). Thus \((\varphi B)(\) sigid \() \geq \varphi S\), i.e. \(B^{\prime}(\) sigid \() \geq \varphi S\), by Lemma 5.1.

\section*{Rule 7, principal signatures}

Let \((A, B)=O\) and \(\left(A^{\prime}, B^{\prime}\right)=O^{\prime}\). By rule \(7, P\) is a principal signature for sigexp in \(O\). Thus \(P\) can be written in the form \((N) S\), where \(N \cap\) names \(A=\emptyset\), and there exists an \(A_{1}\) such that \(A \unlhd A_{1}\) and
\[
\begin{equation*}
A_{1}, B \vdash \operatorname{sigexp} \Rightarrow S \tag{17}
\end{equation*}
\]
\(A_{1}\) contains all the names that occur free in \(S\), including the ones in \(N\). We cannot simply apply \(\varphi\) to (17) and expect to get an elaboration, for we know nothing about the behaviour of \(\varphi\) outside names \((A)\). We therefore apply induction on a realization \(\varphi_{1}\) which coincides with \(\varphi\) on names \((A)\) and maps names in names \(\left(A_{1}\right) \backslash \operatorname{names}(A)\) to distinct fresh names. Formally, let \(N_{1}=\operatorname{names}\left(A_{1}\right) \backslash \operatorname{names}(A)\), let \(N_{1}^{\prime}\) be a set of names satisfying that \(N_{1}^{\prime} \cap n a m e s\left(A^{\prime}\right)=\emptyset\) and that there are equally many names in \(N_{1}\) and in \(N_{1}^{\prime}\). Let \(\varphi_{1}\) be a realization satisfying that \(\varphi_{1} \downarrow(\operatorname{names}(A))=\varphi \downarrow(\operatorname{names}(A))\) and that \(\varphi_{1} \downarrow N_{1}\) is an injective map from \(N_{1}\) to \(N_{1}^{\prime}\). Let \(A_{1}^{\prime}=\left(A^{\prime}, \varphi_{1}\left(A_{1}\right)\right)\). Since \(A \unlhd A_{1}\) and \(N_{1}^{\prime} \cap\) names \(\left(A^{\prime}\right)=\emptyset\) we have that \(A_{1}^{\prime}\) is admissible. (Note that \(A \sqsubseteq A_{1}\) would not have sufficed here.) Thus (\(\left.A_{1}^{\prime}, B^{\prime}\right) \in \operatorname{Obj}\) and since \(\varphi_{1} B=\varphi B=B^{\prime}\), we have \(\left(A_{1}, B\right) \xrightarrow{\varphi_{1}}\left(A_{1}^{\prime}, B^{\prime}\right)\). By induction on (17) we therefore have
\[
A_{1}^{\prime}, B^{\prime} \vdash \operatorname{sigexp} \Rightarrow \varphi_{1} S
\]

Let \(N^{\prime}=\varphi_{1} N\). Note that \(N \subseteq N_{1}\), as \(N \cap \operatorname{names}(A)=\emptyset\) and \(A_{1} \sqsupseteq S\). Also, names \(((N) S) \subseteq \operatorname{names}(A)\), as \(O \vdash \operatorname{sigexp} \Rightarrow(N) S\). Thus \(\varphi((N) S)=\left(N^{\prime}\right)\left(\varphi_{1} S\right)\). Is this signature principal for sigexp in \(O^{\prime}\) ? Certainly \(A^{\prime} \unlhd A_{1}^{\prime}\) and \(A_{1}^{\prime}, B^{\prime} \vdash\) sigexp \(\Rightarrow \varphi_{1} S\), as required. Also, \(N^{\prime} \cap\) names \(\left(A^{\prime}\right)=\emptyset\), as required. Finally, let \(O^{\prime \prime}, S^{\prime}\) and \(\psi\) be such that \(O^{\prime} \xrightarrow{\varphi} O^{\prime \prime}\) and \(O^{\prime \prime} \vdash\) sigexp \(\Rightarrow S^{\prime}\). Then \(O \xrightarrow{\psi \circ \varphi} O^{\prime \prime}\). Since \((N) S\) is principal for sigexp in \(O\) we have that \((\psi \circ \varphi)((N) S) \geq S^{\prime}\), i.e. \(\psi\left(\left(N^{\prime}\right)\left(\varphi_{1} S\right)\right) \geq S^{\prime}\), as required. Thus \(\left(N^{\prime}\right)\left(\varphi_{1} S\right)\) is principal for sigexp in \(O^{\prime}\). Thus we can apply rule 7 and get \(O^{\prime} \triangleright \operatorname{sigexp} \Rightarrow\left(N^{\prime}\right)\left(\varphi_{1} S\right)\), i.e. \(O^{\prime} \triangleright \operatorname{sigexp} \Rightarrow \varphi((N) S)\).

Rule 8, funsigexp \(\equiv\left(\right.\) strid \(:\) sigexp \(\left._{1}\right)\) : sigexp \(_{2}\)
Assume \(O \xrightarrow{\varphi} O^{\prime}\) and \(O \vdash\) funsigexp \(\Rightarrow \Phi\). Let \((A, B)=O\) and \(\left(A^{\prime}, B^{\prime}\right)=O^{\prime}\). Then funsigexp is of the form (strid: \(\left.\operatorname{sigexp}_{1}\right)\) : sigexp \(_{2}\) and \(\Phi\) can be written \(\left(N_{1}\right)\left(S_{1}, \Sigma_{2}\right)\), where \(N_{1} \cap \operatorname{names}(O)=\emptyset\) and
\[
\begin{gather*}
A, B \vdash \operatorname{sigexp}_{1} \Rightarrow\left(N_{1}\right) S_{1} \tag{18}\\
\left(S_{1}, A\right), B+N_{1}+\left\{\text { strid }_{\mapsto} S_{1}\right\} \vdash \operatorname{sigexp}_{2} \Rightarrow \Sigma_{2} \tag{19}
\end{gather*}
\]

Without loss of generality we can assume that \(N_{1} \cap \operatorname{names}\left(O, O^{\prime}\right)=\emptyset\) and that \(\varphi n=n\), for all \(n \in N_{1}\). By induction on (18) we have \(A^{\prime}, B^{\prime} \vdash \operatorname{sigexp}_{1} \Rightarrow \varphi\left(\left(N_{1}\right) S_{1}\right)\), i.e.
\[
\begin{equation*}
A^{\prime}, B^{\prime} \vdash \operatorname{sigexp}_{1} \Rightarrow\left(N_{1}\right)\left(\varphi S_{1}\right) \tag{20}
\end{equation*}
\]

By the definition of \(\vdash\) we therefore have that \(A^{\prime} \sqsupseteq\left(N_{1}\right)\left(\varphi S_{1}\right)\). But then, since \(N_{1} \cap \operatorname{names}\left(A^{\prime}\right)=\emptyset\), we have that \(\left(A^{\prime}, \varphi\left(S_{1}\right)\right)\) is admissible. Also, \(N_{1} \subseteq \operatorname{names}\left(\varphi\left(S_{1}\right)\right)\) since the signature \(\left(N_{1}\right)\left(\varphi S_{1}\right)\) is well-formed. Thus \(\left(\left(\varphi S_{1}, A^{\prime}\right), B^{\prime}+N_{1}+\{\right.\) strid \(\mapsto\) \(\left.\left.\varphi S_{1}\right\}\right) \in\) Obj. But then we have \(\left(S_{1}, A\right), B+N_{1}+\left\{\right.\) strid \(\left.\mapsto S_{1}\right\} \xrightarrow{\varphi}\left(\varphi S_{1}, A^{\prime}\right), B^{\prime}+N_{1}+\) \{strid \(\left.\mapsto \varphi S_{1}\right\}\), so by induction using (19) we have
\[
\begin{equation*}
\left(\varphi S_{1}, A^{\prime}\right), B^{\prime}+N_{1}+\left\{\text { strid } \mapsto \varphi S_{1}\right\} \vdash \text { sigexp }_{2} \Rightarrow \varphi \Sigma_{2} \tag{21}
\end{equation*}
\]

From (20) and (21) we get \(A^{\prime}, B^{\prime} \triangleright\) funsigexp \(\Rightarrow\left(N_{1}\right)\left(\varphi S_{1}, \varphi \Sigma_{2}\right)\). But \(N_{1}\) is chosen disjoint from names \(\left(O, O^{\prime}\right)\) and \(A \sqsupseteq\left(N_{1}\right) S_{1}\) and (\(\left.S_{1}, A\right) \sqsupseteq \Sigma_{2}\) (by (18) and (19), respectively), so \(\varphi \Phi=\left(N_{1}\right)\left(\varphi S_{1}, \varphi \Sigma_{2}\right)\).

Notice that an algorithm which applies realization to a proof of \(O \vdash\) phrase \(\Rightarrow P\) does not have to make any checks for whether side-conditions concerning admissibility and cover are respected. As we saw in the beginning of the above proof, the side-conditions follow automatically from \(O \xrightarrow{\varphi} O^{\prime}\).

\section*{6 The inference algorithm}

In this section we shall prove that if a signature expression can be elaborated at all, then it can be elaborated to a principal signature. The proof is constructive, in that we present an algorithm \(W\) and then prove that the algorithm really does find principal signatures. In section 6.1 we present the algorithm. In section 6.2 we restate the principality theorem (Theorem 3.1) in a stonger form suitable for inductive proof. We refer to this stronger version as the main theorem. In section 6.3
```

$W_{\text {sigexp }}(O$ as $(A, B)$, sigexp $): \mathrm{Obj} \times \mathrm{Rea} \times \mathrm{Str}=$
case sigexp of
sig spec end $=>\quad$ (* rule 4 *)
let $\left(O_{1}^{*}\right.$ as $\left.\left(A_{1}^{*}, B_{1}^{*}\right), \varphi_{1}^{*}, E_{1}^{*}\right)=W_{\text {spec }}(O$, spec $)$
$S_{1}^{*}=\left(m^{*}, E_{1}^{*}\right)$, where $m^{*}$ is new
$O^{*}=\left(\left(S_{1}^{*}, A_{1}^{*}\right), B_{1}^{*}\right)$
in $\left(O^{*}, \varphi_{1}^{*}, S_{1}^{*}\right)$
| sigid $=>$ (* rule 5*)
if sigid $\notin \operatorname{Dom}(B)$ then fail
else let $\left(N^{*}\right) S^{*}=B($ sigid $)$, where all names in $N^{*}$ are new
$O^{*}=\left(\left(S^{*}, A\right), B\right)$
in ( $\left.O^{*}, \mathrm{Id}, S^{*}\right)$
$\mid$ sigexp $_{1}$ is strid sharing shareq $=>\quad$ (* rule $6 *$ )
let $\left(O_{1}^{*}, \varphi_{1}^{*}, S_{1}^{*}\right)=W_{\text {sigexp }}\left(O, \operatorname{sigexp}_{1}\right)$
$\left(O_{2}^{*}, \varphi_{2}^{*}, E_{2}^{*}\right)=W_{\text {shareq }}\left(O_{i}^{*}+\left\{\right.\right.$ strid $\left.\mapsto S_{1}^{*}\right\}$,shareq $)$
in $\left(O_{2}^{*}, \varphi_{2}^{*} \circ \varphi_{1}^{*}, \varphi_{2}^{*} S_{1}^{*}\right)$
$W_{\text {prinsigexp }}(O$ as $(A, B)$, sigexp $): \mathrm{Obj} \times \mathrm{Rea} \times \mathrm{Sig}=\quad$ (* rule $7 *$ )
let $\left(O^{*}\right.$ as $\left.\left(A^{*}, B^{*}\right), \varphi^{*}, S^{*}\right)=W_{\text {sigexp }}(O$, sigexp $)$
$A_{0}^{*}=\operatorname{Below}\left(A^{*}, \varphi^{*} A\right)$
$\Sigma^{*}=\operatorname{Clos}_{A_{0}} S^{*}$
in $\left(\left(A_{0}^{*}, B^{*}\right), \varphi^{*}, \Sigma^{*}\right)$

```

Fig. 19. \(W_{\text {sigexp }}\) and \(W_{\text {prinsigexp }}\).
we address the issue of how functor signatures give rise to nested quantification and how this affects the existence of principal signatures. Finally, in section 6.4 we give the proof of the main theorem.

\subsection*{6.1 Algorithm W}

The algorithm for finding principal signatures appears in Figs. 19 and 20. (These are mutually recursive with \(W_{\text {funsigexp }}\) concerning functor signature expressions, which we defer the presentation of until section 6.3.) There will be ample opportunity to dwell on the details of the algorithm when we prove the main theorem. For now, let us focus on one particularly important part, namely the definition of \(W_{\text {prinsigexp }}\) in Fig. 19. This is the function that 'implements' rule 7. The notation ' \(O\) as \((A, B)\) ' is borrowed from Standard ML and is used when we want to introduce a variable \(O\) and simultaneously introduce variables for the components of \(O\).

Referring to the definition of \(W_{\text {prinsigexp }}\), assume that
\[
\left(O^{*} \text { as }\left(A^{*}, B^{*}\right), \varphi^{*}, S^{*}\right)=W_{\text {sigexp }}(O, \text { sigexp })
\]

The basic idea is that we will then have \(O \xrightarrow{\varphi^{*}} O^{*}\) and \(O^{*} \vdash \operatorname{sigexp} \Rightarrow S^{*}\). Here \(\varphi^{*}\) is a realization which may act on flexible names in \(O\) in order to satisfy sharing equations in sigexp. The processing of sigexp may also reveal hitherto unseen components of flexible structures in \(O\). These will be present in \(A^{*}\). This is one reason why we do not in general have \(\varphi^{*}(A)=A^{*}\) but rather \(A^{*} \sqsupseteq \varphi^{*}(A)\). (Another reason is that for
```

$W_{\text {atspec }}(O$ as $(A, B), a t s p e c): \mathrm{Obj} \times \mathrm{Rea} \times \mathrm{Env}=$
case atspec of
structure strid: sigexp $=>\quad$ (* rule $9 *$ )
let $\left(O^{*}, \varphi_{1}^{\cdot}, S^{*}\right)=W_{\text {sigexp }}(O$, sigexp $)$
in ( $O^{*}, \varphi_{1}^{*},\left\{\right.$ strid $\left.\mapsto S^{*}\right\}$ )
Ifunctor funid: $:$ funsigexp $=>\quad$ (* rule $10 *)$
$\quad$ let $\left(O^{*}, \varphi_{1}^{*}, \Phi^{*}\right)=W_{\text {funsigexp }}(O$, funsigexp $)$
$\mid$ functor funid : funsigexp $=>\quad$ (* rule 10 *)
$\|$ functor funid: funsigexp $=>$
let $\left(O^{*}, \varphi^{*}, \Phi^{*}\right)=W_{\text {funsigexp }}(O$, funsigexp $)$
in $\left(O^{*}, \varphi_{1}^{*},\left\{f u n i d \mapsto \Phi^{*}\right\}\right)$
| sharing shareq =>
$W_{\text {shareq }}(O$, shareq $)$
| local spec $_{1}$ in spec $_{2}$ end $=>\quad$ (* rule $12 *$ )
let $\left(O_{1}^{*}\right.$ as $\left.\left(A_{1}^{*}, B_{1}^{*}\right), \varphi_{1}^{*}, E_{1}^{*}\right)=W_{\text {spec }}\left(O\right.$, spec $\left.c_{1}\right)$
$\left(O_{2}^{*}, \varphi_{2}^{*}, E_{2}^{*}\right)=W_{\text {spec }}\left(\left(A_{1}^{*}, B_{1}^{+}+E_{1}^{*}\right), \operatorname{spec}_{2}\right)$
let $\left(O_{1}^{*}\right.$ as $\left.\left(A_{1}^{*}, B_{1}^{*}\right), \varphi_{1}^{*}, E_{1}^{*}\right)=W_{\text {spec }}\left(O\right.$, spec $\left._{1}\right)$
$\left(O_{2}^{*}, \varphi_{2}^{*}, E_{2}^{*}\right)=W_{\text {spec }}\left(\left(A_{1}^{*}, B_{1}^{*}+E_{1}^{*}\right)\right.$, spec $\left._{2}\right)$
in $\left(\left(A\right.\right.$ of $\left.\left.O_{2}^{*}, \varphi_{2}^{*} B_{1}^{*}\right), \varphi_{2}^{*} \circ \varphi_{1}^{*}, E_{2}^{*}\right)$
$W_{\text {spec }}(O$ as $(A, B), s p e c): \mathrm{Obj} \times \mathrm{Rea} \times \mathrm{Env}=$
case spec of
$\begin{aligned} & \text { empty }=>(O, \mathrm{Id},\{ \}) \\ & \mid \text { atspec }_{1}\langle;\rangle \text { spec }_{2}=>\text { (* rule } 13 *) \\ &\text { (* rule } 14 *)\end{aligned}$

```

```

        \(\begin{aligned} & \text { empty }=>(O, \mathrm{Id},\{ \}) \\ & \mid \text { atspec }_{1}\langle;\rangle \text { spec }_{2}=>\text { (* rule } 13 *) \\ &\text { (* rule } 14 *)\end{aligned}\)
    ```


```

$\quad \begin{aligned} & \text { empty }=>(O, \mathrm{Id},\{ \}) \\ & \left\lvert\, \begin{array}{l}\text { atspec } \\ 1\end{array}\langle;\rangle\right. \text { spec } \\ & 2\end{aligned}=>$
$\quad$ let $\left(O_{1}^{*}\right.$ as $\left.\left(A_{1}^{*}, B_{1}^{*}\right), \varphi_{1}^{*}, E_{1}^{*}\right)=W_{\text {atspec }}\left(O\right.$, atspec $\left.{ }_{1}\right)$
$\left(O_{2}^{*}, \varphi_{2}^{*}, E_{2}^{*}\right)=W_{\text {spec }}\left(\left(A_{1}^{*}, B_{1}^{*}+E_{1}^{*}\right)\right.$, spec $\left.{ }_{2}\right)$
$\quad$ in $\left(\left(A\right.\right.$ of $\left.\left.O_{2}^{*}, \varphi_{2}^{*} B_{1}^{*}\right), \varphi_{2}^{*} \circ \varphi_{1}^{*}, \varphi_{2}^{*} E_{1}^{*}+E_{2}^{*}\right)$
$W_{\text {shareq }}(O$ as $(A, B)$, shareq $): O b j \times$ Rea $\times \mathrm{Env}=$
case shareq of
longstrid $_{1}=$ longstrid $_{2}=>\quad$ (* rule $15 *$ )
let $\left(m_{1}, E_{1}\right)=B\left(\right.$ longstrid $\left._{1}\right)$
fail if longstrid ${ }_{1} \notin \operatorname{Dom}(B)$
$\left(m_{2}, E_{2}\right)=B\left(\right.$ longstrid $\left._{2}\right)$
fail if longstrid ${ }_{2} \notin \operatorname{Dom}(B)$
$\varphi^{*}=\operatorname{Unify}\left(A, N\right.$ of $\left.B,\left(m_{1}, m_{2}\right)\right)$
in $\left(\varphi^{*} 0, \varphi^{*},\{ \}\right)$
(* rule 11 *)
( rule 14 *)

```

Fig. 20. \(W_{\text {atspec }}, W_{\text {spec }}\) and \(W_{\text {shareq }}\).
\(O^{*} \vdash\) sigexp \(\Rightarrow S^{*}\) to hold, \(A^{*}\) must cover \(S^{*}\), which may contain 'new' names.) This is summed up by writing \(O \xrightarrow{\varphi^{*}} O^{*}\).

Moreover, the morphism \(O \xrightarrow{\varphi^{*}} O^{*}\) is the best possible, in a sense which will be made precise by the main theorem. Informally, \(\varphi^{*}\) makes as few identifications of names as necessary and \(O^{*}\) is as small as possible subject to the limitation that it has to cover \(S^{*}\) and \(B^{*}\).

It is important to understand the nature of the set (names \(\left(A^{*}\right) \backslash \operatorname{names}\left(\varphi^{*} A\right)\)). Let \(m^{\prime}\) be a name in this set; even though \(m^{\prime}\) is not free in \(\varphi^{*}(A)\), it may be the name of some substructure of a structure whose name, \(m\), is free in \(\varphi^{*}(A)\).

Example 6.1 Let \(S=(m,\{ \})\), let \(B=(\emptyset,\{ \},\{\mathrm{P} \mapsto S\})\) and let \(A=[S]\). This situation might arise when the algorithm has processed the specification of \(P\) in Fig. 21. Let \(S^{\prime}=\left(m,\left\{Q \mapsto\left(m^{\prime},\{ \}\right)\right\}\right)\), let \(B^{*}=B\) and \(A^{*}=\left(S^{\prime}, A\right)\). Just at the point where \(W_{\text {sigexp }}\) has processed the signature expression with which we specify Y in Fig. 21, we may
```

stucture P: sig end
structure Y:
sig
structure P' : sig structure Q: sig end end
sharing P' = P
end

```

Fig. 21. In the algorithm, a sharing specification can expand flexible structures in the assembly.
have \(\varphi^{*}=\mathrm{Id}\) and \(O^{*}=\left(A^{*}, B^{*}\right)\). In this situation, we have that \(m^{\prime}\) is not free in \(\varphi^{*}(A)=A\) but in \(A^{*}, m^{\prime}\) occurs below the name \(m\), which is free in \(\varphi^{*}(A)\).
In such cases, the algorithm has discovered a hitherto unseen component of a flexible structure. Otherwise, i.e. if \(m^{\prime}\) does not occur in \(A^{*}\) 'below' any name which is free in \(\varphi^{*}(A)\), then \(m^{\prime}\) is so to speak 'generic', i.e. \(m^{\prime}\) can be quantified by a nameset prefix.
This partitioning of the name set names \(\left(A^{*}\right) \backslash\) names \(\left(\varphi^{*} A\right)\) into two sets (the nongeneric versus the generic ones) is seen clearly in \(W_{\text {prinsigexp }}\) in the two lines:
\[
\begin{align*}
A_{0}^{*} & =\operatorname{Below}\left(A^{*}, \varphi^{*} A\right) \tag{22}\\
\Sigma^{*} & =\operatorname{Clos}_{A_{0}} S^{*} \tag{23}
\end{align*}
\]

In (22) we let \(A_{0}^{*}\) be that part of \(A^{*}\) which is reachable in \(A^{*}\) starting from any name which occurs free in \(\varphi^{*}(A)\). The names that occur free in \(A_{0}^{*}\) must not be quantified. In (23) we then quantify the remaining names in order to form the signature \(\Sigma^{*}\). Notice that \(W_{\text {prinsigexp }}\) returns the assembly \(A_{0}^{*}\) (not \(A^{*}\)), i.e. the algorithm 'discharges' that part of the assembly which has just been quantified.
Below we define the Below and Clos operations and show that \(\Sigma^{*}\) by construction automatically is well-formed. Also, we prove, for example, that \(A_{0}^{*} \unlhd A^{*}\) holds, so that \(A_{0}^{*}\) and \(A^{*}\) can play the parts of \(A\) and \(A^{\prime}\), respectively, in the definition of principal signature.

Let \(A\) be an admissible semantic object and let \(N\) be a name set. The names below \(N\) in \(A\) are the names that are reachable in \(\operatorname{Graph}(A)\), starting from a node whose name is in \(N\). Put differently, the names below \(N\) in \(A\), written \(\operatorname{below}(A, N)\), is the least set \(N^{\prime}\) satisfying
1. \(N \cap \operatorname{names}(A) \subseteq N^{\prime}\)
2. Whenever \((m, E)\) occurs free in \(A\) and \(m \in N^{\prime}\) then names \((\operatorname{skel}(E)) \subseteq N^{\prime}\)

The structures below \(N\) in \(A\), written \(\operatorname{Below}(A, N)\), is defined by
\[
\operatorname{Below}(A, N)=\{\operatorname{skel}(m, E) \mid(m, E) \text { occurs free in } A \text { and } m \in \operatorname{below}(A, N)\}
\]

When \(A^{\prime}\) is a semantic object, we write below \(\left(A, A^{\prime}\right)\) for below \(\left(A, \operatorname{names}\left(A^{\prime}\right)\right)\), and we write \(\operatorname{Below}\left(A, A^{\prime}\right)\) as an abbreviation of \(\operatorname{Below}\left(A\right.\), names \(\left.\left(A^{\prime}\right)\right)\). Also, we shall identify the set \(\operatorname{Below}(A, N)\) with any assembly \(\left[S_{1}, \ldots, S_{n}\right]\), where \(\left\{S_{1}, \ldots, S_{n}\right\}=\operatorname{Below}(A, N)\).

One easily proves that \(\operatorname{below}(A, N)=\operatorname{names}(\operatorname{Below}(A, N))\), for all admissible semantic objects \(A\) and name sets \(N\).

\section*{Lemma 6.1}

Let \(A\) be an admissible object and let \(N\) be a name set. Then \(\operatorname{Below}(A, N) \unlhd A\).

\section*{Proof}

Certainly, \(\operatorname{Below}(A, N) \sqsubseteq A\). It remains to show that \(\operatorname{Below}(A, N)\) covers \(A\) on below \((A, N)\). But that follows from the definitions of Below and skel, in particular from the fact that the skel function does not 'throw away' functor components - it merely replaces them by a closed functor signature, cf. section 3.3.

Next we show an important lemma, which concerns the following situation:

The lemma says that the bottom morphism exists if the other parts of the diagram are given, provided that \(A_{1}^{\prime} \unlhd A_{1}\) (as we shall see in the proof, \(A_{1}^{\prime} \sqsubseteq A_{1}\) would not be enough here).

\section*{Lemma 6.2}

Assume \(B_{1} \sqsubseteq A_{1}^{\prime} \unlhd A_{1}\) and \(\left(A_{1}, B_{1}\right) \xrightarrow{\varphi}\left(A_{2}, B_{2}\right)\) and let
\(A_{2}^{\prime}=\operatorname{Below}\left(A_{2}, \varphi A_{1}^{\prime}\right)\). Then \(\left(A_{1}^{\prime}, B_{1}\right) \xrightarrow{\varphi}\left(A_{2}^{\prime}, B_{2}\right)\).
Proof
Since \(A_{1}^{\prime} \sqsubseteq A_{1}\) and \(\varphi A_{1}\) is admissible we have \(\varphi A_{1}^{\prime} \sqsubseteq \varphi A_{1}\), by Lemma 5.3. Since \(\varphi A_{1} \sqsubseteq A_{2}\), we then have \(\varphi A_{1}^{\prime} \sqsubseteq A_{2}\). Thus
\[
\begin{equation*}
A_{2}^{\prime}=\operatorname{Below}\left(A_{2}, \varphi A_{1}^{\prime}\right) \sqsupseteq \varphi A_{1}^{\prime} \tag{24}
\end{equation*}
\]

Since by assumption \(A_{1}^{\prime} \sqsupseteq B_{1}\), we have \(\left(A_{1}^{\prime}, B_{1}\right) \in \operatorname{Obj}\). To see that \(\left(A_{2}^{\prime}, B_{2}\right) \in \operatorname{Obj}\), note that \(A_{1}^{\prime} \sqsupseteq B_{1}\) implies \(\dot{\varphi} A_{1}^{\prime} \sqsupseteq \varphi B_{1}=B_{2}\), by Lemma 5.3 ; thus \(A_{2}^{\prime} \sqsupseteq B_{2}\), by (24). Let us show that \(\varphi\) is a morphism from \(\left(A_{1}^{\prime}, B_{1}\right)\) to (\(A_{2}^{\prime}, B_{2}\)). By assumption \(\varphi\) is fixed on \(N\) of \(B_{1}\) and \(\varphi\left(B_{1}\right)=B_{2}\), as desired. Also \(\varphi\left(A_{1}^{\prime}\right) \sqsubseteq A_{2}^{\prime}\) by (24), as desired. Let \(N_{1}=N\) of \(B_{1}\). It remains to prove that \(A_{1}^{\prime}\) covers \(A_{2}^{\prime}\) on \(N_{1}\). We have \(N_{1} \cap \operatorname{names}\left(A_{2}^{\prime}\right) \subseteq \operatorname{names}\left(A_{1}^{\prime}\right)\), as required (since \(A_{1}^{\prime} \sqsupseteq B_{1}\)). Let (\(m, E_{2}^{\prime}\)) be a structure occurring free in \(A_{2}^{\prime}\) with \(m \in N_{1}\) and assume id \(\in \operatorname{Dom}\left(E_{2}^{\prime}\right)\). By the definition of \(A_{2}^{\prime}\) there exists \(E_{2}\) such that (\(m, E_{2}\)) occurs free in \(A_{2}\) and \(i d \in \operatorname{Dom}\left(E_{2}\right)\). Since \(A_{1}\) covers \(A_{2}\) on \(N_{1}\) there exists an \(E_{1}\) such that (\(m, E_{1}\)) occurs free in \(A_{1}\) and id \(\in \operatorname{Dom}\left(E_{1}\right)\). But then, since \(A_{1}\) is a conservative cover of \(A_{1}^{\prime}\) and \(m \in\) names \(\left(A_{1}^{\prime}\right)\), there exists an \(E_{1}^{\prime}\) such that (\(m, E_{1}^{\prime}\)) occurs free in \(A_{1}^{\prime}\) and id \(\in \operatorname{Dom}\left(E_{1}^{\prime}\right)\), as desired.

There is a characterization of \(\operatorname{below}(A, N)\) which often is useful in proofs. Recall that StrName is the set of all structure names. Let \(\mathscr{P}\) (StrName) denote the set of subsets of StrName. Given \(A\) and \(N\), let \(\mathscr{F}_{A, N}: \mathscr{P}(\) StrName \() \rightarrow \mathscr{P}(\) StrName) be defined by
\[
\begin{aligned}
\mathscr{F}_{A, N}\left(N^{\prime}\right)=\{m \in \operatorname{names}(A) \mid & \left.\begin{array}{l}
m \in N \text { or there exists an }\left(m^{\prime}, E^{\prime}\right) \text { which occurs } \\
\\
\\
\\
\\
\\
\text { free in } A \text { and satisfies that } m^{\prime} \in N^{\prime} \text { and } m \in
\end{array}\right\}
\end{aligned}
\]

Then \(\mathscr{F}_{A, N}\) is continuous with respect to set inclusion and its least fixed point is exactly \(\operatorname{below}(A, N)\) :
\[
\operatorname{below}(A, N)=\bigcup_{i \geq 0} \mathscr{F}_{A, N}^{i}(\emptyset)
\]

An example of the use of this property is the proof of the next lemma. A morphism \(\varphi\) in \(K\) is an epimorphism if for every pair \(\psi_{1}, \psi_{2}\) of morphisms in \(K\), if \(\psi_{1} \circ \varphi=\psi_{2} \circ \varphi\) then \(\psi_{1}=\psi_{2}\).

\section*{Lemma 6.3}

Let \(\left(A_{1}, B_{1}\right)=O_{1}\) and \(\left(A_{2}, B_{2}\right)=O_{2}\) and assume \(O_{1} \xrightarrow{\varphi} O_{2}\).
Then \(O_{1} \xrightarrow{\varphi}\left(\operatorname{Below}\left(A_{2}, \varphi A_{1}\right), B_{2}\right)\) is an epimorphism.
Proof
Let \(A_{2}^{\prime}=\operatorname{Below}\left(A_{2}, \varphi A_{1}\right)\) and \(O_{2}^{\prime}=\left(A_{2}^{\prime}, B_{2}\right)\). To prove that \(O_{1} \xrightarrow{\varphi} O_{2}^{\prime}\) is an epimorphism, let \(O_{3}\) be an object in \(K\) and \(\psi_{1}\) and \(\psi_{2}\) be realizations such that
\[
O_{1} \xrightarrow{\varphi} O_{2}^{\prime} \xrightarrow[\psi_{2}]{\stackrel{\psi_{1}}{\longrightarrow}} O_{3}
\]
commutes. We wish to prove that \(\psi_{1}(m)=\psi_{2}(m)\), for all \(m \in \operatorname{names}\left(O_{2}^{\prime}\right)\). By the definition of \(A_{2}^{\prime}\), this amounts to proving that
\[
\forall i \geq 0 \forall m \in \mathscr{F}_{\left(A_{2}, \varphi A_{1}\right)}^{i}(\emptyset) \cdot \psi_{1}(m)=\psi_{2}(m)
\]
where \(\mathscr{F}\) was defined above. This, however, is easily shown by induction on \(i\), using that \(\left(\psi_{1} \circ \varphi\right)(m)=\left(\psi_{2} \circ \varphi\right)(m)\), for all \(m \in \operatorname{names}\left(O_{1}\right)\), that \(\psi_{1}\left(A_{2}^{\prime}\right) \sqsubseteq A_{3}\) and \(\psi_{2}\left(A_{2}^{\prime}\right) \sqsubseteq A_{3}\) and that \(A_{3}\) is consistent, where \(A_{3}=A\) of \(O_{3}\).
This finishes the treatment of the Below operation. Now let us look at the Clos operation and its properties.

For all structures \(S\) and name sets \(N\), we define \(\operatorname{Clos}_{N} S\) to be the signature (\(N^{\prime}\)) \(S\), where \(N^{\prime}=\operatorname{names}(S) \backslash N\). For every semantic object \(A, \operatorname{Clos}_{A} S\) means \(\operatorname{Clos}_{\text {names }(A)} S\).

Lemma 6.4 (Closure and well-formedness, Version 1)
For all name sets \(N\), assemblies \(A\) and structures \(S\), if \(A \supseteq S\) then \(\operatorname{Clos}_{\text {Below }(A, N)} S\) is a well-formed signature.

\section*{Proof}

Since \(A \supseteq S, S\) is admissible and in particular well-formed, as required. Write \(\operatorname{Clos}_{\operatorname{Below}(A, N)} S\) in the form \(\left(N^{\prime}\right) S\), i.e. let \(N^{\prime}\) be names \((S) \backslash \operatorname{below}(A, N)\). Let \((m, E)\) be a structure occurring free in \(S\) and assume \(m \notin N^{\prime}\). Then \(m \in \operatorname{below}(A, N)\). Since \(A \supseteq S\), we have \(A \supseteq(m, E)\). Since \(m \in \operatorname{below}(A, N)\) we therefore have names \((\operatorname{skel}(E)) \subseteq \operatorname{below}(A, N)\). Hence names \((\operatorname{skel}(E)) \cap N^{\prime}=\emptyset\), as required.

Lemma 6.5 (Closure and well-formedness, Version 2)
For all assemblies \(A\) and \(A^{\prime}\) and all structures \(S\), if \(A \unlhd A^{\prime}\) and \(A^{\prime} \sqsupseteq S\) then \(\operatorname{Clos}_{A} S\) is a well-formed signature.

\section*{Proof}

Follows directly from Lemma 6.4 and the observation that \(A \unlhd A^{\prime}\) implies \(\operatorname{below}\left(A^{\prime}, A\right)=\operatorname{names}(A)\).

If \(A^{\prime}\) is a conservative cover of \(A\) then the names by which \(A^{\prime}\) extends \(A\) can be renamed without affecting the fact that \(A^{\prime}\) is a conservative cover of \(A\) :

\section*{Lemma 6.6}

Let \(A \unlhd A^{\prime}\) and let \(N=\operatorname{names}\left(A^{\prime}\right) \backslash\) names \((A)\). Let \(\varphi\) be any realization which is injective on \(N\), is fixed on names \((A)\) and satisfies \(\operatorname{Ran}(\varphi) \cap \operatorname{names}(A)=\emptyset\). Then \(A \unlhd \varphi\left(A^{\prime}\right)\).

\section*{Proof}

Simple verification.

Finally, we prove that a signature can only be principal if it does not contain free names which could be quantified:

\section*{Lemma 6.7 (Closure and principality)}

Let \(O=(A, B)\) be an object in \(K\). For all name sets \(N\) and structures \(S\), if \(N \cap \operatorname{names}(O)=\emptyset\) and \(N \subseteq \operatorname{names}(S)\) and \((N) S\) is principal for sigexp in \(O\) then \((N) S=\operatorname{Clos}_{A} S\).

\section*{Proof}

We know that \(N \subseteq\) names \((S)\). Since \(N \cap\) names \((O)=\emptyset\), we know that \(N\) nnames \((A)=\) \(\emptyset\). To show \((N) S=\operatorname{Clos}_{A} S\), it just remains to show names \(((N) S) \subseteq\) names \((A)\). Since \((N) S\) is principal for sigexp in \((A, B)\) there exists an \(A^{\prime}\) such that \(A \unlhd A^{\prime}\) and \(A^{\prime}, B \vdash \operatorname{sigexp} \Rightarrow S\), and

For all \(O^{\prime}, \varphi^{\prime}\) and \(S^{\prime}\), if \(O \xrightarrow{\varphi^{\prime}} O^{\prime}\) and \(O^{\prime} \vdash\) sigexp \(\Rightarrow S^{\prime}\) then \(\varphi^{\prime}((N) S) \geq S^{\prime}\)
In particular, for \(\varphi^{\prime}=\mathrm{Id}\), (25) states that
\[
\begin{align*}
& \text { For all } A^{\prime \prime} \text { and } S^{\prime} \text {, if } A \sqsubseteq A^{\prime \prime} \text { and } A \text { covers } A^{\prime \prime} \text { on } N \text { of } B \text { and } \\
& A^{\prime \prime}, B \vdash \operatorname{sigexp} \Rightarrow S^{\prime} \text { then }(N) S \geq S^{\prime} \tag{26}
\end{align*}
\]

Let \(\varphi\) be an injective realization which maps names in the set names \(\left(A^{\prime}\right) \backslash \operatorname{names}(A)\) to distinct fresh names and is the identity on all other names. By Lemma 6.6 we have that \(A \unlhd \varphi A^{\prime}\). Since \(A \sqsupseteq B\), we then have \(O^{\prime} \xrightarrow{\varphi} O^{\prime \prime}\), where \(O^{\prime}=\left(A^{\prime}, B\right)\) and \(O^{\prime \prime}=\) \(\left(\varphi A^{\prime}, B\right)\). Since \(O^{\prime} \vdash\) sigexp \(\Rightarrow S\) we then have \(O^{\prime \prime} \vdash\) sigexp \(\Rightarrow \varphi S\), by Theorem 5.1. Thus by (26) we have (\(N\)) \(S \geq \varphi S\). But this implies names \(((N) S) \subseteq\) names \((A)\), as required.

\subsection*{6.2 Statement of the main theorem}

We now state a stronger version of Theorem 3.1, suitable for inductive proof. We refer to this theorem as the main theorem:

Theorem 6.1 (Main theorem)
Let phrase be one of sigexp, spec, atspec, shareq or funsigexp and let \(O \in\) Obj. If there exists some \(O^{\prime}, \varphi\) and \(P^{\prime}\) such that \(O \xrightarrow{\varphi} O^{\prime}\) and \(O^{\prime} \vdash\) phrase \(\Rightarrow P^{\prime}\) then \(\left(O^{*}, \varphi^{*}, P^{*}\right)=W(O\), phrase \()\) succeeds and
1. \(O \xrightarrow{\varphi^{*}} O^{*}\) and \(O^{*} \vdash\) phrase \(\Rightarrow P^{*}\)
2. For all \(O^{\prime}, \varphi^{\prime}\) and \(P\) satisfying \(O \xrightarrow{\varphi} O^{\prime}\) and \(O^{\prime} \vdash\) phrase \(\Rightarrow P^{\prime}\) there exists a \(\psi\) such that the diagram

commutes and \(\psi P^{*}=P^{\prime}\).
Readers who are familiar with the completeness result for the Damas-Milner algorithm \(W\) (Damas and Milner, 1982) will recognize the overall structure of the above theorem. We have not proved that \(W\) fails if there exists no \(O^{\prime}, \varphi\) and \(P^{\prime}\) with \(O \xrightarrow{\varphi} O^{\prime}\) and \(O^{\prime} \vdash\) phrase \(\Rightarrow P^{\prime}\); we believe this is the case, but we do not need this result to prove Theorem 3.1.

It is not clear, of course, that the above theorem really implies Theorem 3.1. We will spend the rest of this section demonstrating this. In the process, we shall prove a number of lemmas, which we also shall use in the proof of Theorem 6.1.

Write \(O, O^{\prime}\) and \(O^{*}\) in the form \((A, B),\left(A^{\prime}, B^{\prime}\right)\) and \(\left(A^{*}, B^{*}\right)\), respectively. In section 6.1 we considered the special case where phrase is sigexp and \(P, P^{\prime}\) and \(P^{*}\) are structures \(S, S^{\prime}, S^{*}\), respectively. We saw that the assembly and signature we are interested in are \(A_{0}^{*}=\operatorname{Below}\left(A^{*}, \varphi^{*}(A)\right)\) and \(\Sigma^{*}=\operatorname{Clos}_{A_{0}} S^{*}\). More generally, in order to separate that part of the diagram (27) which is 'generic' from that part which is not, we shall often need to derive from diagrams like (27) another diagram

where the realizations are the same, but \(O_{0}^{*}=\left(\operatorname{Below}\left(A^{*}, \varphi^{*}(A)\right), B^{*}\right)\) and \(O^{\prime \prime}=\) \(\left(A^{\prime \prime}, B^{\prime}\right)\) for some suitable \(A^{\prime \prime}\). Below we prove a lemma which gives conditions that are sufficient to ensure that this separation really is possible. As a first step, let us prove the following lemma:

\section*{Lemma 6.8 (Cover)}

Let \(\varphi\) be a realization which is fixed on \(N\). For all assemblies \(A_{1}\) and \(A_{2}\), if \(A_{1}\) covers \(\varphi A_{2}\) on \(N\) then \(A_{1}\) covers \(A_{2}\) on \(N\).

Proof
Let (\(m, E\)) occur free in \(A_{2}, m \in N\) and \(i d \in \operatorname{Dom} E\), where \(i d \in\) StrId \(\cup F u n I d\). Then, since \(\varphi\) is fixed on \(N\), the structure \(S^{\prime}=\varphi(m, E)=(m, \varphi E)\) occurs free in \(\varphi A_{2}\) and
\(m \in N\). Since \(A_{1}\) covers \(\varphi A_{2}\) on \(N\) there exists an \(E_{0}\) such that (\(m, E_{0}\)) occurs free in \(A_{1}\) and id \(\in \operatorname{Dom} E_{0}\), as required.

The next step is to prove that decomposition of realization preserves cover.

\section*{Lemma 6.9}

If \(\varphi_{1} A_{1} \sqsubseteq A_{2}\) and \(\varphi_{2} A_{2} \sqsubseteq A_{3}\) and \(A_{1}\) covers \(A_{3}\) on \(N\) and \(\varphi_{1}\) and \(\varphi_{2}\) are fixed on \(N\), then \(A_{1}\) covers \(A_{2}\) on \(N\) and \(A_{2}\) covers \(A_{3}\) on \(N\).

\section*{Proof}

As \(A_{1}\) covers \(A_{3}\) on \(N\) and \(\varphi_{2} A_{2} \sqsubseteq A_{3}, A_{1}\) covers \(\varphi A_{2}\) on \(N\). Thus \(A_{1}\) covers \(A_{2}\) on \(N\), by Lemma 6.8.

To prove that \(A_{2}\) covers \(A_{3}\) on \(N\), let \((m, E)\) be a structure which occurs free in \(A_{3}\) and let id be a structure or functor identifier in the domain of \(E\). Assume \(m \in N\). Since \(A_{1}\) covers \(A_{3}\) on \(N\) there exists an \(E_{1}\) such that (\(m, E_{1}\)) occurs free in \(A_{1}\) and id \(\in \operatorname{Dom} E_{1}\). Then, since \(\varphi_{1}\) is fixed on \(N\) and \(\varphi_{1} A_{1} \sqsubseteq A_{2}, \varphi\left(m, E_{1}\right)=\left(m, \varphi E_{1}\right)\) is covered by \(A_{2}\). Thus there exists an \(E_{2}\) such that (\(m, E_{2}\)) occurs free in \(A_{2}\) and id \(\in \operatorname{Dom} E_{2}\). Thus \(A_{2}\) covers \(A_{3}\) on \(N\).

Finally, we can state and prove the promised lemma about the existence of (28):

\section*{Lemma 6.10}

Let \(O=(A, B), O^{\prime}=\left(A^{\prime}, B^{\prime}\right)\) and \(O^{*}=\left(A^{*}, B^{*}\right)\) be objects in \(K\) and assume that the diagram (a) below commutes. Let \(A_{0}^{*}=\operatorname{Below}\left(A^{*}, \varphi^{*}(A)\right)\), let \(O_{0}^{*}=\left(A_{0}^{*}, B^{*}\right)\), let \(A_{0}^{\prime}\) be any assembly satisfying \(\operatorname{Below}\left(A^{\prime}, \varphi(A)\right) \sqsubseteq A_{0}^{\prime} \sqsubseteq A^{\prime}\) and let \(O_{0}^{\prime}=\left(A_{0}^{\prime}, B^{\prime}\right)\). Then the diagram (b) exists in \(K\) and commutes.

(a)

(b)

Proof
That \(O^{*} \xrightarrow{\varphi^{*}} O_{0}^{*}\) is a morphism in \(K\) follows from Lemmas 6.1 and 6.2. Similarly, \(O \xrightarrow{\varphi}\left(\operatorname{Below}\left(A^{\prime}, \varphi(A)\right), B^{\prime}\right)\) is a morphism in \(K\) by Lemmas 6.1 and 6.2. Since \(A\) covers \(A^{\prime}\) on \(N\) of \(B\left(=N\right.\) of \(\left.B^{\prime}\right)\) and \(A_{0}^{\prime} \sqsubseteq A^{\prime}\) we have that \(A\) covers \(A_{0}^{\prime}\) on \(N\) of \(B\). Thus \(O \xrightarrow{\varphi} O_{0}^{\prime}\) is a morphism in \(K\). The real question is whether the bottom morphism exists. (If it exists, then (b) commutes, since (a) commutes.) Referring to the definition of \(K\), we certainly have that \(\psi\) is fixed on \(N\) of \(B^{*}\) and that \(\psi\left(B^{*}\right)=B^{\prime}\). Moreover, \(\psi A_{0}^{*}=\psi\left(\operatorname{Below}\left(A^{*}, \varphi^{*}(A)\right)\right) \sqsubseteq \operatorname{Below}\left(A^{\prime}, \psi\left(\varphi^{*}(A)\right)\right)\) since the morphisms \(O \xrightarrow{\varphi^{*}} O^{*} \xrightarrow{\varphi} O^{\prime}\) exist. Thus, since (a) commutes, we have \(\psi A_{0}^{*} \sqsubseteq \operatorname{Below}\left(A^{\prime}, \varphi A\right) \sqsubseteq A_{0}^{\prime}\), so \(\psi\left(A_{0}^{*}\right) \sqsubseteq A_{0}^{\prime}\), as required. It remains to prove that \(A_{0}^{*}\) covers \(A_{0}^{\prime}\) on \(N\) of \(B\). We have \(\varphi^{*}(A) \sqsubseteq A_{0}^{*}\) and \(\psi A_{0}^{*} \sqsubseteq A_{0}^{\prime}\) and \(A\) covers \(A_{0}^{\prime}\) on \(N\) of \(B^{\prime}\) and \(\varphi^{*}\) and \(\psi\) are fixed on \(N\) of \(B\) - since (a) exists. But then Lemma 6.9 gives that \(A_{0}^{*}\) covers \(A_{0}^{\prime}\) on \(N\) of \(B\), as required.

We can now prove that for all \(O\) and phrase if one can find \(O^{*}, \varphi^{*}\) and \(P^{*}\) satisfying (1) and (2) of Theorem 6.1, then one thereby has a way of obtaining principal signatures:

\section*{Lemma 6.11 (The main theorem gives principal signatures)}

Let \(O \in \mathrm{Obj}\) and let phrase be a signature expression. Assume that object \(O^{*}\), realization \(\varphi^{*}\) and structure \(P^{*}\) satisfy (1) and (2) of Theorem 6.1. Let (\(\left.A^{*}, B^{*}\right)=O^{*}\), \(A_{0}^{*}=\operatorname{Below}\left(A^{*}, \varphi^{*}(A)\right)\) and \(\Sigma^{*}=\operatorname{Clos}_{A_{0}^{*}} P^{*}\). Then \(\Sigma^{*}\) is principal for phrase in \(\left(A_{0}^{*}, B^{*}\right)\).

This is certainly good news, for the \(\Sigma^{*}\) constructed above is precisely the \(\Sigma^{*}\) which \(W_{\text {prinsigexp }}\) produces (see Fig. 19). Of course, the above lemma does not state that \(\Sigma^{*}\) is principal for the signature expression in \(O\), but once we have proved Lemma 6.11, it is easy to prove that Theorem 6.1 implies Theorem 3.1. We now prove Lemma 6.11:

\section*{Proof}

Let sigexp \(=\) phrase and \(S^{*}=P^{*}\). Let \(O_{0}^{*}=\left(A_{0}^{*}, B^{*}\right)\). Following the definition of principal signature, it suffices to prove
\[
\begin{gather*}
O_{0}^{*} \in \mathrm{Obj} \tag{29}\\
A_{0}^{*} \unlhd A^{*} \quad \text { and } \quad A^{*}, B^{*} \vdash \operatorname{sigexp} \Rightarrow S^{*} \tag{30}
\end{gather*}
\]

For all \(\varphi, O^{\prime}\) and \(S^{\prime}\), if \(O_{0}^{*} \xrightarrow{\varphi} O^{\prime}\) and \(O^{\prime} \vdash \operatorname{sigexp} \Rightarrow S^{\prime}\) then \(\varphi\left(\Sigma^{*}\right) \geq S^{\prime}\)
Since \(O \xrightarrow{\varphi^{*}} O^{*}\) we have \(O \xrightarrow{\varphi^{*}} O_{0}^{*}\) by Lemma 6.2. Thus (29) holds. Also, (30) follows from Lemma 6.1 and the assumption \(O^{*} \vdash \operatorname{sig} \exp \Rightarrow S^{*}\). Let us now prove (31). Let \(\varphi, O^{\prime}\) and \(S^{\prime}\) be such that \(O_{0}^{*} \xrightarrow{\varphi} O^{\prime}\) and \(O^{\prime} \vdash\) sigexp \(\Rightarrow S^{\prime}\). Clearly, the diagram

commutes. By assumption, there exists a \(\psi\) such that the diagram

commutes and \(\psi S^{*}=S^{\prime}\). To prove \(\varphi\left(\Sigma^{*}\right) \geq S^{\prime}\) it will therefore suffice to prove that \(\varphi(n)=\psi(n)\), for all \(n \in\) names \(\left(\Sigma^{*}\right)\) - for if so, \(\psi\) both performs the realization of the free names in \(\Sigma^{*}\) and the instantiation of the bound names of \(\Sigma^{*}\). By the definition of \(\Sigma^{*}\) we have names \(\left(\Sigma^{*}\right) \subseteq \operatorname{names}\left(A_{0}^{*}\right)\). Let us prove
\[
\begin{equation*}
\varphi(m)=\psi(m), \text { for all } m \in \operatorname{names}\left(A_{0}^{*}\right) \tag{34}
\end{equation*}
\]

Since (33) commutes, the diagram

commutes by Lemma 6.10. By Lemma 6.3 we have that \(O \xrightarrow{\varphi^{*}} O_{0}^{*}\) is an epimorphism. But then, since (32) and (35) commute, we have (34), as required. Thus \(\Sigma^{*}\) is principal for sigexp in \(O_{0}^{*}\).

Lemma 6.12
Theorem 6.1 implies Theorem 3.1
Proof
Let \(B\) be a basis, \(A\) an assembly, \(A \sqsupseteq B, A \unlhd A^{\prime}\) and \(A^{\prime}, B \vdash \operatorname{sigexp} \Rightarrow S^{\prime}\), for some \(S^{\prime}\). Let \(O=(A, B)\) and \(O^{\prime}=\left(A^{\prime}, B\right)\). Then \(O \xrightarrow{\mathrm{Id}} O^{\prime}\) and \(O^{\prime} \vdash\) sigexp \(\Rightarrow S^{\prime}\). By Theorem 6.1, \(\left(O^{*}, \varphi^{*}, S^{*}\right)=W_{\text {sigexp }}(O\), sigexp \()\) succeeds and \(O \xrightarrow{\varphi^{*}} O^{*}\) and \(O^{*} \vdash\) \(\operatorname{sigexp} \Rightarrow S^{*}\). Also by Theorem 6.1, there exists a \(\psi\) such that the diagram

commutes and \(\psi S^{*}=S^{\prime}\). Let \(\left(A^{*}, B^{*}\right)=O^{*}\). Let \(A_{0}^{*}=\operatorname{Below}\left(A^{*}, \varphi^{*}(A)\right)\) and let \(O_{0}^{*}=\left(A_{0}^{*}, B^{*}\right)\). Since \(A \unlhd A^{\prime}\) we have \(\operatorname{Below}\left(A^{\prime}, \operatorname{Id}(A)\right) \sim A\). Thus by Lemma 6.10 the diagram

exists in \(K\) and commutes. By Lemma 6.11 we have that \(\Sigma^{*}=\operatorname{Clos}_{A_{0}^{*}} S^{*}\) is a principal signature for sigexp in \(O_{0}^{*}\). Thus \(O_{0}^{*} \vdash \operatorname{sigexp} \Rightarrow \Sigma^{*}\). Since \(O_{0}^{*} \xrightarrow{\psi} O\) we have \(O \vdash\) sigexp \(\Rightarrow \psi \Sigma^{*}\) by Theorem 5.1. In particular, \(\psi \Sigma^{*}\) is principal for sigexp in \(O\).

We are thus left with proving the main theorem itself. Before doing this, let us consider the most interesting part of \(W\) in isolation, the part concerning functor signature expressions.

\subsection*{6.3 Functor signatures}

Our type discipline for HML admits functor signatures that occur inside signatures. Since functor signatures take the form \(\Phi=(N)\left(S,\left(N^{\prime}\right) S^{\prime}\right)\) and signatures take the
form \(\left(N_{0}\right) S_{0}\) (where \(\Phi\) can be a component of \(S_{0}\)), the type discipline for higher-order modules involves nested quantification. In this respect, our type discipline is a departure from the well-known principle of ML-style polymorphism that quantification is at the outermost level only.

It is actually rather surprising, at least at first sight, that the principality theorem (Theorem 3.1) holds. For a signature \(\Sigma_{0}=\left(N_{0}\right) S_{0}\) to be principal for some signature expression it must be the case that all other possible results of elaborating the signature expression are instances of \(\Sigma_{0}\), in the sense defined in Section 3.5. But instantiation only admits realization of the outermost bound names, i.e. those in \(N_{0}\). In other words, for the principality theorem to hold, the inner quantifications must be the same in every possible elaboration. Fortunately, this can be achieved by demanding that the argument and result signature expressions in functor signature expressions be elaborated to principal signatures. To be more specific, consider a functor signature expression
\[
\left(\text { strid }: \text { sigexp }_{1}\right) \text { sigexp }_{2}
\]
to be elaborated in \((A, B)\), say. The functor signature expression may occur deep inside some signature declaration, so the assembly \(A\) and basis \(B\) may contain flexible structures. Assume we can elaborate \(\operatorname{sigexp}_{1}\) to \(\Sigma_{1}\), a principal signature for \(\operatorname{sig}^{\exp }{ }_{1}\) in \(A, B\). Now the way possible elaborations can vary is essentially just by the choice of names of flexible structures, subject to the requirements about admissibility and cover. Thus one has to consider what sigexp \({ }_{1}\) would elaborate to in \(\left(A^{\prime}, B^{\prime}\right)\), if \((A, B) \xrightarrow{\varphi}\left(A^{\prime}, B^{\prime}\right)\), for some realization \(\varphi\). However, we know that \(\varphi \Sigma_{1}\) will be principal for \(\operatorname{sigexp}_{1}\) in \(\left(A^{\prime}, B^{\prime}\right)\) - cf. the proof of Theorem 5.1. Notice that applying a realization to a signature only affects the free names (although it may require renaming of the bound names), so the nameset prefix is essentially the same in all possible elaborations.

Thus we see that for the principality theorem to hold, it is crucial that principality is preserved under realization. But it also has to be preserved under 'inverse' realization: if there exists some \(\varphi, O^{\prime}\) and \(\Sigma^{\prime}\) with \(O \xrightarrow{\varphi} O^{\prime}\) and \(O^{\prime} \vdash\) sigexp \(\Rightarrow \Sigma^{\prime}\) and if \(\left(O^{*}, \varphi^{*}, \Sigma^{*}\right)\) is the result of \(W(O\), sigexp \()\), then \(\Sigma^{*}\) had better be principal for sigexp in \(O^{*}\).

Thus the situation is somewhat more involved in the higher-order language than in Standard ML, where signature expressions are only ever elaborated in 'rigid' bases (compare with Theorems 11.4 and 11.5 of the Commentary - Milner and Tofte, 1991); indeed, the changes we have made relative to the Standard ML semantics are mostly motivated by the need to obtain good interaction between realization and principality.

We shall now prove two lemmas that concern precisely the interaction between realization and principality. The first one will be used in the proof of Theorem 6.1 in the case where we have assumed \(O \xrightarrow{\varphi} O^{\prime}\) and \(O^{\prime} \vdash\) sigexp \(\Rightarrow\left(N^{\prime}\right) S^{\prime}\). By induction we will have obtained \(\left(O^{*}, \varphi^{*}, S^{*}\right)\) and \(\psi\) such that \(O^{*} \vdash \operatorname{sigexp} \Rightarrow S^{*}\) and \(\psi\left(S^{*}\right)=S^{\prime}\). We now wish to infer \(\psi\left(\left(N^{*}\right) S^{*}\right)=\left(N^{\prime}\right) S^{\prime}\), where \(N^{*}\) is a suitable nameset prefix. But this only holds because \(\left(N^{\prime}\right) S^{\prime}\) has to be principal:
```

$W_{\text {funsigexp }}(O$ as $(A, B)$, funsigexp $):$ Obj $\times$ Rea $\times \mathrm{FunSig}=$
case funsigexp of
(strid:sigexp ${ }_{1}$ ) sigexp $_{2}=>$
let $\left(O_{1}^{*}\right.$ as $\left.\left(A_{1}^{*}, B_{1}^{*}\right), \varphi_{1}^{*}, \Sigma_{i}^{*}\right)=W_{\text {prinsigexp }}\left(O, \operatorname{sigexp}_{1}\right)$
$\left(N_{i}^{*}\right) S_{i}^{*}=\Sigma_{i}^{*}$, where all names in $N_{i}^{*}$ are new
$O_{2}=\left(\left(S_{1}^{*}, A_{1}^{*}\right), B_{1}^{*}+N_{1}^{*}+\left\{\right.\right.$ strid $\left.\left.\mapsto S_{1}^{*}\right\}\right)$
$\left(O_{2}^{*}, \varphi_{2}^{*}, \Sigma_{2}^{*}\right)=W_{\text {prinsigexp }}\left(O_{2}, \operatorname{sigexp}_{2}\right)$
$A_{2}^{*}=A$ of $O_{2}^{*}$
$A^{*}=\operatorname{Below}\left(A_{2}^{*}, \varphi_{2}^{*}\left(A_{1}^{*}\right)\right)$
$\varphi^{*}=\varphi_{2}^{*} \circ \varphi_{1}^{*}$
$\Phi^{*}=\left(N_{1}^{*}\right)\left(\varphi_{2}^{*} S_{1}^{*}, \Sigma_{2}^{*}\right)$
in if $N_{1}^{*} \cap \operatorname{names}\left(A^{*}\right)=\emptyset$ then $\left(\left(A^{*}, \varphi_{2}^{*} B_{1}^{*}\right), \varphi^{*}, \Phi^{*}\right)$
else fail

```

Fig. 22. \(W_{\text {funsigexp }}\).

\section*{Lemma 6.13 (Realization and principality)}

Let \(O_{i}=\left(A_{i}, B_{i}\right)\) be objects in \(K\), for \(i=1,2\), let \(\varphi\) be a realization and assume \(O_{1} \xrightarrow{\varphi} O_{2}\). Further let \(S_{1}\) and \(S_{2}\) be structures, \(N_{1}\) and \(N_{2}\) be name sets. If \(N_{i} \cap\) names \(\left(A_{i}\right)=\emptyset\) and \(N_{i} \subseteq \operatorname{names}\left(S_{i}\right)\) and \(\left(N_{i}\right) S_{i}\) is principal for sigexp in \(O_{i}(i=1,2)\), and \(\varphi S_{1}=S_{2}\) then \(\varphi\left(\left(N_{1}\right) S_{1}\right)=\left(N_{2}\right) S_{2}\).

Proof
We wish to prove that \(\varphi\) maps bound names to bound names:
\[
\begin{equation*}
\varphi \text { is injective on } N_{1} \text { and } \varphi N_{1} \subseteq N_{2} \tag{36}
\end{equation*}
\]
without capture of names:
\[
\begin{equation*}
N_{2} \cap \varphi\left(\operatorname{names}\left(\left(N_{1}\right) S_{1}\right)\right)=\emptyset \tag{37}
\end{equation*}
\]

Since \(\left(N_{i}\right) S_{i}\) is principal for sigexp in \(O_{i}\), there exists an \(A_{i}^{\prime}(i=1,2)\) such that \(A_{i} \unlhd A_{i}^{\prime}\) and \(A_{i}^{\prime}, B \vdash \operatorname{sigexp} \Rightarrow S_{i}\). Let \(\varphi^{\prime}\) be a realization which satisfies \(\varphi^{\prime}(n)=\varphi(n)\), for all \(n \in \operatorname{names}\left(A_{1}\right)\) but in addition maps all names in the set names \(\left(A_{1}^{\prime}\right) \backslash \operatorname{names}\left(A_{1}\right)\) to distinct fresh names. By Lemma 6.7 we have \(\left(N_{i}\right) S_{i}=\operatorname{Clos}_{A_{i}} S_{i}, i=1\), 2. In particular, \(N_{1} \subseteq \operatorname{names}\left(A_{1}^{\prime}\right) \backslash \operatorname{names}\left(A_{1}\right)\), so
\[
\begin{equation*}
\varphi^{\prime} \text { maps the names in } N_{1} \text { to distinct fresh names } \tag{38}
\end{equation*}
\]

Since \(A_{1} \unlhd A_{1}^{\prime}\) and \(\left(A_{1}, B_{1}\right) \xrightarrow{\varphi}\left(A_{2}, B_{2}\right)\) there exists an assembly \(A_{2}^{\prime}\) such that \(\varphi A_{1} \sqsubseteq\) \(A_{2} \sqsubseteq A_{2}^{\prime}\) and \(\left(A_{1}^{\prime}, B_{1}\right) \xrightarrow{\varphi^{\prime}}\left(A_{2}^{\prime}, B_{2}\right)\). Since \(A_{1}^{\prime}, B_{1} \vdash \operatorname{sigexp} \Rightarrow S_{1}\) we then have \(A_{2}^{\prime}, B_{2} \vdash\) sigexp \(\Rightarrow \varphi^{\prime} S_{1}\), by Theorem 5.1. But then, since \(A_{2} \sqsubseteq A_{2}^{\prime}\) and \(\left(N_{2}\right)\left(\varphi S_{1}\right)\) is principal for sigexp in \(\left(A_{2}, B_{2}\right)\), we have \(\left(N_{2}\right)\left(\varphi S_{1}\right) \geq \varphi^{\prime} S_{1}\). This, together with (38), gives (36). As for (37), we have names \(\left(\left(N_{1}\right) S_{1}\right) \subseteq \operatorname{names}\left(A_{1}\right)\). Since \(\left(N_{2}\right)\left(\varphi S_{1}\right)=\operatorname{Clos}_{A_{2}}\left(\varphi S_{1}\right)\) and \(\varphi A_{1} \sqsubseteq A_{2}\) we then have (37), as desired.

The other lemma is used in the proof of Theorem 6.1 in the case concerning functor signature expressions. The inference of \(O^{\prime} \vdash f u n s i g e x p \Rightarrow \Phi^{\prime}\) takes the following

Fig. 23. The diagrams involved in the proof case concerning functor signature expressions
form:
\[
\begin{align*}
& A^{\prime}, B^{\prime} \vdash \operatorname{sigexp}{ }_{1} \Rightarrow\left(N_{1}^{\prime}\right) S_{1}^{\prime} \quad N_{1}^{\prime} \cap \operatorname{names}\left(A^{\prime}\right)=\emptyset \\
& \frac{\left(S_{1}^{\prime}, A^{\prime}\right), B^{\prime}+N_{1}^{\prime}+\left\{\text { strid } \mapsto S_{1}^{\prime}\right\} \vdash \operatorname{sigexp}_{2} \Rightarrow\left(N_{2}^{\prime}\right) S_{2}^{\prime}}{A^{\prime}, B^{\prime} \triangleright\left(\text { strid : } \text { sigexp }_{1}\right) \operatorname{sigexp}_{2} \Rightarrow\left(N_{1}^{\prime}\right)\left(S_{1}^{\prime},\left(N_{2}^{\prime}\right) S_{2}^{\prime}\right)} \tag{39}
\end{align*}
\]

This is to be compared with the the algorihm \(W_{\text {funsigexp }}\) in Fig. 22.
Using induction on \(O \xrightarrow{\varphi} O^{\prime}\) and sigexp \(p_{1}\) it will be possible to construct the diagram in Figure 23(a), where \(\varphi_{1}^{*}\) and \(O_{1}^{*}\) are as given in the algorithm. Next, the algorithm constructs \(O_{2}\); let \(O_{2}^{\prime}=\left(\left(S_{1}^{\prime}, A^{\prime}\right), B^{\prime}+N_{1}^{\prime}+\left\{\right.\right.\) strid \(\left.\mapsto S_{1}^{\prime}\right\}\), i.e. the object in the second premise of (39). It turns out that one has \(O_{2} \xrightarrow{\psi_{1}} O_{2}^{\prime}\) (as well as \(O_{1}^{*} \xrightarrow{\psi_{1}} O^{\prime}\)). Thus we use induction again and get the diagram in Fig. 23(b). The crucial step is now that we want to "cut down" this diagram to the diagram in Fig. 23(c). (Note that the realizations in (b) and (c) are the same; the difference is that in (c) we have removed those structures which are quantified by \(N_{1}^{*}\) and \(N_{1}^{\prime}\).) If only this can be done, then we can paste (a) and (c) together along the morphism \(\psi_{1}\) and get

However, can (c) be constructed from (b)? Can one be sure, for example, that \(\varphi_{2}^{*}\) does not map a name which was free in \(B_{1}^{*}\) to a name which is a member of \(N_{1}^{*}\) ?

A related problem is that in order to prove \(A^{*}, B^{*} \vdash\) funsigexp \(\Rightarrow \Phi^{*}\), where \(A^{*}\), \(B^{*}\) and \(\Phi^{*}\) are the objects constructed by \(W\), the inference rule (8) demands that sigexp \(2_{2}\) be elaborated in the assembly (\(\varphi_{2}^{*} S_{1}^{*}, A^{*}\)). The induction hypothesis will give us that sigexp \({ }_{2}\) elaborates in \(A_{2}^{*}\); but how are these two assemblies related?

The lemma below answers the above questions. The proof of the lemma is a bit draining, so it is relegated to the Appendix. In the statement of the lemma, we refer to diagrams (b) and (c) of Fig. 23.

\section*{Lemma 6.14}

Let \(O, O^{\prime}\) and \(O_{1}^{*}\) be objects in \(K\) (with \(O_{1}^{*}=\left(A_{1}^{*}, B_{1}^{*}\right)\), etc). Assume that \(O_{1}^{*} \xrightarrow{\psi_{1}} O^{\prime}\) and \(A_{1}^{*} \sqsupseteq\left(N_{1}^{*}\right) S_{1}^{*}\) and \(A^{\prime} \sqsupseteq\left(N_{1}^{\prime}\right) S_{1}^{\prime}\) and \(N_{1}^{*}=N_{1}^{\prime}\) and \(N_{1}^{\prime} \cap\left(\operatorname{names}\left(A_{1}^{*}\right) \cup \operatorname{names}\left(A^{\prime}\right)\right)=\) \(\emptyset\) Let \(O_{2}=\left(\left(S_{1}^{*}, A_{1}^{*}\right), B_{1}^{*}+N_{1}^{*}+\left\{\right.\right.\) strid \(\left.\left.\mapsto S_{1}^{*}\right\}\right)\) and \(O_{2}^{\prime}=\left(\left(S_{1}^{\prime}, A^{\prime}\right), B^{\prime}+N_{1}^{\prime}+\{\right.\) strid \(\mapsto\) \(\left.\left.S_{1}^{\prime}\right\}\right)\). Let \(A_{2}^{*}\) be an assembly satisfying \(A_{2}^{*} \sim \operatorname{Below}\left(A_{2}^{*}, \varphi_{2}^{*}\left(A\right.\right.\) of \(\left.\left.O_{2}\right)\right)\). Let \(A^{*}=\) \(\operatorname{Below}\left(A_{2}^{*}, \varphi_{2}^{*}\left(A_{1}^{*}\right)\right)\) and \(O^{*}=\left(A^{*}, \varphi_{2}^{*} B_{1}^{*}\right)\). If (b) commutes, then \(A_{2}^{*} \sim\left(A^{*}, \varphi_{2}^{*}\left(S_{1}^{*}\right)\right)\), \(N_{1}^{*} \cap \operatorname{names}\left(A^{*}\right)=\emptyset\) and the diagram (c) commutes.

\subsection*{6.4 Proof of the main theorem}

This section is the proof of Theorem 6.1. The proof is by induction on the depth of inference of \(O^{\prime} \vdash\) phrase \(\Rightarrow P^{\prime}\). There is one case for each rule. The cases for rules \(6,9-11\), and 13 are all straightforward and are not included. The case for local (rule 12) is very similar to the case for sequential specifications (rule 14) and is therefore also omitted. We now deal with each of the remaining cases. For clarity, each case is divided into two parts, corresponding to parts (1) and (2) of Theorem 6.1.

\section*{Rule 4, sigexp \(\equiv\) sig spec end}

Part 1: Assume \(O \xrightarrow{\varphi} O^{\prime}\) and \(O^{\prime} \vdash\) sig spec end \(\Rightarrow\left(m^{\prime}, E^{\prime}\right)\). Then \(O^{\prime} \vdash\) spec \(\Rightarrow E^{\prime}\). By induction, \(\left(O_{1}^{*}, \varphi_{1}^{*}, E_{1}^{*}\right)=W_{\text {spec }}(O\), spec \()\) succeeds and we have \(O \xrightarrow{\varphi_{i}^{*}} O_{1}^{*}\) and \(O_{1}^{*} \vdash\) spec \(\Rightarrow E_{1}^{*}\). Following \(W\), let \(\left(A_{1}^{*}, B_{1}^{*}\right)=O_{1}^{*}\) and let \(m^{*}\) be a fresh structure name. Let \(A^{*}=\left(\left(m^{*}, E_{1}^{*}\right), A_{1}^{*}\right), O^{*}=\left(A^{*}, B_{1}^{*}\right), \varphi^{*}=\varphi_{1}^{*}\) and \(S^{*}=\left(m^{*}, E_{1}^{*}\right)\). Note that \(O^{*}\) is admissible because \(m^{*}\) is fresh. By \(O \xrightarrow{\varphi_{i}^{*}} O_{1}^{*}\) and the definition of \(A^{*}\) we have \(O \xrightarrow{\varphi^{*}} O^{*}\) as required. From \(O_{1}^{*} \vdash\) spec \(\Rightarrow E_{1}^{*}\) and \(O_{1}^{*} \xrightarrow{\mathrm{Id}} O^{*}\) we get \(O^{*} \vdash\) spec \(\Rightarrow E_{1}^{*}\), by Theorem 5.1. Thus \(O^{*} \triangleright\) sig spec end \(\Rightarrow S^{*}\), by rule 4 , and since \(O^{*} \sqsupseteq S^{*}\) we then have \(O^{*} \vdash \operatorname{sig} \operatorname{spec}\) end \(\Rightarrow S^{*}\), as desired.

Part 2: Let \(O^{\prime}, \varphi\) and \(S^{\prime}\) be objects satisfying \(O \xrightarrow{\varphi} O^{\prime}\) and \(O^{\prime} \vdash\) sigexp \(\Rightarrow S^{\prime}\). Let (\(m^{\prime}, E^{\prime}\)) \(=S^{\prime}\). By induction there exists a \(\psi_{1}\) such that the diagram

commutes and \(\psi_{1} E_{1}^{*}=E^{\prime}\). Let \(\psi=\psi_{1}+\left\{m^{*} \mapsto m^{\prime}\right\}\). Since (40) commutes and \(m^{*}\) is fresh, the diagram

commutes. Also, since \(\psi_{1} E_{1}^{*}=E^{\prime}\) we have \(\psi S^{*}=\left(m^{\prime}, E^{\prime}\right)\), as required.

\section*{Rule 5, sigexp \(\equiv\) sigid}

Part 1: Assume \(O \xrightarrow{\varphi} O^{\prime}\) and \(O^{\prime} \vdash\) sigid \(\Rightarrow S^{\prime}\). Let \((A, B)=O\) and \(\left(A^{\prime}, B^{\prime}\right)=O^{\prime}\). Then sigid \(\in \operatorname{Dom} B^{\prime}\) and \(B^{\prime}(\) sigid \() \geq S^{\prime}\). Then sigid \(\in \operatorname{Dom} B\), so \(W\) does not fail here. As in \(W\), write \(B(\) sigid \()\) in the form \(\left(N^{*}\right) S^{*}\), where \(N^{*} \cap\) names \((O)=\emptyset\). Let \(\varphi^{*}=\mathrm{Id}\) and let \(O^{*}=\left(A^{*}, B\right)\), where \(A^{*}=\left(S^{*}, A\right)\). Then \(W\) succeeds with result \(\left(O^{*}, \varphi^{*}, S^{*}\right)\). Clearly, \(O^{*}\) is admissible and \(O \xrightarrow{\varphi^{*}} O^{*}\), as required. Moreover, \(\left(N^{*}\right) S^{*} \geq S^{*}\) and \(A^{*} \sqsupseteq S^{*}\), so \(O^{*} \vdash\) sigid \(\Rightarrow S^{*}\).

Part 2: Let \(O^{\prime}=\left(A^{\prime}, B^{\prime}\right), \varphi\) and \(S^{\prime}\) by any objects satisfying \(O \xrightarrow{\varphi} O^{\prime}\) and \(O^{\prime} \vdash\) sigid \(\Rightarrow S^{\prime}\). Then \(B^{\prime}(\) sigid \() \geq S^{\prime}\), i.e., \(\varphi\left(\left(N^{*}\right) S^{*}\right) \geq S^{\prime}\). Instead of trying to apply \(\varphi\) into \(\left(N^{*}\right) S^{*}\) (which may involve renaming), it is easier to note that \(\varphi\left(\left(N^{*}\right) S^{*}\right) \geq S^{\prime}\)
holds precisely if there exists a realization \(\psi\) such that \(\psi\left(S^{*}\right)=S^{\prime}\) and \(\psi(m)=m\), for all \(m\) free in \(\left(N^{*}\right) S^{*}\) (\(\psi\) does realization on free and bound names simultaneously). Indeed, since \(N^{*} \cap \operatorname{names}(O)=\emptyset\), we can obtain \(\psi(m)=\varphi(m)\), for all \(m \in \operatorname{names}(O)\). Thus the diagram

commutes and \(\psi S^{*}=S^{\prime}\).

\section*{Rule 7, principal signatures}

Part 1: Assume \(O \xrightarrow{\varphi} O^{\prime}\) and \(O^{\prime} \vdash\) sigexp \(\Rightarrow \Sigma^{\prime}\). Since \(O^{\prime} \vdash \operatorname{sigexp} \Rightarrow \Sigma^{\prime}\) must be inferred by rule \(7, \Sigma^{\prime}\) must be principal for sigexp in \(O^{\prime}\). Thus, writing \(\Sigma^{\prime}=\left(N^{\prime}\right) S^{\prime}\), where \(N^{\prime} \cap\) names \(\left(O^{\prime}\right)=\emptyset\), there exists \(A_{1}^{\prime}\) such that \(A^{\prime} \unlhd A_{1}^{\prime}\) and \(A_{1}^{\prime}, B^{\prime} \vdash\) sigexp \(\Rightarrow S^{\prime}\). Note that \(N^{\prime} \subseteq \operatorname{names}\left(S^{\prime}\right)\), as \(\Sigma^{\prime}\) is well-formed. We now wish to use the induction hypothesis to prove that sigexp elaborates to a principal signature \(\Sigma^{*}\) in some \(O^{*}\). To this end, let \(O_{1}^{\prime}=\left(A_{1}^{\prime}, B^{\prime}\right)\). Since \(A^{\prime} \unlhd A_{1}^{\prime}\) and \(O \xrightarrow{\varphi} O^{\prime}\) we have \(O \xrightarrow{\varphi} O_{1}^{\prime}\). Thus by the induction hypothesis on \(A_{1}^{\prime}, B^{\prime} \vdash\) sigexp \(\Rightarrow S^{\prime}\) and \(O \xrightarrow{\varphi} O_{1}^{\prime}\), the call \(\left(O^{*}\right.\) as \(\left.\left(A_{1}^{*}, B^{*}\right), \varphi^{*}, S^{*}\right)=W_{\text {sigexp }}(O\), sigexp \()\) succeeds and \(O \xrightarrow{\varphi^{*}} O_{1}^{*}\) and \(O_{1}^{*} \vdash\) sigexp \(\Rightarrow S^{*}\). Following \(W\), let \(A^{*}=\operatorname{Below}\left(A_{1}^{*}, \varphi^{*}(A)\right), O^{*}=\left(A^{*}, B_{1}^{*}\right)\) and let \(N^{*}\) and \(\Sigma^{*}\) be given by \(\Sigma^{*}=\left(N^{*}\right) S^{*}=\operatorname{Clos}_{A} \cdot S^{*}\). Then \(W_{\text {prinsigexp }}(O\), sigexp \()\) returns \(\left(O^{*}, \varphi^{*}, \Sigma^{*}\right)\). By Lemma 6.11, \(\Sigma^{*}\) is principal for sigexp in \(O^{*}\). Since \(O \xrightarrow{\varphi^{*}} O_{1}^{*}\) and \(A^{*}=\operatorname{Below}\left(A_{1}^{*}, \varphi^{*} A\right)\) we have the desired \(O \xrightarrow{\varphi^{*}} O^{*}\), by Lemma 6.2. Next we want to prove that \(O^{*} \vdash \operatorname{sigexp} \Rightarrow \Sigma^{*}\). This almost follows from the results of applying Lemma 6.11 above, but we have to prove that \(A^{*} \sqsupseteq \Sigma^{*}\). Now \(\Sigma^{*}\) is well-formed (by Lemma 6.5 on \(A^{*} \unlhd A_{1}^{*}\) and \(A_{1}^{*} \sqsupseteq S^{*}\)). But then \(A^{*} \sqsupseteq \Sigma^{*}\) follows from the definition of \(\Sigma^{*}\) and the fact that \(A^{*} \unlhd A_{1}^{*}\) and \(A_{1}^{*} \sqsupseteq S^{*}\). Thus \(O^{*} \vdash\) sigexp \(\Rightarrow \Sigma^{*}\) holds, as required.

Part 2: Now let (\(O^{\prime}\) as \(\left.\left(A^{\prime}, B^{\prime}\right), \varphi, \Sigma^{\prime}\right)\) be such that \(O \xrightarrow{\varphi} O^{\prime}\) and \(O^{\prime} \vdash \operatorname{sigexp} \Rightarrow \Sigma^{\prime}\). We then obtain \(A_{1}^{\prime}, O_{1}^{\prime}, N^{\prime}\) and \(S^{\prime}\) as above. By induction there exists a \(\psi\) such that the diagram

commutes and \(\psi S^{*}=S^{\prime}\). But then, by Lemma 6.10, the diagram

commutes. By Lemma 6.7 we have \(\Sigma^{\prime}=\operatorname{Clos}_{A^{\prime}} S^{\prime}\). By Lemma 6.13 we then get
\[
\psi\left(\left(N^{*}\right) S^{*}\right)=\left(\psi N^{*}\right)\left(\psi S^{*}\right)=\left(N^{\prime}\right)\left(\psi S^{*}\right)
\]

Since \(\psi S^{*}=S^{\prime}\) we thereby have \(\psi \Sigma^{*}=\Sigma^{\prime}\), as required.
Rule 8, funsigexp \(\equiv\left(\right.\) strid sigexp \(\left._{1}\right):\) sigexp \(_{2}\)
Part 1: Assume \(O \xrightarrow{\varphi} O^{\prime}\) and \(O^{\prime} \vdash\) funsigexp \(\Rightarrow \Phi^{\prime}\). Then by rule \(8, \Phi^{\prime}\) is of the form \(\left(N_{1}^{\prime}\right)\left(S_{1}^{\prime}, \Sigma_{2}^{\prime}\right)\) and \(O^{\prime} \vdash\) sigexp \(_{1} \Rightarrow\left(N_{1}^{\prime}\right) S_{1}^{\prime}\) and
\[
\begin{equation*}
\left(S_{1}^{\prime}, A^{\prime}\right), B^{\prime}+N_{1}^{\prime}+\left\{\text { strid } \mapsto S_{1}^{\prime}\right\} \vdash \text { sigexp }_{2} \Rightarrow \Sigma_{2}^{\prime} \tag{43}
\end{equation*}
\]
where \(\left(A^{\prime}, B^{\prime}\right)=O^{\prime}\) and \(N_{1}^{\prime} \cap \operatorname{names}\left(O^{\prime}\right)=\emptyset\).
By induction on \(O \xrightarrow{\varphi} O^{\prime}\) and \(O^{\prime} \vdash \operatorname{sigexp}_{1} \Rightarrow\left(N_{1}^{\prime}\right) S_{1}^{\prime}\), the call \(\left(O_{1}^{*}\right.\) as \(\left(A_{1}^{*}, B_{1}^{*}\right)\), \(\varphi_{1}^{*}, \Sigma_{1}^{*}\) as \(\left.\left(N_{1}^{*}\right) S_{1}^{*}\right)=W_{\text {prinsigexp }}\left(O, \operatorname{sigexp}_{1}\right)\) succeeds and \(O \xrightarrow{\varphi_{1}^{*}} O_{1}^{*}\) and
\[
\begin{equation*}
O_{1}^{*} \vdash \operatorname{sigexp}_{1} \Rightarrow\left(N_{1}^{*}\right) S_{1}^{*} \tag{44}
\end{equation*}
\]

Moreover, there exists a \(\psi_{1}\) such that the diagram

commutes and \(\psi_{1}\left(\left(N_{1}^{*}\right) S_{1}^{*}\right)=\left(N_{1}^{\prime}\right) S_{1}^{\prime}\).
Without loss of generality, we may assume that \(N_{1}^{*} \cap \operatorname{names}\left(O_{1}^{*}, O^{\prime}\right)=\emptyset\); in addition we can assume that \(N_{1}^{*}=N_{1}^{\prime}\) and that \(\psi_{1}\) is fixed on \(N_{1}^{*}\). Notice that with these assumptions, \(\psi_{1}\left(N_{1}^{*}\right)=N_{1}^{\prime}, \psi_{1} S_{1}^{*}=S_{1}^{\prime}\) and
\[
\begin{equation*}
\psi_{1}\left(\left(N_{1}^{*}\right) S_{1}^{*}\right)=\left(\psi_{1} N_{1}^{*}\right)\left(\psi_{1} S_{1}^{*}\right)=\left(N_{1}^{\prime}\right) S_{1}^{\prime} \tag{46}
\end{equation*}
\]

Let
\[
\begin{array}{ll}
A_{2}=\left(S_{1}^{*}, A_{1}^{*}\right) & A_{2}^{\prime}=\left(S_{1}^{\prime}, A^{\prime}\right) \\
B_{2}=B_{1}^{\prime}+N_{1}^{*}+\left\{\text { strid } \mapsto S_{1}^{*}\right\} & B_{2}^{\prime}=B^{\prime}+N_{1}^{\prime}+\left\{\text { strid } \mapsto S_{1}^{\prime}\right\} \\
O_{2}=\left(A_{2}, B_{2}\right) & O_{2}^{\prime}=\left(A_{2}^{\prime}, B_{2}^{\prime}\right)
\end{array}
\]

We have \(O_{2} \xrightarrow{\psi_{1}} O_{2}^{\prime}\). (To see this, first note that \(O_{2}^{\prime}\) is an object in \(K\) by (43); similarly, \(O_{2}\) is an object in \(K\) by (44). Moreover, \(\psi_{1} A_{2} \sqsubseteq A_{2}^{\prime}\), since \(\psi_{1} A_{1}^{*} \sqsubseteq A^{\prime}\) and \(\psi_{1} S_{1}^{*}=S_{1}^{\prime}\). Finally, \(A_{2}\) covers \(A_{2}^{\prime}\) on \(N\) of \(B_{2}=(N\) of \(B) \cup N_{1}^{*}\), for \(A_{1}^{*}\) covers \(A^{\prime}\) on \(N\) of \(B\) so by (46) and the fact that \(A_{1}^{*} \sqsupseteq\left(N_{1}^{*}\right) S_{1}^{*}\) and \(A^{\prime} \sqsupseteq\left(N_{1}^{\prime}\right) S_{1}^{\prime}\) we have that \(A_{2}\) covers \(\left(S_{1}^{\prime}, A^{\prime}\right)\) on (\(N\) of \(B\)) \(\cup N_{1}^{*}\).) Also, by (43) we have \(O_{2}^{\prime} \vdash \operatorname{sigexp}_{2} \Rightarrow \Sigma_{2}^{\prime}\). By induction on \(O_{2} \xrightarrow{\varphi_{1}} O_{2}^{\prime}\) and \(O_{2}^{\prime} \vdash \operatorname{sigexp}_{2} \Rightarrow \Sigma_{2}^{\prime}\), the call \(\left(O_{2}^{*}, \varphi_{2}^{*}, \Sigma_{2}^{*}\right)=W_{\text {prinsigexp }}\left(O_{2}, \operatorname{sigexp}_{2}\right)\) succeeds and \(O_{2} \xrightarrow{\varphi_{2}^{*}} O_{2}^{*}\) and
\[
\begin{equation*}
O_{2}^{*} \vdash \operatorname{sigexp}_{2} \Rightarrow \Sigma_{2}^{*} \tag{47}
\end{equation*}
\]

Moreover, there exists a \(\psi_{2}\) such that the diagram

commutes and \(\psi_{2} \Sigma_{2}^{*}=\Sigma_{2}^{\prime}\). Let \(\left(A_{2}^{*}, B_{2}^{*}\right)=O_{2}^{*}\). By the definition of \(W_{\text {prinsigexp }}\) we know that \(A_{2}^{*}=\operatorname{Below}\left(A_{0}, \varphi_{2}^{*}\left(A_{2}\right)\right)\), for some \(A_{0}\). Thus \(A_{2}^{*} \sim \operatorname{Below}\left(A_{2}^{*}, \varphi_{2}^{*}\left(A_{2}\right)\right)\). Following the definition of \(W\), let \(A^{*}=\operatorname{Below}\left(A_{2}^{*}, \varphi_{2}^{*}\left(A_{1}^{*}\right)\right)\). By Lemma 6.14 we have
\[
\begin{gather*}
A_{2}^{*} \sim\left(\varphi_{2}^{*} S_{1}^{*}, A^{*}\right) \tag{49}\\
N_{1}^{*} \cap \operatorname{names}\left(A^{*}\right)=\emptyset \tag{50}
\end{gather*}
\]
and also that the diagram

commutes, where \(O^{*}=\left(A^{*}, \varphi_{2}^{*}\left(B_{1}^{*}\right)\right)\). Thus, by (50), \(W(O\), funsigexp \()\) does not fail here; on the contrary, it succeeds with result (\(O^{*}, \varphi^{*}, \Phi^{*}\)), where \(\varphi^{*}=\varphi_{2}^{*} \circ \varphi_{1}^{*}\) and \(\Phi^{*}=\left(N_{1}^{*}\right)\left(\varphi_{2}^{*} S_{1}^{*}, \Sigma_{2}^{*}\right)\).

By composing the diagrams (45) and (51) we get the desired \(O \xrightarrow{\varphi^{*}} O^{*}\). By Theorem 5.1 on (44) we get
\[
\begin{equation*}
O^{*} \vdash \operatorname{sigexp}_{1} \Rightarrow \varphi_{2}^{*}\left(\left(N_{1}^{*}\right) S_{1}^{*}\right) \tag{52}
\end{equation*}
\]

Also, since \(\varphi_{2}^{*}\) is fixed on \(N_{1}^{*}\) and \(\Sigma_{1}^{*} \sqsubseteq A_{1}^{*}\) and \(\varphi_{2}^{*} A_{1}^{*} \sqsubseteq A^{*}\) and (50) we have \(\varphi_{2}^{*}\left(\left(N_{1}^{*}\right) S_{1}^{*}\right)=\left(N_{1}^{*}\right)\left(\varphi_{2}^{*} S_{1}^{*}\right)\). Thus (52) reads \(O^{*} \vdash \operatorname{sigexp}_{1} \Rightarrow\left(N_{1}^{*}\right) \varphi_{2}^{*} S_{1}^{*}\), i.e.
\[
\begin{equation*}
A^{*}, \varphi_{2}^{*} B_{1}^{*} \vdash \operatorname{sigexp}_{1} \Rightarrow\left(N_{1}^{*}\right) \varphi_{2}^{*} S_{1}^{*} \tag{53}
\end{equation*}
\]

Expanding (47) we get
\[
\begin{equation*}
A_{2}^{*}, \varphi_{2}^{*} B_{1}^{*}+N_{1}^{*}+\left\{\text { strid } \mapsto \varphi_{2}^{*} S_{1}^{*}\right\} \vdash \operatorname{sigexp}_{2} \Rightarrow \Sigma_{2}^{*} \tag{54}
\end{equation*}
\]

Thus by Lemma 3.1 on (54) and (49) we have
\[
\begin{equation*}
\left(\varphi_{2}^{*} S_{1}^{*}, A^{*}\right), \varphi_{2}^{*} B_{1}^{*}+N_{1}^{*}+\left\{\text { strid } \mapsto \varphi_{2}^{*} S_{1}^{*}\right\} \vdash \operatorname{sigexp}_{2} \Rightarrow \Sigma_{2}^{*} \tag{55}
\end{equation*}
\]

We now wish to use rule 8 on (53) and (55). The side-condition \(N_{1}^{*} \cap \operatorname{names}\left(A^{*}\right)=\emptyset\) is met by \((50)\). Moreover, \(\Phi^{*}\) is well-formed, for the following reasons. \(\left(N_{1}^{*}\right)\left(\varphi_{2}^{*} S_{1}^{*}\right)\) is well-formed by (53), \(\Sigma_{2}^{*}\) is well-formed by (54) and if (\(m, E\)) is a structure occurring in \(\Sigma_{2}^{*}\) with \(m \notin N_{1}^{*}\) then since \(A_{2}^{*} \sqsupseteq \Sigma_{2}^{*}\) and (49) we have \(m \in \operatorname{names}\left(A^{*}\right)\). Since \(A^{*} \unlhd A_{2}^{*}\) we therefore have \((m, \operatorname{skel}(E)) \sqsubseteq A^{*}\), so names \((\operatorname{skel}(E)) \cap N_{1}^{*}=\emptyset\), showing that \(\Phi^{*}\) is well-formed and that \(A^{*} \sqsupseteq \Phi^{*}\). Thus rule 8 applies and we get the desired \(O^{\bullet} \vdash\) funsigexp \(\Rightarrow \Phi^{*}\).

Part 2: Let \(O^{\prime}, \varphi\) and \(\Phi^{\prime}\) be objects satisfying \(O \xrightarrow{\varphi} O^{\prime}\) and \(O^{\prime} \vdash\) funsigexp \(\Rightarrow \Phi^{\prime}\). By using induction twice, we get diagrams (45), (48) and (51) exactly as above, but
with \(\psi_{1}\) and \(\psi_{2}\) depending on the new choice of \(O^{\prime}, \varphi\) and \(\Phi^{\prime}\). Let \(\psi=\psi_{2}\). We wish to prove that the diagram

commutes and that \(\psi \Phi^{*}=\Phi^{\prime}\). But (56) commutes since (45) and (51) commute. Moreover, as \(A^{*} \sqsupseteq \Phi^{*}\) and \(O^{*} \xrightarrow{\psi} O^{\prime}\) and names \(\left(O^{*}\right) \cap N_{1}^{*}=\operatorname{names}\left(O^{\prime}\right) \cap N_{1}^{*}=\emptyset\), we can perform the application \(\psi\left(\Phi^{*}\right)=\psi\left(\left(N_{1}^{*}\right)\left(\varphi_{2}^{*} S_{1}^{*}, \Sigma_{2}^{*}\right)\right)=\left(N_{1}^{*}\right)\left(\psi \varphi_{2}^{*} S_{1}^{*}, \psi \Sigma_{2}^{*}\right)\) directly, without causing name capture. Thus
\[
\begin{aligned}
\psi\left(\Phi^{*}\right) & =\left(N_{1}^{*}\right)\left(\psi \varphi_{2}^{*} S_{1}^{*}, \psi \Sigma_{2}^{*}\right) & & \\
& =\left(N_{1}^{*}\right)\left(\psi_{1} S_{1}^{*}, \Sigma_{2}^{\prime}\right) & & \text { as }(48) \text { commutes } \\
& =\left(N_{1}^{\prime}\right)\left(S_{1}^{\prime}, \Sigma_{2}^{\prime}\right) & & \text { by }(46) \\
& =\Phi^{\prime} & &
\end{aligned}
\]
as required.
Rule 15 , shareq \(\equiv\) longstrid \(_{1}=\) longstrid \(_{2}\)
Part 1: Assume \(O \xrightarrow{\varphi} O^{\prime}\) and \(O^{\prime} \vdash\) longstrid \(_{1}=\) longstrid \(_{2} \Rightarrow\{ \}\). Let \((A, B)=O\) and \(\left(A^{\prime}, B^{\prime}\right)=O^{\prime}\). By the side-condition on rule 15 we have \(m\) of \(\left(B^{\prime}\left(\right.\right.\) longstrid \(\left.\left._{1}\right)\right)=\) \(m\) of (\(B^{\prime}\) longstrid \(\left._{2}\right)\)), but the problem is that we do not necessarily have \(m\) of \(\left(B\right.\) longstrid \(\left.\left._{1}\right)\right)=m\) of \(\left(B\right.\) (longstrid \(\left.\left._{2}\right)\right)\). (One reason is that whenever we choose names in the proof, e.g. in the cases for rules 4 and 5 , we always choose them to be suitably 'new'.) Since \(O \xrightarrow{\varphi} O^{\prime}\) and \(B^{\prime}\left(\right.\) longstrid \(\left._{1}\right)\) and \(B^{\prime}\) (longstrid \({ }_{2}\)) exist and have the same name, \(W\) does not fail when it computes (\(m_{1}, E_{1}\)) \(=B\) (longstrid \({ }_{1}\)) and \(\left(m_{2}, E_{2}\right)=B\) (longstrid \({ }_{2}\)). Also, \(\varphi\) is a unifier for \(m_{1}\) and \(m_{2}\) in \(A\) under \(N\) of \(B\). By Theorem 4.1, the call \(\varphi^{*}=\operatorname{Unify}\left(A, N\right.\) of \(\left.B,\left(m_{1}, m_{2}\right)\right)\) succeeds and \(\varphi^{*}\) is a most general unifier for \(m_{1}\) and \(m_{2}\) in \(A\) under \(N\) of \(B\). Thus \(W(O\), shareq) succeeds with result \(\left(O^{*}, \varphi^{*}, E^{*}\right)\), where \(O^{*}=\varphi^{*}(O)\) and \(E^{*}=\{ \}\). We have \(O \xrightarrow{\varphi^{*}} O^{*}\) and \(O^{*} \vdash\) shareq \(\Rightarrow E^{*}\), since \(\varphi^{*}\) is a unifier for \(m_{1}\) and \(m_{2}\) in \(A\) under \(N\) of \(B\).

Part 2: Let \(O^{\prime}, \varphi\) and \(E^{\prime}\) be arbitrary objects satisfying \(O \xrightarrow{\varphi} O^{\prime}\) and \(O^{\prime} \vdash\) shareq \(\Rightarrow E^{\prime}\). Then \(\varphi\) is a unifier for \(m_{1}\) and \(m_{2}\) in \(A\) under \(N\) of \(B\). Since \(\varphi^{*}\) is a most general such unifier, there exists a \(\psi\) which is fixed on \(N\) of \(B\) and satisifies \(\psi\left(\varphi^{*}(A)\right)=\varphi(A)\). Thus the diagram

commutes and \(\psi E^{*}=E^{\prime}\).
Rule 14 , spec \(\equiv\) atspec \(_{1}\langle;\rangle\) spec \(_{2}\)
Part 1: Assume \(O \xrightarrow{\varphi} O^{\prime}\) and \(O^{\prime} \vdash\) atspec \(_{1}\langle;\rangle \operatorname{spec}_{2} \Rightarrow E^{\prime}\). Let \(\left(A^{\prime}, B^{\prime}\right)=O^{\prime}\). By
rule 14 there exist \(E_{1}^{\prime}\) and \(E_{2}^{\prime}\) such that \(E^{\prime}=E_{1}^{\prime}+E_{2}^{\prime}\) and \(A^{\prime}, B^{\prime} \vdash\) atspec \({ }_{1} \Rightarrow E_{1}^{\prime}\) and \(A^{\prime}, B^{\prime}+E_{1}^{\prime} \vdash\) spec \(_{2} \Rightarrow E_{2}^{\prime}\). By induction on \(O \xrightarrow{\varphi} O^{\prime}\) and \(O^{\prime} \vdash\) atspec \(_{1} \Rightarrow E_{1}\), we have that the call \(\left(O_{1}^{*}\right.\) as \(\left.\left(A_{1}^{*}, B_{1}^{*}\right), \varphi_{1}^{*}, E_{1}^{*}\right)=W_{\text {atspec }}\left(O\right.\), atspec \(\left.{ }_{1}\right)\) succeeds and \(O \xrightarrow{\varphi_{1}^{*}} O_{1}^{*}\) and \(O_{1}^{*} \vdash\) atspec \(_{1} \Rightarrow E_{1}^{*}\). Moreover, there exists a \(\psi_{1}\) such that the diagram

commutes and \(\psi_{1} E_{1}^{*}=E_{1}^{\prime}\). Let \(O_{2}=\left(A_{1}^{*}, B_{1}^{*}+E_{1}^{*}\right)\) and \(O_{2}^{\prime}=\left(A^{\prime}, B^{\prime}+E_{1}^{\prime}\right)\). Then \(O_{2} \xrightarrow{\psi_{1}} O_{2}^{\prime}\) and \(O_{2}^{\prime} \vdash \operatorname{spec}_{2} \Rightarrow E_{2}^{\prime}\). By induction, the call \(\left(O_{2}^{*}, \varphi_{2}^{*}, E_{2}^{*}\right)=\) \(W_{\text {spec }}\left(O_{2}\right.\), spec \(\left._{2}\right)\) succeeds and \(O_{2} \xrightarrow{\varphi_{2}} O_{2}^{*}\) and \(O_{2}^{*} \vdash \operatorname{spec}_{2} \Rightarrow E_{2}^{*}\). Moreover, there exists a \(\psi_{2}\) such that

commutes and \(\psi_{2} E_{2}^{*}=E_{2}^{\prime}\). Let \(\left(A_{2}^{*}, B_{2}^{*}\right)=O_{2}^{*}, O^{*}=\left(A_{2}^{*}, \varphi_{2}^{*}\left(B_{1}^{*}\right)\right)\), \(\varphi^{*}=\varphi_{2}^{*} \circ \varphi_{1}^{*}\) and \(E^{*}=\varphi_{2}^{*} E_{1}^{*}+E_{2}^{*}\). Then \(W_{\text {spec }}(O, s p e c)\) succeeds with result \(\left(O^{*}, \varphi^{*}, E^{*}\right)\). We wish to prove \(O \xrightarrow{\varphi^{*}} O^{*}\) and
\[
\begin{equation*}
O^{*} \vdash \text { atspec }_{1}\langle;\rangle \text { spec }_{2} \Rightarrow E^{*} \tag{59}
\end{equation*}
\]

Since \(B_{1}^{*} \sqsubseteq A_{1}^{*}\) we have \(\varphi_{2}^{*} B_{1}^{*} \sqsubseteq \varphi_{2}^{*} A_{1}^{*} \sqsubseteq A_{2}^{*}\). Thus \(O^{*}\) is an object in \(K\) and \(O_{1}^{*} \xrightarrow{\varphi_{2}^{*}} O^{*}\) holds. Since (58) commutes we then have that

commutes. We get \(O \xrightarrow{\varphi^{*}} O^{*}\) by composition of (57) and (60). Moreover, by Theorem 5.1 on \(O_{1}^{*} \vdash\) atspec \(_{1} \Rightarrow E_{1}^{*}\) and \(O_{1}^{*} \xrightarrow{\varphi_{2}^{*}} O^{*}\) we have \(O^{*} \vdash\) atspec \(_{1} \Rightarrow \varphi_{2}^{*} E_{1}^{*}\). Also \(O_{2}^{*}=\left(A_{2}^{*}, B_{2}^{*}\right)=\left(A_{2}^{*}, \varphi_{2}^{*} B_{1}^{*}+\varphi_{2}^{*} E_{1}^{*}\right)\), so from \(O_{2}^{*} \vdash\) spec \(_{2} \Rightarrow E_{2}^{*}\) we get \(O^{*}+\varphi_{2}^{*} E_{1}^{*} \vdash\) spec \(_{2} \Rightarrow E_{2}^{*}\). Thus by rule 14 we have (59) as required.

Part 2: Now let \(O^{\prime}, \varphi\) and \(E^{\prime}\) be arbitrary objects satisfying \(O \xrightarrow{\varphi} O^{\prime}\) and \(O^{\prime} \vdash\) spec \(\Rightarrow E^{\prime}\). By proceeding as above, we obtain \(\psi_{1}\) and \(\psi_{2}\) (and \(O_{2}, O_{2}^{\prime}\)) depending on the new \(O^{\prime}, \varphi\) and \(E^{\prime}\) such that the diagrams (57), (58) and (60) commute. Let \(\psi=\psi_{2}\). Since (57) and (60) commute, the diagram

commutes and moreover, since (58) commutes, we have \(\psi E^{*}=\psi\left(\varphi_{2}^{*} E_{1}^{*}+E_{2}^{*}\right)=\) \(\psi \varphi_{2}^{*} E_{1}^{*}+\psi E_{2}^{*}=\psi_{1} E_{1}^{*}+\psi E_{2}^{*}=E_{1}^{\prime}+E_{2}^{\prime}=E^{\prime}\), as required.

\section*{7 Conclusion}

We have presented a language, called HML, which is intended for programming with higher-order modules. From a programmer's point of view, HML is largely compatible with Standard ML, but HML allows functors to be declared in structures and specified in signatures.

We have defined the static semantics of signature expressions and shown that if a signature expression elaborates at all, then it can be elaborated to a principal signature, using an algorithm, which we have presented and proved correct. We have not defined the semantics of structure matching or functor application.

Part of the motivation behind the work reported in this paper was to see whether, and how smoothly, the semantics of first-order functors presented in the Definition of Standard ML could be extended to higher-order functors. As far as the semantic objects are concerned, a major difference is that one now has to deal with nested quantification. Also, in some situations, it is important to distinguish between the substructures of a given structure \(S\) and those structures that only occur (free) inside some functor signature inside \(S\).

In HML we have to be able to find principal signatures in bases that contain flexible structures. This is not the case in Standard ML. Also, for type-checking reasons, we need principality to be preserved under realization, which is not the case in Standard ML. This has been achieved first and foremost by introducing assemblies into the inference rules and by promoting the notion of cover to ensure that the assembly serves as a consistent frame of reference for different views of structures. These changes have had effects that are useful, even for first-order modules. For example, principal signatures are now always well-formed.

With one exception, we feel that the semantics of Standard ML signature expressions scaled well to the higher-order language. The exception is local and overlapping sequential specifications, which have rather subtle implications for the semantics (see the discussions in sections 3.3 and 3.5).

The algorithms in this paper have been implemented in the ML Kit, by Lars Birkedal, who has also extended the theorems and proofs presented in this paper to cover all the constructs found in Standard ML signatures. David MacQueen and Pierre Cregut have recently implemented higher-order functors, including functor application, in Standard ML of New Jersey.

\section*{Acknowledgements}

This work would have been impossible without previous work with Robin Milner and Robert Harper on the semantics of Standard ML. Also, I want to thank MariaVirginia Aponte, Lars Birkedal, David MacQueen and David N. Turner for valuable discussions. Special thanks to the referees for their very detailed and constructive suggestions and comments.

This work is supported by grant number 5.21.08.03 from the Danish Research Council as part of the DART project.

\section*{Appendix: Proof of Lemma 6.14}

Let \(\left(A_{2}, B_{2}\right)=O_{2}\) and \(\left(A_{2}^{\prime}, B_{2}^{\prime}\right)=O_{2}^{\prime}\). We first prove
\[
\begin{equation*}
A_{2}^{*} \sim\left(A^{*}, \varphi_{2}^{*}\left(A_{2}\right)\right) \tag{61}
\end{equation*}
\]

We have \(\left(A^{*}, \varphi_{2}^{*} A_{2}\right) \sqsubseteq A_{2}^{*}\) by the definition of \(A^{*}\) and the fact that \(O_{2} \xrightarrow{\varphi_{2}^{*}} O_{2}^{*}\). Let us show the converse \(A_{2}^{*} \sqsubseteq\left(A^{*}, \varphi_{2}^{*} A_{2}\right)\). Since by assumption \(A_{2}^{*} \sqsubseteq \operatorname{Below}\left(A_{2}^{*}, \varphi_{2}^{*} A_{2}\right)\) it will suffice to prove
\[
\begin{equation*}
\operatorname{Below}\left(A_{2}^{*}, \varphi_{2}^{*} A_{2}\right) \sqsubseteq\left(A^{*}, \varphi_{2}^{*} A_{2}\right) \tag{62}
\end{equation*}
\]

Consider the sequence \(N_{0} \subseteq N_{1} \subseteq N_{2} \subseteq \cdots\) of name sets defined by letting \(N_{0}=\emptyset\) and, for \(i \geq 0\),
\[
\begin{aligned}
N_{i+1}=\{ & \left\{m \in \operatorname{names}\left(A_{2}\right) \mid\right. \\
& \left.\forall E \text {.if }(m, E) \text { occurs free in } A_{2}, \text { then names }(\operatorname{skel}(E)) \subseteq N_{i}\right\}
\end{aligned}
\]

Note that \(N_{k+1}=N_{k}=\operatorname{names}\left(A_{2}\right)\), for some \(k\), since \(A_{2}\) is finite and cycle-free. Thus we can prove (62) by proving by induction on \(i\) that \(\operatorname{Below}\left(A_{2}^{*}, \varphi_{2}^{*} N_{i}\right) \sqsubseteq\left(A^{*}, \varphi_{2}^{*} A_{2}\right)\). Base Case, \(i=0\). Here \(\operatorname{Below}\left(A_{2}^{*}, \emptyset\right)\) is the empty assembly which trivially is covered by (\(A^{*}, \varphi_{2}^{*} A_{2}\)).
Inductive Step, \(i>0\). Assume \(\operatorname{Below}\left(A_{2}^{*}, \varphi_{2}^{*} N_{i-1}\right) \sqsubseteq\left(A^{*}, \varphi_{2}^{*} A_{2}\right)\). We wish to prove that \(\operatorname{Below}\left(A_{2}^{*}, \varphi_{2}^{*} N_{i}\right) \sqsubseteq\left(A^{*}, \varphi_{2}^{*} A_{2}\right)\). As we already have \(\operatorname{Below}\left(A_{2}^{*}, \varphi_{2}^{*} N_{i-1}\right) \sqsubseteq\left(A^{*}, \varphi_{2}^{*} A_{2}\right)\), it will suffice to prove that for all \((m, E)\) occurring free in \(A_{2}^{*}\) with \(m \in \operatorname{below}\left(A_{2}^{*}, \varphi_{2}^{*} N_{i}\right) \backslash\) \(\operatorname{below}\left(A_{2}^{*}, \varphi_{2}^{*} N_{i-1}\right)\) that \((m, \operatorname{skel}(E)) \sqsubseteq\left(A^{*}, \varphi_{2}^{*} A_{2}\right)\). So let (\(m, E\)) be such a structure. As \(m \in \operatorname{below}\left(A_{2}^{*}, \varphi_{2}^{*} N_{i}\right)\) there exists an \(m_{i} \in N_{i} \backslash N_{i-1}\) such that \(m \in \operatorname{below}\left(A_{2}^{*}, \varphi_{2}^{*} m_{i}\right)\). There are two cases to consider:
Case \(1, m_{i} \in N_{1}^{*}\). As \(\varphi_{2}^{*}\) is fixed on \(N_{1}^{*}\), we have \(\varphi_{2}^{*} m_{i}=m_{i}\) and hence \(m \in\) \(\operatorname{below}\left(A_{2}^{*}, m_{i}\right)\). However, since \(m \notin \operatorname{below}\left(A_{2}^{*}, \varphi_{2}^{*} N_{i-1}\right)\) and \(A_{2}\) covers \(A_{2}^{*}\) on \(N_{1}^{*}\), we must have \(m=m_{i}\).
Let strid be a structure identifier in Dom \(E\). Since \(A_{2}\) covers \(A_{2}^{*}\) on \(N_{1}^{*}\) there exists an environment \(E_{1}\) such that (\(m, E_{1}\)) occurs free in \(A_{2}\) and strid \(\in \operatorname{Dom} E_{1}\). Thus \(\varphi_{2}^{*}\left(m, E_{1}\right) \sqsubseteq \varphi_{2}^{*} A_{2}\). But then \(\varphi_{2}^{*}\left(m\right.\) of \(E_{1}(\) strid \(\left.)\right)=m\) of \(E(\) strid \()\), since \(A_{2}^{*}\) is consistent. Also, \(m\) of \(\left(E_{1}(\right.\) strid \(\left.)\right) \subseteq N_{i-1}\), so \(\operatorname{skel}(E(\) strid \()) \sqsubseteq \operatorname{Below}\left(A_{2}^{*}, \varphi_{2}^{*} N_{i-1}\right) \sqsubseteq\left(A^{*}, \varphi_{2}^{*} A_{2}\right)\), by the induction hypothesis. Thus
\[
\begin{equation*}
(m, \operatorname{skel}(S E \text { of } E)) \sqsubseteq\left(A^{*}, \varphi_{2}^{*} A_{2}\right) \tag{63}
\end{equation*}
\]

Next, let funid be a functor identifier in Dom \(E\). Since \(A_{2}\) covers \(A_{2}^{*}\) on \(N_{1}^{*}\) there exists an environment \(E_{1}\) such that (\(m, E_{1}\)) occurs free in \(A_{2}\) and funid \(\in \operatorname{Dom} E_{1}\) and \(\left(m, \varphi_{2}^{*} E_{1}\right)=\varphi_{2}^{*}\left(m, E_{1}\right) \sqsubseteq \varphi_{2}^{*} A_{2}\). Thus
\[
\begin{equation*}
(m, \operatorname{skel}(F E \text { of } E)) \sqsubseteq \varphi_{2}^{*} A_{2} \tag{64}
\end{equation*}
\]

But from (63) and (64) we immediately get \((m, \operatorname{skel}(E)) \sqsubseteq\left(A^{*}, \varphi_{2}^{*} A_{2}\right)\), as required.

Case 2, \(m_{i} \in \operatorname{names}\left(A_{1}^{*}\right)\). Since \(m \in \operatorname{below}\left(A_{2}^{*}, \varphi_{2}^{*} m_{i}\right)\) we then have \((m, \operatorname{skel}(E)) \sqsubseteq A^{*}\), by the definition of \(A^{*}\). This proves (61).

But then \(A_{2}^{*} \sim\left(\varphi_{2}^{*} S_{1}^{*}, A^{*}\right)\) for the following reason. Since \(A^{*}=\operatorname{Below}\left(A_{2}^{*}, \varphi_{2}^{*} A_{1}^{*}\right)\) and \(O_{2} \xrightarrow{\varphi_{2}^{*}} O_{2}^{*}\) we have \(\varphi_{2}^{*} A_{1}^{*} \sqsubseteq A^{*}\). Thus \(\varphi_{2}^{*} A_{2}=\left(\varphi_{2}^{*} S_{1}^{*}, \varphi_{2}^{*} A_{1}^{*}\right) \sqsubseteq\left(\varphi_{2}^{*} S_{1}^{*}, A^{*}\right)\). Thus \(\left(\varphi_{2}^{*} S_{1}^{*}, A^{*}\right) \sim\left(A^{*}, \varphi_{2}^{*} A_{2}\right) \sim A_{2}^{*}\). This proves the desired \(\left(\varphi_{2}^{*} S_{1}^{*}, A^{*}\right) \sim A_{2}^{*}\).

That \(N_{1}^{*} \cap \operatorname{names}\left(A^{*}\right)=\emptyset\) is seen as follows. Assume \(N_{1}^{*} \cap \operatorname{names}\left(A^{*}\right) \neq \emptyset\), and let \(m\) be an element of \(N_{1}^{*} \cap\) names \(\left(A^{*}\right)\). Since \(m \in \operatorname{names}\left(A^{*}\right)\), there exists an \(m^{\prime} \in \operatorname{names}\left(A_{1}^{*}\right)\) such that \(m \in \operatorname{below}\left(A_{2}^{*}, \varphi_{2}^{*} m^{\prime}\right)\). Then, since \(O_{2}^{*} \xrightarrow{\psi} O_{2}^{\prime}\) we have \(\psi m \in \operatorname{below}\left(A_{2}^{\prime}, \psi\left(\varphi_{2}^{*} m^{\prime}\right)\right.\)), i.e. \(m \in \operatorname{below}\left(A_{2}^{\prime}, \psi_{1} m^{\prime}\right)\), since diagram (b) of Fig. 23 commutes and all the realizations are fixed on \(N_{1}^{*}\). Since \(m^{\prime} \notin N_{1}^{*}\) and \(\psi_{1} A_{1}^{*} \sqsubseteq A^{\prime}\) we have \(\psi_{1} m^{\prime} \in \operatorname{names}\left(A^{\prime}\right)\). Since \(A^{\prime} \unlhd A_{2}^{\prime}\) we therefore have below \(\left(A_{2}^{\prime}, \psi_{1} m^{\prime}\right) \subseteq\) names \(\left(A^{\prime}\right)\), so \(m \in \operatorname{names}\left(A^{\prime}\right)\). But \(m \in \operatorname{names}\left(A^{\prime}\right) \cap N_{1}^{*}\) contradicts the assumption \(N_{1}^{*}=\operatorname{names}\left(A_{2}^{\prime}\right) \backslash \operatorname{names}\left(A^{\prime}\right)\).

Finally, let us show that Fig. 23(c) exists and commutes. Since \(A_{1}^{*} \unlhd A_{2}\) and \(A^{*}=\operatorname{Below}\left(A_{2}^{*}, \varphi_{2}^{*} A_{1}^{*}\right)\) and \(O_{2} \xrightarrow{\varphi_{2}^{*}} O_{2}^{*}\) we have \(O_{1}^{*} \xrightarrow{\varphi_{2}^{*}} O^{*}\), by Lemma 6.2. This shows that the left-hand morphism exists. The right-hand morphism exists by assumption. But then, since (b) commutes, the bottom morphism exists and (c) commutes; the fact that \(O^{*}\) covers \(O^{\prime}\) on \(N\) of \(B\) follows from Lemma 6.9.

\section*{References}

Ait-Kaci, H. (1986) An algebraic semantics approach to the effective resolution of type equations. Theoretical Comput. Sci., 45(3): 293-351.
Aponte, M. V. (1992) Typage d'un système de modules paramétriques avec partage: une application de l'unification dans les théories équationnelles. PhD thesis, INRIA, University of Paris VII, France.
Aponte, M. V. (1993) Extending record typing to type parametric modules with sharing. In: Proc. 20th ACM Symp. on Principles of Program. Lang. (POPL), pp. 465-478.
Damas, L. and Milner, R. (1982) Principal type schemes for functional programs. In: Proc. 9th Ann. ACM Symp. on Principles of Program. Lang. (POPL), pp. 207-212.
Harper, R., Mitchell, J. and Moggi, E. (1990) Higher-order modules and the phase distinction. In: Proc. ACM Symp. on Principles of Program. Lang. (POPL), pp. 341-354.
Harper, R., Milner, R. and Tofte, M. (1987) A type discipline for program modules. In: Proc. Int. Joint Conf. on Theory and Practice of Software Development (TAPSOFT), Lecture Notes in Computer Science 250, Springer, pp. 308-319.
MacQueen, D. B. (1984) Modules for Standard ML. In: Conf. Record ACM Symp. on LISP and Functional Program., pp. 198-207.
Milner, R. (1978) A theory of type polymorphism in programming. J. Computer and System Sci., 17: 348-375.
Milner, R. and Tofte, M. (1991) Commentary on Standard ML, MIT Press.
Milner, R., Tofte, M. and Harper, R. (1990) The Definition of Standard ML, MIT Press.
Rémy, D. (1989) Typechecking records and variants in a natural extension of ML. In: Proc. 16th Ann. ACM Symp. on Principles of Program. Lang. (POPL), pp. 77-88.
Tofte, M. (1988) Operational semantics and polymorphic type inference. PhD thesis, Department of Computer Science, Edinburgh University. (Also available as Technical Report CST-52-88.)
Wand, M. (1989) Type inference for record concatenation and multiple inheritance. In: Proc. IEEE 4th Ann. Symp. on Logic in Comput. Sci. (LICS), IEEE Press, pp. 92-97.```

[^0]: ${ }^{\dagger}$ This is a revised and expanded version of a paper with the same title, presented at the 19th ACM Symposium on Principles of Programming Languages, Albuquerque, New Mexico, USA, January 1992.

