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Principal signatures for higher-order program
modules

MADS TOFTE
Department of Computer Science, University of Copenhagen, Denmark

Abstract

In this paper we present a language for programming with higher-order modules.* The
language HML is based on Standard ML in that it provides structures, signatures and
functors. In HML, functors can be declared inside structures and specified inside signatures;
this is not possible in Standard ML. We present an operational semantics for the static
semantics of HML signature expressions, with particular emphasis on the handling of sharing.
As a justification for the semantics, we prove a theorem about the existence of principal
signatures. This result is closely related to the existence of principal type schemes for functional
programming languages with polymorphism.

Capsule review

One of the more successful and innovative features of Standard ML is its approach to
modular programming. Interfaces, or signatures, describe the components of a program unit
through type declarations and sharing specifications. Implementations, or structures, provide
the actual code of a program unit, and are checked for conformance with their signatures.
Implementations are combined using functors, functions mapping structures to structures. In
Standard ML, functors are first-order; functors may not be passed as arguments or returned
as results. This restriction has proved to be limitative in practice.

Standard ML is notable for having a rigorously defined static and dynamic semantics.
The dynamic semantics defines the rules of evaluation, and is relatively standard. The static
semantics defines a set of context-sensitive conditions that well-formed programs are required
to satisfy, including the familiar typing constraints of the core language and analogous, but
more complex, constraints at the module level. A critical property of the static semantics is the
existence of principal signatures which summarize the compile-time properties of a module.
This paper is concerned with extending this property to an extension of Standard ML with
higher-order modules.

1 Introduction

Working on large programs involves manipulating large program units as well as
working on the details of individual units. Such program units are sometimes called
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modules, especially if the programming language in question allows the programmer
to name units and combine them in a controlled fashion.

Since managing large collections of program modules is a central task in practical
programming, it is not surprising that programming languages are going through
a development of more and more powerful language constructs for programming
with modules. In ADA there is a basic form of module, called a package; module
interfaces can be written in programs and are called package interfaces. Finally, a
generic package is a package which has been parameterized on a type, making it
possible to separate the implementation of the type from its use.

Standard ML has similar concepts, namely structures, signatures and functors, due
to MacQueen (1984). A structure can declare datatypes and functions that operate
on these types. A signature can specify the names of types and functions, but it does
not necessarily tie these specifications to actual datatypes and functions.

Perhaps the single most important construct in the ML Modules language is the
concept of functor, the Standard ML notion of parametric module. A functor can be
thought of as a map from structures to structures. Consider the following Standard
ML functor:

functor F(X:

sig
type t
val a:t

end

parameter signature

) =
struct

type

val
end

pair =

b:pair

X.t

= (X
* X.t

.a, X.a)

functor body

As indicated by the boxes, this functor declaration is of the general form

functor funidistrid : sigexp) (:sigexp')=strexp

Herefunid is a functor identifier, strid is a structure identifier (the formal parameter)
sigexp is a signature expression (the parameter signature) and strexp is a structure
expression, called the body of the functor. When present, sigexp' is called the result
signature. (Throughout this paper, the angle brackets () enclose optional phrases.)
The above functor F takes as argument a structure containing a type t and a value
a and produces a structure containing a type pair and a value b.

Inside the functor body, one can refer to the components of the formal parameter
— hence X. t and X. a in the above example. However, the references to the formal
parameter strid must be valid assuming only what the parameter signature reveals
about strid. Thus writing X. z in the body of F would be illegal, for X is not specified
to have a z component. More interestingly, writing (X.a)+1 in the body would be
illegal, since X. a is of type t and t has not been specified to be the type of integers.

Practical advantages of programming with functors are:

1. One can write a program piece P, without first having to decide on the
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implementation of the types and operations P depends on. P is simply made
into the body of a functor F. As P is written, types and operations that are
needed for P, but do not belong with P, are made into parameters of F.

2. A compiler can type-check F, even before the actual argument, to which F
will eventually be applied, is written. Once F is type correct, one can usually
forget about the details of the body of F and concentrate on the argument
and result signatures.

3. When F eventually is applied to an actual argument structure S, it is automat-
ically checked that S matches the parameter signature. If S does not match
the argument signature (because one has forgotten to define some function in
S, say) then an error message is produced. This eases the burden of keeping
track of what has yet to be implemented.

It is perhaps not surprising that functors turn out to be so useful, for they are
simply the modules variant of functions and it is well known that functions are
useful in programming. Indeed, in functional programming languages, one insists
that functions are values and as such can be stored in data structures, passed as
arguments to functions, returned from functions, and so on. Similar generality is
clearly in demand for parameterized modules. If one wants to write a piece of code
which uses a functor F, but has no desire to write F just yet, the natural thing would
be to write a functor G, parameterized on F:

functor G(X:sig •••functor F: ••• end) =
struct ••• X.F ••• end

Here G is an example of a higher-order functor, by which we mean a functor which
is parameterized on a functor or returns a functor as result.

However, higher-order functors are not available in Standard ML. In this paper
we present a skeletal language, HML, which is based on Standard ML, but admits
higher-order functors. HML is not the first programming language with higher-order
modules. Harper, Mitchell and Moggi (1990) propose a very elegant type-theoretic
module concept which allows higher-order modules. Unfortunately, their approach
does not address generativity, sharing and multiple structure views, all of which
are important in Standard ML. In HML we do deal with these concepts and the
resulting language is largely compatible with the first-order modules of Standard
ML.

In this paper we do not present a complete semantics for HML. Dynamic
semantics is not described at all and we omit the semantics of functor application
and signature matching from the static semantics. What is left is the static semantics
of signature expressions containing functor specifications. Such signatures are far
from trivial to deal with, however. We shall justify our particular semantics for
signature expressions by proving that if a signature expression is legal according to
the semantics, then it has a so-called principal signature, the modules equivalent of
principal type scheme (Milner, 1978; Damas and Milner, 1982).

In section 2 we give the grammar for HML and explain the language informally. In
section 3 we define the static semantics of signature expressions and specifications
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using 'natural semantics' (or 'relational semantics'). In section 4 we discuss the
connection between sharing constraints and unification. In section 5 we prove a
theorem called the realization theorem; in section 6 we prove the main result about
principal signatures using a signature inference algorithm W which is presented at
the same time. Finally, section 7 presents our conclusions.

2 A skeletal language

In this section we give an informal presentation of HML.

2.1 Grammar

We assume three disjoint, denumerably infinite identifier classes:
strid G Strld structure identifier long
sigid G Sigld signature identifier
funid G Funld functor identifier long

For each class X marked 'long' there is a class longX of long identifiers; if x ranges
over X then longx ranges over longX. The syntax of these long identifiers is given
by the following:

longx ::= x identifier
strid \.--.strid n.x qualified identifier (n > 1)

The phrase classes of HML are:

structure expression
functor expression
atomic structure-level declaration
structure-level declaration
signature expression
functor signature expression
atomic specification
specification
sharing equation
atomic program
program

For expository reasons, we present a grammar both for signatures (Fig. 1) and
for structures and functors (Fig. 2) although it is only the language of Fig. 1
that we study in detail in this paper. Since Fig. 1 does not refer to the phrase
classes defined in Fig. 2, the theorems we prove do not rely on a particular se-
mantics for the constructs of Fig. 2. We write s t ructure strid: sigexp = strexp
for s t ructure strid = strexp: sigexp. Similarly, we write

functor funid (strid: sigexp) {: sigexp'} = strexp

for

functor funid = func strid:sigexp = strexp(:sigexp')

strexp
funexp
atstrdec
strdec
sigexp
funsigexp
atspec
spec
shareq
atprogram
program

e
e
e
G
G

e
G
G
G

G
G

StrExp
FunExp
AtStrDec
StrDec
SigExp
FunSigExp
AtSpec
Spec
SharEq
AtProgram
Program
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sigexp

funsigexp

atspec

spec

shareq

sig spec end
sigid
sigexp is strid sharing shareq

(strid : sigexp,) sigexp2

structure strid: sigexp
functor funid ifunsigexp
sharing shareq
local spec\ in spec2 end

atspec {;) spec

longstridx = longstrid2

basic
signature identifier
sharing qualification

functor signature

structure
functor
sharing
local

empty
sequence

sharing equation

Fig. 1. Grammar for signatures.

strexp

funexp

atstrdec

strdec

atprogram

program

struct strdec end
longstrid
funexp {strexp)
strexp: sigexp

f unc strid : sigexp => strexp
longfunid
(funexp)

structure strid = strexp
functor funid = funexp

atstrdec (;) strdec

atstrdec
signature sigid = sigexp

atprogram ; (program)

generative
structure identifier
functor application
signature constraint

functor
functor identifier

structure
functor

empty
sequence

signature declaration

program

Fig. 2. Grammar for structures and functors.

Thus f unc is the '^-abstraction of HML'. The scope of strid is strexp (and sigexp', if
present). The func phrase form extends as far right as possible; with this convention,
the grammar is unambiguous.

In a functor signature expression (.strid: sigexp t) sigexp2 the scope of strid is
sigexp2. In examples, we take the liberty to extend the structure-level declarations
with declarations of values and types; similarly, we allow specifications of values
and types.

Example 2.1 Figure 3 shows an example of programming with first-order functors.
First a signature MONOID is declared (a). Then two monoids Int and String are
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signature MONOID = signature MPAIR =
sig sig

type t structure M: MONOID
val e: t structure N: MONOID
val plus: t * t -> t end;

(d)
end;

(a)
functor Prod(X: MPAIR):MONOID

structure Int: MONOID= struct
struct type t = X.M.t * X.N.t

type t = int val e = (X.M.e, X.N.e)
val e = 0 fun plus((xl,x2),(yl,y2))=
fun plus(x.y):int = x+y (X.M.plus(xl,yl),

end; X.N.plus(x2,y2))
(b)

end;
(e)

structure String: MONOID=
struct structure TitleAndAge =

type t = string ProdCstruct
val e = "" structure M = String
fun plus(sl,s2)=sl~s2 structure N = Int

end end);
(c) (f)

••• TitleAndAge. plus (

student, ("M.Sc.",4))
(g)

Fig. 3. Examples of modules.

declared — see (b) and (c). Note that (a) specifies t, e and plus without saying what
they are. Int and String give different implementations of MONOID; for example,
plus is addition of integers in Int but concatenation of strings in String. The
signature constraints ': MONOID' in (b) and (c) serve to check that Int and Real
really do match the MONOID signature. The next signature (d) can be matched by
any structure that has substructures M and N both of which must match MONOID.
Functor Prod (e) can create a monoid, namely the product of M and N, for every
structure X that matches MPAIR. At (f), functor Prod is applied. Notice that the actual
argument is a structure which matches MPAIR. This application yields a structure,
called TitleAndAge. The expression at (g) will graduate student by appending the
string "M.Sc." to the title and 4 years to the age. •

Example 2.2 Figure 4 illustrates the use of a higher-order functor, Square, which
is declared at (h). Here 'functor Product: (X:MPAIR)MONOID' is an example of a
functor specification. The body of Square is just the application of Product. Notice
that Square is closed, i.e. it contains no free identifiers except signature identifiers;
thus it can be compiled before functor Prod (Figure 3(e)) is written. Once Prod is
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functor Square(X: structure Plane =

sig Square(

functor Product: (X:MPAIR)MONOID struct

structure Y: MONOID functor Product = Prod

end): MONOID = structure Y= Int

X.Product( end);

struct (i)

structure M = X.Y ••• Plane.plus((1,3) , (2,5))

structure N = X.Y (j)
end);

(h)

Fig. 4. Use of higher-order functor.

structure A =
struct

structure B = struct end
functor F(X: sig end)= struct structure C = X end
structure D = struct end

end;

signature SIG =
sig

structure B: sig end
functor F: (X: MONOID) sig end

end;

structure A':SIG = A;

Fig. 5. A signature constraint can lead to multiple views of a structure.

declared, we can apply Square to a structure containing Prod, see (i). This gives a
monoid, Plane, of integer pairs. At (j), we see a use of the Plane structure. D

The reader will have noticed that it is sometimes a bit cumbersome to wrap up
functor arguments in structures. In examples, we shall occationally use the following
alternative phrase forms:

strexp ::= funexp(strdec)
atstrdec ::= functor funid(spec){:sigexp')= strexp

funsigexp ::= (spec) sigexp

2.2 Multiple views of structures

In matching a structure S against a signature E, the structure must have at least
the components specified by S. Moreover, the functor components of S must be
at least as general as specified. Consider the declarations in Fig. 5. Here A has the
components required by SIG plus an additional D structure. The declared functor F
requires no more of its argument than the specified functor F and it produces at
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sig sig
structure M: MONOID structure M: MONOID
structure N: MONOID structure N: MONOID
sharing type M.t = N.t sharing M = N

end end
(a) (b)

Fig. 6. Sharing specifications.

least as much as the specified F — note the contravariance in the argument position.
Thus A matches SIG.

The structure A' has only the components specified by SIG. Moreover, the functor
A' .F is treated as having the functor signature specified in SIG. Thus it can only be
applied to structures that match the specified parameter signature (i.e. MONOID) and
the result of applying A' . F will be constrained by the specified result signature.

In the example, A and A' can be thought of as different views of the same original
structure. In particular, A.F and A' .F are 'really' the same functor, just seen through
two different views. Similarly, if A had been able to declare a datatype or a value
which was also specified in SIG then A' would contain that same datatype or value,
although perhaps with a different view.

The Standard ML modules system makes it possible to determine statically
whether two structures are (perhaps different) views of the same original structure.
The basic rule is that an occurrence of a generative structure expression (i.e. an
expression of the form s t r u c t strdec end) generates one fresh structure, provided
the occurrence is not inside a functor body; otherwise, the occurrence generates a
fresh structure each time the closest enclosing functor is called. As an example, the
total number of structures generated by Fig. 3 is 4; if the declarations in Fig. 4 are
subsequently executed, an additional three structures are generated.

2.3 Sharing

A structure specification specifies a view of a structure, as opposed to a particular
structure. It is sometimes necessary to specify that two specified structures must
be (perhaps different) views of the same structure. This is particularly true of
structure specifications in parameter signatures. For example, consider the following
declaration:

functor F(X: s ig s t r u c t u r e H: MONOID; s t r u c t u r e N: MONOID end) =
s t r u c t •••X.M.plus(X.M.e.X.N.e) ••• end

This functor is illegal, for good reasons. X.M.e and X.N.e have types X.M.t and
X.N.t, respectively, so the p lus operation does not make sense unless we have
X.M.t = X.N.t. Since the body of the functor must be valid assuming only what
the parameter signature specifies, we need to specify that the two types must be
two views of the same (unknown) type. In ML, this is done with a type sharing
specification. For example, one could replace the parameter signature above with the
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structure A = struct end; functor F:(X: sig end)
signature SIG = sig
sig structure Y: sig end

structure Al: sig end sharing Y = X
sharing Al = A end

end
(a) (b)

Fig. 7. Sharing: (a) with declared structure and (b) between argument and result in a functor
specification.

signature expression in Fig. 6(a). One can also specify sharing of entire structures,
see Fig. 6(b). A specification that two structures Si and S2 share implicitly is a
specification that identically named structures and types visible in both structures
share as well. For example, every structure which matches Fig. 6(b) also matches
Fig. 6(a), but the converse is not true.

In HML we do not have type sharing (as we do not have types). However, besides
the structure sharing form, HML makes it possible to qualify every signature
expression by a sharing equation. For example, the signature in Fig. 6(b) can be
written thus:

MPAIR is Y sharing Y.M = Y.N

in the scope of the declaration of MPAIR in Fig. 3. For all signature expressions of the
form sigexp i s strid sharing shareq the scope of the structure identifier strid
is just the sharing equation shareq. Since this language construct serves to qualify a
signature expression by a sharing equation, we call it a sharing qualification.

A structure identifier mentioned in a sharing equation must be in scope at the
place the sharing equation occurs. Figure 6(b) specifies sharing between two specified
structures. Figure 7(a) specifies sharing with a declared structure. Figure 7(b) specifies
sharing between the argument and the result of a functor. As a final example, here
is the 'identity' functor and, below it, the most accurate specification of it:

functor Id(X: sig end) = X

functor Id:(X: sig end) sig end is Y sharing Y=X

This functor can be applied to any structure S and returns a structure which shares
with S but has no visible components! There is no way of declaring or specifying a
functor which can be applied to all structures and returns its argument unchanged.

2.4 Local and overlapping specifications

Like Standard ML, HML has local specifications. Local specifications can be used
to express fairly advanced sharing constraints. One of the referees provided the
following nice example:

functor H(
local structure A: sig end
in functor F: () sig structure B: sig end sharing B = A end
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end;
functor G:(structure X: sig end

structure Y: sig end
sharing X=Y)sig end

) : sig structure Z: sig end end =
struct

structure XI = F()
structure Yl = F()
structure Z = GCstructure X=X1.B; structure Y=Y1.B)

end;

Here local makes it possible to specify sharing between the results of different
applications of F. Thus the application of G is valid and would not be valid if the
sharing specification in the specification of F were removed. Without the local
specification, there seems to be no way of achieving this effect without making A a
parameter of H.

The present semantics for signature expressions admits local specifications. It even
allows overlapping sequential specifications, by which we mean specifications of the
form atspec(;)spec, where some structure- or functor-identifier is specified by both
atspec and spec.

There are reasons why one might want to restrict the use of local and overlapping
specifications in full HML. In particular, the concept of matching a structure against
a signature appears to become considerably more complex, if signatures like the
parameter signature of H are allowed. Local and overlapping specifications also
complicate the semantics of signatures somewhat but, as we shall see, principal
signatures can be inferred even so.

3 A static semantics of HML signatures

In this section we present a relational semantics for signature expressions. We define
principality and state the principality theorem.

3.1 Notation

When A and B are sets F'm(A) denotes the set of finite subsets of A, and A —> B
denotes the set of Unite maps (partial functions with finite domain) from A to B.
The domain and range of a finite map, / , are denoted Dom(/) and Ran(/). A finite
map will often be written explicitly in the form {a\ *-* b\,---,ak >-* bk), fc > 0; in
particular the empty map is {}. When / and g are finite maps the map / + g, called
/ modified by g, is the finite map with domain Dom(/) U Dom(g) and values

(/ + g)(fl) = if fl € Dom(g) then g(a) else f(a)

The restriction of / to A is written / J, A. When A and B are sets A W B denotes the
disjoint union of A and B. The above definitions are largely taken directly from the
Definition of Standard ML (Milner et al, 1990).
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m
N

G

FE

SE
S or (m,E)

E or(FE,SE)
I or (N)S

(N)(S,(N')S')
B or N,G,E

A

G
G

G

G

G
G
G
G
G
G
G

StrName
NameSet = Fin(StrName)
SigEnv = Sigld ^ Sig
FunEnv = Funld —> FunSig

StrEnv = Strld 5- Str
Str = StrName x Env
Env = FunEnv x StrEnv
Sig = NameSet x Str
FunSig = NameSet x (Str x Sig)
Basis = NameSet x SigEnv x Env
Asmb = EmptyAsmb W (Str x Asmb)

structure name
name set
signature environment
functor environment

structure environment
structure
environment
signature
functor signature
basis
assembly

EmptyAsmb = {e}

Fig. 8. Semantic objects.

3.2 Assemblies and structures

The term elaboration is used for that part of execution which pertains to the static
semantics. The statement that some phrase phrase elaborates to a result D, starting
from C, will be written C h phrase => D. Here C and D are so-called semantic
objects. The semantic objects for HML are defined by the set equations in Fig. 8.
We use (9 to range over semantic objects. To explain the meaning of the semantic
objects, in broard terms at least, let us start by considering the elaboration of
structure expressions. The statement

A,B\-strexp =>S, A' (1)

is read: in assembly A and basis B the structure expression strexp elaborates to
structure S and a (perhaps expanded) assembly A'. The basis, B, is used for looking
up the meaning of the free identifiers of strexp — see Fig. 8. The structure S can
be thought of as the static value of strexp. The assembly, A, is essentially a list
[Si,..., Sn] of structures — see Fig. 8. It acts as a static structure store. When a new
structure is created, it is put into the assembly. It is possible to have restricted views
of structures after they have originally been created and such restricted views can
exist in places where the original structure is not in scope. In signature expressions
sharing specifications can even specify different views of some purely hypothetical
structure. The technical purpose of the assembly is to serve as a common frame of
reference for different restricted views of the same structure.

We assume a denumerably infinite set StrName of structure names. We use m to
range over structure names and N to range over finite sets of names. A structure
name can be thought of as a unique name (or stamp) of the structure in question;
name binding by nameset prefixes is used for delimiting the scope of uniqueness, as
detailed below. A structure S is a pair (m, E), where E is an environment and m is
the name ofS. Two structures S\ = (m\,E\) and S2 = (m2,E2) share if they have the
same name, i.e. if mi = m?..

An environment is a pair E = (FE,SE), where FE is a functor environment and SE
is a structure environment. FE maps functor identifiers to functor signatures while
SE maps structure identifiers to structures.
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names((m,£)) = {m}Unames(£)

names ((F£,S£)) = names(FE) U names(S£)

names(G) = u{names(G(sigi'd)) | sigid e Dom(G)}
names(F£) = u{names(FE(funid)) \ funid e Dom(i\E)}

names(S£) = L){names(SE(strid)) \ strid e Dom(S£)}

names ((N)S) = names(S)\iV

names((Af)(S,(JV')S')) = (names(S) Unames((JV')S')) \N

names((N,G,£)) = N U names(G) U names(£)
names(A) = u{names(S) | S is an element of the list A}

Fig. 9. Names that occur free in objects.

We often need to select parts of semantic objects — for example the name of
a structure. In such cases we rely on variable names to indicate which part is
selected. For instance 'm of S' means 'the structure name of S'. Moreover, when a
semantic object contains a finite map we shall 'apply' the object to an argument,
relying on the syntactic class of the argument to determine the relevant function. For
instance S(strid) means (SE of (£ of S))(strid). Furthermore, we use id to range over
StrldUFunld and we write id e Dom(E) to mean 'id e Strid and id € Dom(SEofE)
or id e Funid and id e Dom(FE of £)'.

Modification extends to environments: £ + E' = {FE of E + FE of £', SE of £ +
SE of £'). Furthermore, it extends to bases, if we interpret + on name sets as set
union. Hence (N, G,E) + Nx = (N l)NuG,E).

We shall often tacitly regard structure environments (or functor environments)
as environments. An empty structure will often be written (m, {}), which means
(m, ({},{})).

A nameset prefix (N) in a signature or a functor signature binds names. In a
signature (N)S, the scope of the binding of the names in N is S. In a functor
signature (N)(S,(N')S'), the scope of (N) is {S,{N')S') (and the scope of [N') is 5').
Signatures and functor signatures will be explained in sections 3.3 and section 3.6,
respectively.

Nameset prefixes give rise to the notions of free and bound occurrences of names,
in the usual way. For any semantic object &, the set of names that occur free in 6,
written names(0), is defined by the equations in Fig. 9. Semantic objects that can be
obtained from each other by renaming of bound names are considered equal.

The proper substructures of S = (m, (FE, SE)) are the members of the range of
SE and their proper substructures. The substructures of S are S itself and its proper
substructures.

For any semantic object (S the semantic objects occurring inside & are the objects
from which it is built, according to Fig. 8, and all the objects that occur inside
them. The objects occurring in Q are 0 and all the objects that occur inside 0. For
instance, the structure S' occurs in the signature (N')S', which in turn occurs in the
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functor signature (N)(S, (N')S'). Notice that not every structure which occurs in a
structure S is necessarily a substructure of S. For example, Si and S2 occur in the
structure S = (m,({/ H-> (NI)(SI,(JV2)S2)}, {})), and so do all the structures that occur
in Si and S2, even though S has no proper substructures.

A structure (m, E) occurs free in A if (m, £) occurs in A at a position where the m
is free in A.

Sharing is hereditary from structures to substructures. Formally, we define:

Definition 1 (Consistency)
A semantic object (9 is said to be consistent if (after changing bound names to make
all nameset prefixes in (9 disjoint) for all Si and S2 occurring in & and for every strid, if
mof Si = wof S2 and Si(strid) and S2(strid) exist, then mof Si{strid) = mo(S2(strid).

Notice that consistency does not impose a constraint on common functor com-
ponents of Si and S2. Thus the two structures A and A' of Fig. 5 are consistent.
Consistency applies to specified structures as well as declared structures. Thus the
following signature expression is legal:

sig
structure Al: sig functor F: (X: sig end)sig end end

structure A2: sig functor F: (X: sig structure B: sig end end)

sig structure B: sig end end

end

sharing Al = A2

end

Any real functor F which matches both the above specifications will have to be
applicable to any structure and will then have to produce a structure with a B
substructure. However, no attempt is made to synthesize this information from the
two specifications.

It is sometimes helpful to think of an assembly A as a directed edge- and
node-labelled graph. There is one node in the graph for every structure name
m e names(v4); in addition, there is a special node labelled functor. Furthermore,
whenever (m,E) = (m,(FE,SE)) occurs free in A and {m',E') = SE(strid), for some
strid, there is precisely one edge labelled strid going from the node labelled m to the
node labelled m'. Also, for all funid in the domain of FE, there is an edge labelled
funid from the node labelled m to the node labelled functor. Informally, we refer
to this graph as Graph(/4).

The reason why there are no edges emanating from the functor node is that the
assembly is used as a consistent frame of reference concerning sharing, but there is
no way of specifying sharing of functors.

Corresponding to the notion of a graph being a subgraph of another, we have
the following definition:

Definition 2 (Cover)
Let Q\ and O2 be semantic objects and N a name set. We say that &2 covers (S\ on
N if N n names(d?i) £ names(<!?2) and also for all {tn,E\) and for all id G Dom£i if
(w, £1) occurs free in (9\ and m e N, then there exists an £2 such that (m, £2) occurs
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structure A =
struct

structure B= struct end
structure C= struct end

end;

signature SIG =
sig

structure B: sig end
end;
structure A':SIG = A;

Fig. 10. A simple example of coercive signature matching.

• ml

m2 • m3

m2 •'

(c)

(b)

• ml

(d)

Fig. 11. The structure A of Fig. 10 elaborates to (a), pictured at (b), whereas A' elaborates to
(c), pictured at (d).

free in @2 and id € DomJE -̂ We say that (Si covers G)\ if 62 covers Q\ on names($i).
We say that &2 is a conservative cover of &\ if 62 covers &\ and <9\ covers &2 on
names(Ci).

To take an example, if A, B h strexp => S,A' and A covers B then A' covers A and
S. Moverover, A' will be a conservative cover of A, for once a structure is generated,
there is no way of adding components to it.

It is also useful to think of structures as edge- and node-labelled trees. For
example, consider the declarations in Fig. 10. The structures they elaborate to are
shown in Fig. 11. Note that trees can be labelled by the same structure name and
yet have a different 'shape'.

Another approach, due to Aponte (1992; 1993), is to represent a cut-down view
by decorating some of the components of the original as inaccessible, as indicated
by the dashed line in Fig. 12(b).

The technique used in the present paper (using an assembly and requiring consis-
tency and cover) and the technique used by Aponte (including invisble components
in structures) both serve to ensure that consistency is preserved during elaboration.

m2 •' 1 m3 m2

(a)

1 ml

(b)

• m3

Fig. 12. Different views of structures can be represented as trees that have the same shape
but differ in what components they make visible.
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In the former case, a 'global' data structure is used; in the latter case, local infor-
mation in structures is used, together with the invariant that if two structures share,
then they must have the same shape.

5.5 Signatures

Elaboration of a signature expression takes the following form:

A,B\-sigexp=>l. (2)

where A is an assembly, B is a basis and £ is a signature, the static value of sigexp.
Note that the elaboration does not produce an assembly. This is because signature
expressions and specifications have no way of generating new structures. On the
contrary, Z is a 'generic' (or flexible) structure which perhaps can be matched
by many 'real' (or rigid) structures. Harper, Milner and Tofte (1987) make this
distinction by defining a signature £ to be an object of the form (N)S where S is a
structure and (N) is a nameset prefix. Whenever an actual structure, S', is matched
against {N)S, one can instantiate the bound names to corresponding names in 5'. A
signature (N)S is closed, if it contains no free names. An HML signature expression
elaborates to a closed signature, unless it specifies sharing with a structure which is
declared or specified outside the signature expression.

In ModL (Harper et al., 1987), the first-order version of HML, there is a close
correspondance between the type discipline for modules and Milner's type discipline
for functional languages (Milner, 1987), namely:

Modules Language Functional Language

structure, S type, T
signature, £ = (N)S type scheme, a = Vai---an.r

However, HML structures can contain functor signatures, which in turn contain
signatures, so there is nested quantification in HML signatures. The algorithm in
section 6 finds principal signatures for all legal signature expressions even so.

To have an easy way of distinguishing the substructures of a structure from the
other structures that can occur in it, we define a function 'skel' (for skeleton) as
follows:

skel(m,£) = (m,skel(E))

ske\(FE,SE) = (skel^) , skel(SE))

skel({stridi >-> S\,...,stridk i—* S / J ) = {stridi *-* s k e l ( S i ) , . . . ,

stridk >-* skel(Sfc)}

skel({funid, i—> O j , . . . ,funidk >-» $>k}) = {funid{>-> fl)0)... ,funidk *

where <t>o is a arbitrary closed functor signature.

Definition 3 (Well-formedness)
A semantic object (9 is well-formed if
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1. all semantic objects occurring inside & are well-formed;
2. if & is signature (N)S then N £ names(S), and also, whenever (m, £) occurs

free in S and m £ N, then N n names(skel(£)) = 0;
3. if & is a functor signature (N)(S, (N')S') then (N)S is well-formed and also,

whenever (m', £') occurs free in S' and m'^lVU N',
then AT n names(skel(£')) = 0;

The reader might wonder whether the condition N n names(skel(£)) = 0 in item
(2) of the above definition is equivalent to the simpler ATnnames(£) = 0. The chosen
definition admits strictly more signature expressions than the simpler one. For an
example, consider the declarations

structure A = struct functor f(X: sig end) = struct end end
signature Sig =

sig
local structure B: sig end
in functor f(X: sig end is B' sharing B' = B) sig end
end

end is A' sharing A' = A

Here Sig denotes the signature

) (mi, jf -» (0) ( W {}), (W)(m3, (})

where mi is the name of A. This signature is well-formed according to the chosen
definition, but not according to the simplified one. Note that consistency does not
force the functor components of A' and A to have the same functor signatures. It
appears that if local and overlapping specifications were omitted from the language,
the simpler definition could be chosen without affecting the class of legal signature
expressions. In the presence of local and overlapping specifications and the liberal
notion of consistency of functor components, we need to admit the above signature
as a well-formed signature, in order for the principality theorem to hold.

As a general principle, we wish to rule out elaborations of the form A,B \-
sigexp => £ where X is unmatchable. Such signature expressions are useless. Indeed,
they are obstructive to practical programming, when used as parameter signatures in
functors. Thus a signature expression will be illegal if it specifies sharing between rigid

structure A = struct end; structure A = struct end;
structure B = struct end; signature BADSIG2 =
signature BADSIG1 = sig
sig structure A' :

sharing A = B sig structure B: sig end end
end; sharing A' = A

end;
(a) (b)

Fig. 13. The two signatures above are illegal. In the case of (a), there is an attempt to
identify to different rigid structures; in the case of (b), there is an attempt to specify a

non-existent component of a rigid structure.
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sig
structure PI: sig structure Q: sig end end
structure P2: sig end
structure P3: sig structure Q: sig end end
sharing P1=P2 sharing P2=P3

end
Fig. 14. Consistency and cover together ensure that sharing equations become transitive.

Hence the above signature expression implicitly specifies sharing between PI. Q and P3. Q .

sig

structure P: sig structure Q: sig end end

sharing P.Q=P

end

Fig. 15. Cyclic structures cannot be declared and are therefore also banned in signatures.

structures that are manifestly different, see Fig. 13(a) for an example. Furthermore,
a signature expression will be illegal if it postulates the existence of components that
are manifestly nonexistent, see Fig. 13 (b) for an example.

More ambitiously, we wish to ensure that an elaboration A,B \r sigexp => (N)S
is possible only if the entire elaboration tree which has A,B \- sigexp => (N)S as
its conclusion does not involve such bad sharing specifications. We achieve this by
arranging that every elaboration tree which proves A, B \- sigexp =*• (N)S is of the
form

A', B h sigexp => S
I

A, B\- sigexp =>(N)S

where N n names(,4, B) = 0 and A' is a consistent assembly which covers A, S and
all free structures above the node A', B \- sigexp => S. If sigexp has no local or
overlapping sequential specifications, then simply taking A' = (S,A) will do.

Example 3.1 Let sigexp be the signature expression in Fig. 14. Let A be the empty
assembly and B the empty basis. To obtain A1, B h sigexp => S with A' consistent, we
must make sure not just that PI, P2 and P3 have the same name, but also that PI. Q
and P3.Q have the same name, even though we have not explicity stated sharing
between PI and P3. Consistency, as we have defined it, is not a transitive relation.
But consistency combined with cover makes sharing equations transitive. •

As in Standard ML, we shall also ban cyclic specifications, like the one in Fig. 15,
for such a specification cannot be matched by any real structure.

Definition 4 (Cycle-freedom)
A semantic object & is cycle-free if (after changing bound names to make all nameset
prefixes in (9 disjoint) it contains no cycle of structure names; that is, there is no
sequence mo, •••,mk-i,mk = mo, (k > 0), of structure names such that, for each
i (0 < i < k) some structure with name m, occurring in (9 has a proper substructure
with name mi+\.
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The definitions of well-formedness, cycle-freedom and consistency easily extend
to pairs of semantic objects. The conjunction of these three concepts is called
admissibility:

Definition 5 (Admissibility)
A semantic object (typically an assembly) A is admissible if it is consistent, cycle-free
and well-formed. We say that Ai is an admissible cover of A\, written A\ Q A2, if
the pair (A\,A2) is admissible and Ai covers A\. We say that A2 is a conservative
admissible cover of A\, written A\ < Ai, if the pair (A\,Ai) is admissible and Ai is
a conservative cover of A\. We say that A and A' are equivalent, written A\ ~ A2, if
A\ Q A2 and A2 Q A\.

Both C and < are preorders. Note that A< A' implies A Q A'.
When A is an admissible assembly then the definition of Graph(^) makes sense:

the well-formedness of A ensures that whenever m is a node in the graph (i.e.
m G names(/l)) and (m,E) = (m,(FE,SE)) occurs free in A and {m',E') = SE(strid),
for some strid, then m' is free in A and therefore a node in the graph. Moreover,
Graph(/1) is a directed acyclic graph satisfying that whenever

are both in the graph then m' = m".

3.4 Realization

The approach to signature elaboration which we outlined above is not particularly
operational, as one has to 'guess' a good conservative cover A' of A when sigexp is
to be elaborated in A. However, as we shall see later, an algorithm can gradually
build up an assembly during a syntax-directed traversal of the signature expression.
The algorihm must be able to add components to flexible (i.e. specified) structures,
although it must not add components to rigid (e.g. declared) structures.

When the algorithm meets a sharing equation, it invokes a unification algorithm
on the current assembly and tries to identify the names of the structures that are
specified to share. This may recursively involve identification of names of common
substructures. The unification either fails (by which is meant that it aborts with a
special message fail) or it produces a substitution from structure names to structure
names.

We shall express the distinction between rigid and flexible structures by keeping
the names of all the structures that are considered rigid in a special place in the
basis: a structure name m is rigid in B, if m e N of B.

The substitutions produced by structure unification are referred to as realizations
(Harper et al, 1987; Tofte, 1988; Milner et al., 1990):

Definition 6 (Realization)
Let <p be a map q> : StrName —> StrName. The support of q>, written Supp(<p), is the
set of names m such that (p(m) ^ m. The map <p is a realization if Supp(<p) is finite.
The yield of q>, written Yield(<p), is the set {(p{m) \ m S Supp((p)}.

https://doi.org/10.1017/S0956796800001088 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001088


Principal signatures for higher-order program modules 303

Realizations cp are extended to apply to all semantic objects; their effect is to
replace each free name n by cp(n). In applying q> to an object with bound names,
such as a signature (N)S, first bound names must be changed to avoid name capture.
Application is extended to name sets N as follows: (p{N) = {cp{n) \ n e N}. We often
omit parentheses from applications: cpA means cp(A). A realization q> is fixed on N
if <p{n) = n, for all n e N.

In polymorphic type disciplines one usually has a substitution lemma along the
lines: for all substitutions S, if A \- e : i then S(A) \- e : S(T). One reason why such
a lemma is important is that it is precisely by applying a substitution to a typing
statement A \- e : T that the textual context of e can influence the typing of e. Let us
try to use the same idea on elaboration statements A,B\- sigexp => S. Here the idea
would be that applying a realization q> to this statement should correspond to letting
sharing equations in the textual context of sigexp influence the typing of sigexp. Just
applying a realization to A and B can certainly identify names, but we also need
to be able to 'add' components to flexible structures in A; the latter operation is
less trivial to model by substitution, as is known from work on polymorphic record
typing (Wand, 1989; Rimy, 1989). It is possible to use a record type discipline to
express the widening of structures (Aponte, 1992, 1993). We have chosen a different
approach, namely to consider <p to be a relation between semantic objects, expressed
in terms of (very elementary) category theory.

Definition 7 (The category K)
K is the category defined as follows. An object 0 of K is a pair (A, B) e Asmb x Basis
satisfying A ~D B. The set of objects of K is denoted Obj. For all objects O\ =
(Ai,Bi) = (Au(Ni,Gi,Ei)) and O2 = {A2,B2), and for every realization cp, there is a
morphism O\ -2-> O2 if q> is fixed on Ni, cp(Bi) = B2, cp(Ai) C. A2 and A\ covers A2

on JVi.

The condition 'A\ covers A2 on iVY prevents realization from adding components
to any structure, whose name is rigid in B\ — a sensible condition since a rigid
structure cannot be extended with more structures, once generated. Notice that
Oi-£+O2 implies <p{B\) = (p(NuGi,Ei) = (NU(pGi,(pEi) = B2. Thus, even though
0i -2-+02 can 'widen' structures in A i, it does not affect the shape of structures in
B\ — once structures get into the basis, they do not change shape.

It is convenient not to require Supp(<p) s names(O) in the above definition.
Morphisms Oi -£+ O2 and O\ - ^ O2 between O\ and O2 are equal if cp(n) = (p'(n),
for all n € names O\. Notice that this is weaker than demanding q> = q>'. Composition
in K is the natural extension of composition of realizations. Thus, that a diagram
of the form

commutes does not imply q> = \p o <p*, but it does imply that the restrictions of these
two maps to the set names(O) are equal.
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3.5 Principal signatures

The inference rules define what elaborations are possible, without saying how one
decides whether a given signature expression elaborates. The advantage of using
such 'liberal' inference rules is that one can give rules for sharing without having
to spell out unification or rules for applying realizations. This is similar to the
situation in Milner's polymorphic type discipline, where liberal inference rules are
used without reference to any particular unification procedure.

In both disciplines the question arises, whether one can elaborate phrases to a
'best' (or 'principal') result. In the Damas-Milner type discipline (Damas and Milner,
1982) it is the case that every expression elaborates to a principal type scheme, if it
elaborates at all. Similarly, for first-order ML modules, a signature elaborates to a
principal signature, if it elaborates at all (Tofte, 1988; Milner and Tofte, 1991).

The existence of principal signatures is more than just evidence of a certain
technical coherence in the semantics; it is also essential for the practical use of the
modules system. Assume that sigexp is the parameter signature of some functor
F and that sigexp elaborates to a principal signature Z = {N)S. From Z there
is a simple way of achieving a structure which has precisely the sharing and the
components that every structure which matches sigexp must have — in other words,
from Z one can get a 'template' structure which can be used as a prototype of all
structures that match sigexp. Indeed, in the first order language, S is precisely such a
structure (provided Z = (N)S is principal for sigexp and the name set N is suitably
'new'). It is therefore possible to elaborate the body of F under the assumption that
the formal parameter of F is bound to S. If there were no principal signature, but
perhaps five good candidates for S, which one should be used inside the body of F?
The ability to elaborate functor declarations (without knowing the identity of the
structures it will later be applied to) is crucial to the practical use of the modules
system (see the Introduction). Thus it is worth the effort to design the language in
such a way that one can prove that principal signatures exist.

We shall now define the notion of principal signature formally. First, let us say
that a structure S' is an instance of a signature Z = (N)S, written Z > S', if there
exists a realization q> such that Supp(<p) £ N and <p(S) = S'.

Definition 8 (Principal signature)
We say that a signature Z is principal for sigexp in 0 = {A,B) if 0 G Obj and,
writing Z in the form (N)S where N n names(^) = 0,

1. There exists an A' such that A< A' and A',B h sigexp => S
2. For all 0', <p and S', if 0 -^* 0' and 0' h sigexp => S' then <p(E) > S'

Item 1 of this definition should be fairly natural on the background of the
discussion in the previous sections. To understand item 2, consider the special case
where q> is the identity map Id. Then the condition is that if (A,B) G Obj and
(A1, B) G Obj and A C A' and A covers A' on the JV-set of B and A', B h sigexp => S'
then Z > S'. In other words, even if the context should later widen flexible structures
in A, Z would still be general enough that all possible results of the elaboration
in the widened assembly could be obtained by instantiation of Z. This may seem
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surprising at first, since sigexp can specify sharing with some of the flexible structures
in the basis. However, recall that structures are only being widened in the assembly,
not in the basis; the free structures of a principal signature all stem from the basis,
so they will not have been widened.

Now item (2) merely says that principality is preserved not just under widening
of flexible structures in the assembly, but also under full realization, as defined in
the category K.

One might ask whether the condition A < A' in item 1 could be A C A' instead.
Here the answer is that the latter would be too weak. We want to ensure that A covers
not just £ but also structures that occur (free) in the proof of A,B h sigexp => I
and share with structures in A. (Recall that in general, when local and overlapping
sequential specifications are allowed, not all such structures need be visible in £.)

We can now state the principality theorem:

Theorem 3.1 (Principal signatures)
Let B be a basis, A an assembly, let A 3 B, A < A' and A', B (- sigexp => S, for some
S. Then there exists a principal signature for sigexp in A,B.

3.6 Functor signatures

A functor specification

functor funid : (strid: sigexp [) sigexp2 (3)

specifies a functor which it must be possible to apply to any structure which matches
sigexp j ; moreover, the functor must satisfy that the result of the application matches
sigexp2. It is possible to specify sharing between argument and result. It is also
possible to specify sharing with structures specified or declared outside the functor
specification. If legal, the specification (3) elaborates to a functor environment of
the form {funid H-> $} where O is a functor signature (Ni)(Su(N2)S2). Here (Ni)S\
is the principal signature for sigexp l; no other signature for sigexp y is of interest,
for (JVi)Si accurately captures what every structure must satisfy in order to match
sigexp j . Moreover, (N2)S2 is the principal signature for sigexp2 in a basis in which
strid has been bound to Si. Since there may be sharing between argument and result,
the scope of (Ni) is both Si and (N2)S2. Because (N2)S2 is required to be principal,
only those names that have been specified to share with the formal parameter strid
(or with external structures) will be free in (N2)S2.

Example 3.2 Consider the (legal) specification of F in Fig. 16(b). Let S = (m, {Q *-*
(m1, {})}), let B = (0, {}, {P >-* S}) and let A be just S. The functor signature expression
for F elaborates to the following functor signature in A,B: (0)((m, (}),(0)S). If the
sharing qualifications were dropped, it would elaborate to the functor signature

It is important that funid can be applied to any structure which matches sigexpt.
Therefore, we cannot allow sigexp2 to widen a structure whose name is in N{ — see
Fig. 16(a) for an example. On the other hand, sigexp2 can contribute components
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sig sig
functor F: structure P: sig end

(X: sig end) functor F:
sig structure Y:sig end (X: sig end is X' sharing X' = P)
end is X' sharing X'=X sig

end structure Q: sig end
end is R sharing R=X

end
(a) (b)

Fig. 16. Sharing between argument and result in a functor specification cannot contribute
components to a structure whose name is quantified in Si, the principal signature for the

argument signature expression. Hence (a) is illegal. However, sharing can expand the
assembly with new components of structures that are free in Si, so (b) is legal.

to flexible structures in the assembly in which it is elaborated — see Fig. 16(b) for
an example. This is manifest in the inference rule:

A, B h sigexpi => (N\)Si Ni n names A = 0
(SUA),B + Ni + {strid i-> Si} h sigexp2 => S2

A,B \- (strid:sigexpl)sigexp2

Note that we extend the assembly with Si. Since (Si, A) has to cover the elaboration
of sigexp2, any Ni -bound structure postuated to exist by sigexp2 must really be in Si.
In other words, the argument signature specification must specify all the Ni -bound
structures that sigexp2 refers to. Also, since we add the set Ni to the rigid names
of B, realization on (A,B) cannot add components of Ni-bound structures to the
assembly.

3.7 Inference rules

The inference rules appear below. All the conclusions of the rules are of the form

A, B t> phrase => P

Here phrase is a specification, signature expression, functor signature expression or
a sharing equation.

In the premises of the rules, 'A,B \- phrase => P' abbreviates 'A 3 (B,P) and
A, B > phrase => P'; for example, rule 4 in its expanded form is

A~3(B,E) A,B>spec^>E
A, B > sig spec end => (m, E)

We say that phrase elaborates to P in (A, B), written A,B\- phrase => P, if A 3 (B, P)
and there is an inference tree which satisfies all the side-conditions on the rules and
has A, B > phrase => P as its conclusion.

There is one rule for each production in Fig. 1, plus rule 7, which concerns
principal signatures. A sample elaboration is shown after the inference rules.
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Signature expressions

A, B Y- spec => E

A,B> s i g spec end => (m, £)

Bjsigid) > S
A,B>sigid => S

A, B Y- sigexp => S A, B + {strid <—> S} Y- shareq => {}

307

A, B > sigexp => S

, B > sigexp i s sm'd shar ing shareq => S

(4)

(5)

(6)

, B > sigexp

principal for sigexp in A,

, J3 > sigexp
(7)

Functor signature expressions A, B >funsigexp

A, BY- sigexp, => (JV)S iV n names ^ = 0
(S,A),B + N + {strid H-> S} h sigexp2 => Z

(strid:sigexp\)sigexp2 => (N)(S,Z)
(8)

Atomic specifications A, B > atspec => E

A

A,

A..

A,BY- sigexp => S
, B > s t r u c t u r e strid: sigexp =>

A,B Y- funsigexp => <D
B > functor funid:funsigexp =>

A, BY- shareq => {}
i4, B > shar ing shareq =>

, B 1- spec{ => £i /I, B + £i h

{strid -> S}

{/wm'd i->- <I)}

•{}

S pec 2 =>£ 2

, B> l o c a l spec! in spec2 end

(9)

(10)

(11)

(12)

Specifications

A, BY- atspec, => £i /I, B + £ t h spec2 => £2
i4, B > atspec, (;) spec2 => £1 + £ 2

A,B> spec => £

(13)

(14)
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structure P =
struct

structure Q = struct end
end;

signature SIG =
sig<3>

structure P' : sig end
functor F: (X:

sig<4>
structure P ' ' :

sig
structure Q: sig end

end
sharing P " =P'

end(4)) : sig end
sharing P' = P

end<3>;

Fig. 17. Embedded functor signature.

Sharing equations A,B > shareq => {}

m of B(longstridx) = m of B(longstrid2)
A, B > longstrid x = longstrid2 => {}

(15)

Rules 7 and 8 have already been explained. In rule 4 we can freely choose m so as to
satisfy the side-condition on rule 15. Similarly, rule 5 allows us to take any instance
of the signature B(sigid).

In rule 7, the side-condition that E be principal for sigexp in A,B implies that
there exists an A' such that A < A' and A',B h sigexp => S and £ = (N)S, for some
N with N n names(/4) = 0. In doing inductive proofs on the depth of inference, we
include the depth of the proof of A', B \- sigexp => S when we count the depth of
the proof of A, B \- sigexp => Z. This makes sense because the depth of a proof of
A', B h sigexp => S can be determined from the syntactic structure of sigexp alone.

As an example of the use of the rules, the elaboration of the program in Fig. 17
is summarised in Fig. 18. It illustrates most features of the inference system. The
specifications of P' and F are referred to as specp> and specp, respectively. The
signature expressions sig ( l ' . . . end'1' are abbreviated sigexpt (i = 3,4). We assume
that the assembly and the basis are empty at the outset. After the elaboration of the
structure declaration we have B = {? i—> Sp} and A = [Sp], where Sp = (ml, {Q i—>
(m2, {})}). The elaboration then proceeds as outlined in Fig. 18.

Lemma 3.1

Let A\ ~ A2. Then Z is principal for sigexp in (A\, B) if and only if E is principal for
sigexp in (Ai,B). Moreover, A\,B h phrase => P if and only if A2,B \- phrase => P.
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A", B\ h sigexp4 => S4

(7)

A', Bx h sigexpA => (N4)S4

(8.

S4=(m4,{P"1->Sp})

M, = {m4}

specp> => £p>

(14)

A,B \- sigexp3

A',BX

A',B2\-

(14)
(4)

- S 3

(7)

h specp => £p

(15)

sharing P' =

=> {N3)S2 A =

= P=;

A' =

= [SP]

•

• 0

(S3,

; B

B, =

£ p > = {P> •

s.

= B + Ep>

s),(.,(),,

= B ! + £ F

A); S3 =(m3,£p» + £p)

Sp = (ml, {Q t-

= {P^SP};

-(m2,{})})

iV3 = {m3}

Fig. 18. An elaboration tree.

In other words, it is the graph of an assembly that matters to elaboration, rather
than the assembly itself.

The side-conditions concerning admissibility and cover may have left the reader
wondering whether an implementation has to enforce these constraints every time
it tries to make an inference step. This is not the case. Indeed, assuming that the
input {A, B) to the algorithm satisfies AO B, then any attempt to violate the side-
conditions can be detected by the unification algorithm which deals with the sharing
equations.

We have now completed our presentation of the semantics. The rest of the paper
is organised as follows. In section 4 we discuss structure unification. In section 5.1
we prove that elaboration is preserved under realization and in section 6 we present
an algorithm for inferring principal signatures and prove it correct.
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4 Unification

Finding a principal signature involves solving sharing equations. Consider the prob-
lem of deciding, for given assembly A and basis B, whether the sharing equation

longstridl = longstrid2 (16)

can be satisfied. Assume B{longstrid {) = (mi,E\) and B(longstrid2) = (m2,E2). We
wish to obtain that m\ and m2 are equal (cf. the side-condition on rule 15). Thus
we seek a realization cp such that (p(m\) = (p{m2). Since the sharing constraint
(16) implicitly specifies sharing between all common substructures oflongstridl and
longstrid2 (whether visible or not), <p may have to make further name identifications.
To be precise, we want (p(A) to be admissible; the well-formedness of cp(A) follows
from the well-formedness of A so it is the consistency and cycle-freedom of q>{A)
that is important here.

But (p has to satisfy more. First, q> must be fixed on N of B, i.e. we must have
<p(m) = m, for all m e (N of B). Also, applying a realization must not have the effect
of widening rigid structures, i.e. we must have that A covers q>(A) on N of B. We
collect these properties in the following definition:

Definition 9 (Unifier)
Let A be an admissible assembly, let mi and m2 be names that occcur free in A and
let TV be a name set. A realization <p is a unifier for mi and m2 in A under N if
q>{m\) = (p{m2), (p(A) is admissible, <p is fixed on N and A covers cp{A) on N.

As in the case of ordinary first-order term unification, there is a notion of most
general unifier:

Definition 10 (Most general unifier)
Let cp' be a unifier for mi and m2 in A under N. Then <p* is said to be most general
if whenever q> is a unifier for m\ and m2 in A under N there exists a realization <p'
which is fixed on N and satisfies (p'(q>'{A)) = (p(A).

Also, there exists an algorithm Unify which satisfies the following property:

Theorem 4.1 (Unification)
Let A be an admissible assembly, JV be a name set, and let mi and m2 be names
occurring free in A. If there exists some unifier for mi and m2 in A under N then
Unify (A, N, {mi,m2)) returns a most general unifier for mi and m2 in A under N.
Otherwise, Unify(A,N,(m2,m2)) fails.

We shall not spell out the details of the algorithm here, nor shall we prove the
above theorem, for there are several similar algorithms and proofs in the literature,
e.g. algorithms by Ait-Kaci (1986), Rimy (1989) and Aponte (1992). The following
outline of an algorithm is based on the Commentary of Standard ML (Milner and
Tofte, 1991), which we refer to as 'the Commentary' in what follows. Unify first
builds the smallest equivalence relation = on names(/4) satisfying that (a) mi = m2

and (b) for all m, n, m', n' and strid if m = n and

m_strUL>m'
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are both in Graph(/4) then m' = n'. From = it is easy to see whether a unifier exists;
if it does, a most general unifier with kernel = is returned. In HML, failure can only
happen because of an attempt to identify two different rigid names (i.e. two names
that are both in N) or an attempt to add a component to a rigid structure.

Notice that unification does not have to make functor components equal. This is
because consistency (Definition 1) does not require functor components to be equal.

5 The Realization Theorem

In this section we prove that elaboration is preserved under realization. In order to
prove this fact, we need the following lemma, which is taken from the Commentary
(Milner and Tofte, 1991).

Lemma 5.1

For any signature £, structure S and realization q>, if Z > S then <p(L) > (p(S).

Proof
Write £ as (N)S', assuming w.l.o.g. that (Supp <p U Yield (p)f)N = 0. Then <p£ =
(p((N)S') = (N)(pS'. So it suffices to find a realization \p such that Supp xp ^ N and
xp(cp(S')) = cp(S).

Now since Z > S there exists \p' such that Supp(y') £ N and xp'(S') = S. Define
xp to be the restriction of q> o ip' to N, i.e. xpn = (p{xp'(n)) if n G N and \p{n) = n if
n<£N.

To prove xp((p(S')) = q>(S), it is enough to show that \p((p(n)) = q>{xp'{n)) for every
n e names(S'); this is now straightforward, considering the two cases n G N and
n £ N separately. •

We also need the following two lemmas, which state that cover and admissible
cover are preserved under realization:

Lemma 5.2

If A2 covers Ai then (p{Ai) covers q>(Ai).

Proof

We have to prove that q>{A2) covers q>(Ai) on names(cp(Ai)). Since names^j) £
names(/42) we have names(<p(Ai)) £ names((p(A2)) as required. Let (m,E\) be a
structure occurring free in (p(A{), and let id be a structure- or functor identifier in
the domain of E\. Then {m,E\) = (p(m',E[\ for some {m',E[) occurring free in A\.
Since id G Dom(£J) and A2 covers A\, there exists a ££ s u c ^ ^ a t (m'>^2) occurs
free in /I2 and id G Domf^)- Thus <p(m', £j) = (m> ̂ (£2)) occurs free in (p{Ai) with
id G Dom(<p(£2)), showing that cp{A2) covers cp(Ai). O

Lemma 5.3

If A\ C /1 2 and <p(/l2) is admissible, then
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Proof
We have that cp(A2) covers (p(A{), by Lemma 5.2. It remains to prove that the pair
{(p{Ai), <p(Ai)) is admissible. For all assemblies A, if A is well-formed, then so is q>{A).
In particular, (q>(A2), q>(Ai)) is well-formed. Also, (q>{Az), (p{A\)) is consistent, because
(A2,A\) is consistent, A2 covers A\ and (p(Az) is consistent. Finally, (^(^2), (p(A\)) is
cycle-free, because 9(^2) is cycle-free and cp(A2) covers q>{Ai). •

Theorem 5.1
Let phrase be a signature expression, a specification, a sharing equation or a functor
signature expression. If 0 h phrase => P and 0 -^-» 0' then 0' h phrase => (p(P).

Proof
We use induction on the depth of inference. There is one case for each inference rule.
In all the cases the argument that O'> phrase => <p(P) implies O' \- phrase => <p(P)
is the same: since 0 h phrase => P we have P C. (A of 0); thus by Lemma 5.3,
<p{P) C (p(A o(0)QA of O', since 0-^0'. Thus q>(P) Q A of 0', showing 0' h
phrase => <p(P). In each case it will therefore suffice to prove 0' > phrase => q>{P).
The cases for rules (4), (6) and (9)—(15) are all straightforward arguments. We show
only the first of these, as an example.

Rule 4, sigexp = sig spec end

Let (A,B) = O and (A',Br) = O'. Assume 0-^0' and 0 h sig spec end => S.
Then S = (m, £) and 0 I- spec => £, for some m and £. By induction we have
O' h spec => <p£. Thus 0' > sig spec end => (<pm, cpE), by rule 4.

Rule 5, sigexp = sigid

Let (A, B) = 0 and (/T, £') = 0'. Assume 0 - ^ 0' and 0 h sigW => S. By rule 5 we
have B(sigid) > S. Thus (<pB)(sigid) > cpS, i.e. B'(sigid) > <pS, by Lemma 5.1.

Rule 7, principal signatures
Let (A,B) = 0 and (A',Br) = 0'. By rule 7, P is a principal signature for sigexp
in 0. Thus P can be written in the form (N)S, where N n names A = 0, and there
exists an A\ such that A < A\ and

^i,B h sigexp => S (17)

/li contains all the names that occur free in S, including the ones in N. We cannot
simply apply cp to (17) and expect to get an elaboration, for we know nothing about
the behaviour of <p outside names(X). We therefore apply induction on a realization
cp\ which coincides with q> on names(̂ 4) and maps names in names(zli) \ names(^l)
to distinct fresh names. Formally, let N\ = names(/4i) \ names(/i), let N[ be a set of
names satisfying that N[C\na.mes(A') = 0 and that there are equally many names in Ni
and in N[. Let q>\ be a realization satisfying that <pi [ (names(yl)) = q> J, (names(/4))
and that q>\ \ N\ is an injective map from Afi to N[. Let A\ = (A',<pi(Ai)). Since
A < A\ and N[ n names(y4') = 0 we have that A\ is admissible. (Note that A C. A\
would not have sufficed here.) Thus (A\,Br) e Obj and since <piB = cpB = B', we
have (Al,B)-Si-*(A'l,B'). By induction on (17) we therefore have

A^B1}-sigexp =>tpiS
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Let N' = cpiN. Note that N £ Nu as N n names(X) = 0 and ,4i 3 S. Also,
names((N)S) £ names(,4), as O I- sigexp => (N)S. Thus <p((N)S) = (AT')(<PiS). Is this
signature principal for sigexp in 0 '? Certainly A' ^ A\ and /4j,B' h sigexp => cpiS,
as required. Also, N' n names(/4') = 0, as required. Finally, let 0", S' and \p be such
that 0' -*-» 0" and 0" 1- sigexp => S'. Then 0 - ^ - > 0". Since (N)S is principal for
sigexp in O we have that (i/> o (p)((N)S) > S', i.e. ^({N'X^S)) > S', as required.
Thus (N')((piS) is principal for sigexp in 0' . Thus we can apply rule 7 and get
0' > sigexp => (N'){q>iS), i.e. 0 ' > sigexp => <p((N)S).

Rule 8, funsigexp = (strid : sigexp , ) : sigexp2

Assume 0-^0' and 0 h/unsigexp => O. Let G4,B) = 0 and G4',B') = 0'. Then
funsigexp is of the form (sfn'd : sigexp{): sigexp2 and $ can be written (Ni)(Si,L2),
where Ni n names(O) = 0 and

^,BHsigexp1=>(N1)Si (18)

(Si, A), B + Ni + {strid •-» Si} h sigexp2 => Z2 (19)

Without loss of generality we can assume that iVi n names(0,0') = 0 and that
<pn = n, for all n e JVi. By induction on (18) we have A',B' h sigexpx =

A' .B 'h sigexp, =*(ATi)fa>Si) (20)

By the definition of h we therefore have that A' 3 (JVi)(^>Si). But then, since
Ni n names(>l') = 0, we have that (A1, <p(Si)) is admissible. Also, Ni £ names(<p(Si))
since the signature (Ni)(q>Si) is well-formed. Thus ((<pSi,A'),B' + Ni + {strid >—>
q>Si}) e Obj. But then we have (Sl,A),B + Ni +{strid •-» Si}-^{(pSuA'),B'+ Nx +
{strid i—> <pSi}, so by induction using (19) we have

(<pSi,Ar),B' + Ni + {strid t-> cpSi} h sigexp2 => <JOZ2 (21)

From (20) and (21) we get A', B' > funsigexp => (Ni)((pSi,<pE2). But JVi is chosen
disjoint from names(O.O') and A 3 (JVi)Si and (Si,A) 3 S2 (by (18) and (19),
respectively), so <pO = (iVi)((pSi,<pS2). •

Notice that an algorithm which applies realization to a proof of O \- phrase => P does
not have to make any checks for whether side-conditions concerning admissibility
and cover are respected. As we saw in the beginning of the above proof, the
side-conditions follow automatically from 0 - ^ 0'.

6 The inference algorithm

In this section we shall prove that if a signature expression can be elaborated at
all, then it can be elaborated to a principal signature. The proof is constructive,
in that we present an algorithm W and then prove that the algorithm really does
find principal signatures. In section 6.1 we present the algorithm. In section 6.2
we restate the principality theorem (Theorem 3.1) in a stonger form suitable for
inductive proof. We refer to this stronger version as the main theorem. In section 6.3
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Wsigexp(O as (A, B), sigexp) : Obj x Rea x Str =
case sigexp of

sig spec end => (* rule 4 •)
let (0; as(A\,B\),<p\,E[) = Wspec(O,spec)

S,* = {m',E\), where m* is new
O'=((St,A\),Bl)

in (O',<p\,S;)
| sigid => (* rule 5 *)

if sigid £ Dom(B) then fail
else let (N')S' = B(sigid), where all names in N' are new

O' = ((S;A),B)
in (O\Id,S#)

| sigexp, i s strid sharing shareq => (• rule 6 •)
let (0;;9>;,S1*)=

(Oj^j.Ej) =
in (OJ.cpJo^.ipJSi)

^pnnsigexP(O as (^4,B),sigexp) : Obj x Rea x Sig = (* rule 7 *)
let (0- ?LS(A',B'),<P',S-)

E* = Closes*
in ((A'0,B-),cp',r)

Fig. 19. Wsigexp and

we address the issue of how functor signatures give rise to nested quantification and
how this affects the existence of principal signatures. Finally, in section 6.4 we give
the proof of the main theorem.

6.1 Algorithm W

The algorithm for finding principal signatures appears in Figs. 19 and 20. (These are
mutually recursive with Wfunsigexp concerning functor signature expressions, which
we defer the presentation of until section 6.3.) There will be ample opportunity to
dwell on the details of the algorithm when we prove the main theorem. For now,
let us focus on one particularly important part, namely the definition of WprinSiZexp

in Fig. 19. This is the function that 'implements' rule 7. The notation 'O as (A, B)' is
borrowed from Standard ML and is used when we want to introduce a variable 0
and simultaneously introduce variables for the components of 0.

Referring to the definition of WprimigeXp, assume that

(O* as (A',B'),cp',S') = Wsigexp(O,sigexp)

The basic idea is that we will then have O -%—* 0* and 0' h sigexp => S'. Here q>' is a
realization which may act on flexible names in 0 in order to satisfy sharing equations
in sigexp. The processing of sigexp may also reveal hitherto unseen components of
flexible structures in O. These will be present in A'. This is one reason why we do
not in general have (p'(A) = A' but rather A' 3 (p'(A). (Another reason is that for
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WatSpec(O as (A, B), atspec) : Obj x Rea x Env =
case atspec of

s t r u c t u r e strid : sigexp => (* rule 9 *)
let (O',(p\,S') = Wsigexp(0,sigexp)
in (0*, q>\, {strid H-» S'})

| functor funid -.funsigexp => (* rule 10 *)
let (0\<p'lt<&') = Wfunsigexp(O,funsigexp)
in (O\ q>\, {funid >—> <I>*})

| shar ing shareq = > (* rule 11 *)
Wshareq(O,shareq)

| l oca l specl in spec2 end = > (* rule 12 • )
let (0 ; a sM; ,* ,* ) , ? ; , ^ ) = Wspec{0,specx)

(O'2,(p'2,E'2) = Wspec((A\,B[+El),spec2)
in UAofOi,<p'2Bl),q>'2oq>\,E'2)

Wspec(O as (X,B),spec) : Obj x Rea x Env =
case spec of

empty => (0, Id, {}) (* rule 13 *)
| atspect (;) spec2 => (• rule 14 *)

let (O; as (A;,^),(?;,£,•) = Watspec(O,atspec,)
(OJ,^,£2*) = W,p«((yi;,,B; +£, ' ) , spec2)

in ( ( A f C > B i ) i £ i

as (A, B), shareq) : Obj x Rea x Env =
case shareq of

longstridi = longstrid2 = > (* rule 15 *)
let (mi,£i) = B(longstridi)

fail if longstridt <£ Dom(B)
(m2,£2) = B(longstrid2)

fail if longstrid2 £ Dom(B)
<p' = Unify(A,N of B,(ml,m2))

in (<p*0, <p',{})

Fig. 20. Watspec, Wspec and Wshareq.

0' h sigexp => S' to hold, >1* must cover S*, which may contain 'new' names.) This
is summed up by writing 0 -J£-* O*.

Moreover, the morphism 0 -2-» 0* is the best possible, in a sense which will be
made precise by the main theorem. Informally, <p* makes as few identifications of
names as necessary and 0* is as small as possible subject to the limitation that it
has to cover S* and B'.

It is important to understand the nature of the set (names(>l*)\names(^M)). Let
m' be a name in this set; even though m' is not free in <p'{A), it may be the name of
some substructure of a structure whose name, m, is free in cp'(A).

Example 6.1 Let S = (m, {}), let B = (0, {}, {P i-> S}) and let A = [S]. This situation
might arise when the algorithm has processed the specification of P in Fig. 21. Let
S' = (w, {Q i-* (m', {})}), let B' = B and A' = (S',A). Just at the point where Wsigexp

has processed the signature expression with which we specify Y in Fig. 21, we may
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structure P: sig end
structure Y:

sig
structure P' : sig structure Q: sig end end
sharing P' = P

end

Fig. 21. In the algorithm, a sharing specification can expand flexible structures in the
assembly.

have cp* = Id and 0* = (A',B*). In this situation, we have that m' is not free in
(p'{A) = A but in A', m' occurs below the name m, which is free in <p"(A). D

In such cases, the algorithm has discovered a hitherto unseen component of a flexible
structure. Otherwise, i.e. if m' does not occur in A' 'below' any name which is free in
(p'(A), then m' is so to speak 'generic', i.e. m' can be quantified by a nameset prefix.

This partitioning of the name set names(,4*) \ names(<pM) into two sets (the
nongeneric versus the generic ones) is seen clearly in Wprinsigexp in the two lines:

A'o = Below(y4*,(p'/4) (22)

S* = Closes* (23)

In (22) we let AQ be that part of A' which is reachable in A' starting from any name
which occurs free in cp*(A). The names that occur free in AQ must not be quantified.
In (23) we then quantify the remaining names in order to form the signature Z*.
Notice that WprinSigexp returns the assembly A'o (not A'), i.e. the algorithm 'discharges'
that part of the assembly which has just been quantified.

Below we define the Below and Clos operations and show that E* by construction
automatically is well-formed. Also, we prove, for example, that A'o < A' holds, so
that AQ and A' can play the parts of A and A', respectively, in the definition of
principal signature.

Let A be an admissible semantic object and let N be a name set. The names below
N in A are the names that are reachable in Graph(zl), starting from a node whose
name is in N. Put differently, the names below N in A, written below(/l, N), is the
least set N' satisfying

1. N n names(.4) £ N'
2. Whenever (m,E) occurs free in A and me N' then names(skel(£)) £ N'

The structures below N in A, written Be\ov/(A, N), is defined by

Below(,4, N) = {skel(m, E) \ (m,E) occurs free in A and m € below(/l, N)}

When A' is a semantic object, we write below^A') for below(/4, names(^'))> a n d w e

write Be\ovi(A,A') as an abbreviation of Below(/1, names(y4')). Also, we shall identify
the set Below(/4,N) with any assembly [Si,...,Sn], where {Su...,Sn} = Below(A,N).

One easily proves that below(^,N) = names(Below(.4, N)), for all admissible
semantic objects A and name sets N.
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Lemma 6.1
Let A be an admissible object and let N be a name set. Then Be\ow(A, N) < A.

Proof
Certainly, Bclow(A,N) C A. It remains to show that Below(.4, N) covers A on
below(y4, N). But that follows from the definitions of Below and skel, in particular
from the fact that the skel function does not 'throw away' functor components — it
merely replaces them by a closed functor signature, cf. section 3.3. •

Next we show an important lemma, which concerns the following situation:

(AuBt) -^ (A2,B2)
V| V|

(A\,Bi) - * • (Below(,42,<M'i),B2)

The lemma says that the bottom morphism exists if the other parts of the diagram
are given, provided that A\< A\ (as we shall see in the proof, A\ C. A\ would not
be enough here).

Lemma 6.2
Assume Bi C A\ < A\ and (A\,B\) -2->(A2,B2) and let
A'2 = Below(^2,^'i). Then {A\,Bi)-^{A'2,B2).

Proof
Since A\ Q A\ and q>A\ is admissible we have cpA\ Q q>A\, by Lemma 5.3. Since
cpA\ Q A2, we then have cpA\ C A2. Thus

A'2 = Below(^2, (pA\) 3 <pA\ (24)

Since by assumption A\ 3 B\, we have {A'VB{) G Obj. To see that (A'2,B2) e Obj,
note that A\ 3 B\ implies (pA\ 3 <pB\ = B2, by Lemma 5.3; thus A'2 3 B2, by
(24). Let us show that cp is a morphism from (A\,B\) to (A'2,B2). By assumption
(p is fixed on N of By and (p{B\) = B2, as desired. Also (p{A\) C A'2 by (24), as
desired. Let N\ = N of B\. It remains to prove that A\ covers A2 on N\. We have
N\ nnames(/42) S names(y4[), as required (since A\ 3 B\). Let (m,E2) be a structure
occurring free in A2 with m e N\ and assume irf e Dom(£2). By the definition of A2

there exists E2 such that (w, £2) occurs free in A2 and id € Dom(£2)- Since A\ covers
A2 on Ni there exists an E\ such that (m,£1) occurs free in A\ and id G Dom(£i).
But then, since A\ is a conservative cover of ^ and m G names(^i), there exists an
£{ such that (m,£j) occurs free in A\ and id G Dom(£j), as desired. •

There is a characterization of below(/l, AT) which often is useful in proofs. Recall
that StrName is the set of all structure names. Let ^(StrName) denote the set of
subsets of StrName. Given A and N, let ^A,N '• ^(StrName) -> 0>(StrName) be
defined by

= {m € names(/4) | m G N or there exists an (m', £') which occurs
free in A and satisfies that m' G N' and m G
names(skel(£')) }
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Then ^A,N is continuous with respect to set inclusion and its least fixed point is
exactly below(A, N):

15:0

An example of the use of this property is the proof of the next lemma. A morphism <p
in K is an epimorphism if for every pair \p\, xp2 of morphisms in K, if \p\ oq> = \p2o(p
then y>i = xp2.

Lemma 6.3
Let (AuBi) = Oi and (A2,B2) = O2 and assume Ox -*-* O2.
Then O\ -^(^Q\aw{A2,q>A\), B2) is an epimorphism.

Proof
Let A'2 = Below(^2,<P^4i) and 0'2 = (A'2,B2). To prove that O\ -2-» O2 is an epimor-
phism, let O3 be an object in K and xpi and tp2 be realizations such that

commutes. We wish to prove that tpi(m) = V>2(»J)> for all m e names(02). By the
definition of A'2, this amounts to proving that

Vi > OVm e JzrU,,<M,)(0)-'Mm) = V2(m)

where & was defined above. This, however, is easily shown by induction on i,
using that (y>i o q>){m) = (xp2 o (jj)(m), for all m G names(Oi), that ^1(^2) - ^

E ^3 and that A3 is consistent, where Ai = Aof O3. •

This finishes the treatment of the Below operation. Now let us look at the Clos
operation and its properties.

For all structures S and name sets N, we define Clos^S to be the signature (N')S,
where N' = names(S) \ N. For every semantic object A, Closes means ClosnameS(/i)5.

Lemma 6.4 (Closure and well-formedness, Version 1)
For all name sets N, assemblies A and structures S, if A 3 S then ClosBeiow(/i,Af)S is
a well-formed signature.

Proof
Since A 3 S, S is admissible and in particular well-formed, as required. Write
ClosBeiow(/i,jv)S in the form (N')S, i.e. let N' be names(S) \ be\ov/(A,N). Let (m,E)
be a structure occurring free in S and assume m £ N'. Then m e below(/l, N).
Since A 3 S, we have ,4 3 (m,£). Since m e below(^,N) we therefore have
names(skel(£)) ^ below(/l, N). Hence names(skel(£)) n JV' = 0, as required. D

Lemma 6.5 (Closure and well-formedness, Version 2)
For all assemblies A and A' and all structures S, if A < A' and A' 3 S then Closes
is a well-formed signature.
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Proof
Follows directly from Lemma 6.4 and the observation that A < A' implies
be\ov/(A',A) = names(/4). D

If A' is a conservative cover of A then the names by which A' extends A can be
renamed without affecting the fact that A' is a conservative cover of A:

Lemma 6.6
Let A < A' and let N = names(,4') \ names(^l). Let <p be any realization which is
injective on N, is fixed on names(/4) and satisfies Ran((p) n names(/4) = 0. Then
A < cp(A').

Proof
Simple verification. •

Finally, we prove that a signature can only be principal if it does not contain free
names which could be quantified:

Lemma 6.7 (Closure and principality)
Let 0 = (A,B) be an object in K. For all name sets N and structures S, if
N n names(O) = 0 and N £ names(S) and (N)S is principal for sigexp in O then
(N)S = Closes.

Proof
We know that N £ names(S). Since TVnnames(O) = 0, we know that iVnnames(^) =
0. To show (N)S = Closes, it just remains to show names((N)S) £ names(yl). Since
(N)S is principal for sigexp in (A,B) there exists an A' such that A< A' and
A, B h sigexp => S, and

For all 0', <pf and S', if 0 -*-» O' and 0' I- sigexp => S' then <p'((AOS) > S' (25)

In particular, for cp' = Id, (25) states that

For all A" and S', if A C /I" and /I covers X" on N of B and
/I", B h sigexp => S' then (N)S > S' ( '

Let (j» be an injective realization which maps names in the set names(^4') \ names(j4)
to distinct fresh names and is the identity on all other names. By Lemma 6.6 we have
that A < <pA'. Since A 3 B, we then have O'-^O", where 0' = (A',B) and 0" =
(cpA',B). Since 0' \- sigexp => S we then have 0" \- sigexp => q>S, by Theorem 5.1.
Thus by (26) we have (N)S > q>S. But this implies names((N)S) £ names(,4), as
required. •

6.2 Statement of the main theorem

We now state a stronger version of Theorem 3.1, suitable for inductive proof. We
refer to this theorem as the main theorem:

11-2
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Theorem 6.1 (Main theorem)
Let phrase be one of sigexp, spec, atspec, shareq or funsigexp and let 0 € Obj. If
there exists some O', cp and P' such that 0 -2-» 0' and 0' h phrase => P' then
(O*,(p*,P*) = W(O,phrase) succeeds and

• O' and 0' h phrase => P' there exists a
1. O -SU 0* and 0* h phrase => P'
2. For all 0' , q>' and P satisfying 0

xp such that the diagram

(27)

commutes and y)P' = P'.

Readers who are familiar with the completeness result for the Damas-Milner
algorithm W (Damas and Milner, 1982) will recognize the overall structure of the
above theorem. We have not proved that W fails if there exists no 0', cp and P'
with O -%-* 0' and O' h phrase => P'; we believe this is the case, but we do not need
this result to prove Theorem 3.1.

It is not clear, of course, that the above theorem really implies Theorem 3.1. We
will spend the rest of this section demonstrating this. In the process, we shall prove
a number of lemmas, which we also shall use in the proof of Theorem 6.1.

Write 0, O' and 0' in the form (A,B), (A',B') and (A',B'), respectively. In
section 6.1 we considered the special case where phrase is sigexp and P, P' and P*
are structures S, S', S', respectively. We saw that the assembly and signature we are
interested in are A'o = Be\ov/(A',(p*(A)) and £* = Closes*. More generally, in order
to separate that part of the diagram (27) which is 'generic' from that part which is
not, we shall often need to derive from diagrams like (27) another diagram

(28)

where the realizations are the same, but OQ = (Be\ov/(A*,cp'(A)),B') and 0" =
(A",B') for some suitable A". Below we prove a lemma which gives conditions that
are sufficient to ensure that this separation really is possible. As a first step, let us
prove the following lemma:

Lemma 6.8 (Cover)
Let q> be a realization which is fixed on N. For all assemblies
<jP/42 on N then Ai covers A2 on N.

and A2, if A\ covers

Proof
Let (m,E) occur free in Ai, m € N and id € DomE, where id e StrlduFunld. Then,
since (p is fixed on N, the structure S' = <p(m,E) = (m,(pE) occurs free in cpAi and
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m e N. Since A\ covers q>A2 on N there exists an £o such that (m, £o) occurs free in
A\ and id £ DomEo, as required. •

The next step is to prove that decomposition of realization preserves cover.

Lemma 6.9
If cp\Ai C. A2 and (P2A2 Q A3 and A\ covers A3 on N and q>\ and q>2 are fixed on N,
then A\ covers A2 on iV and A2 covers A3 on N.

Proof

As >4i covers A3 on AT and ^2^2 E ^ 3 , ^1 covers <p/l2 on N. Thus J4I covers A2 on
N, by Lemma 6.8.

To prove that A2 covers A3 on JV, let (m, £ ) be a structure which occurs free in /I3
and let id be a structure or functor identifier in the domain of £. Assume m € N.
Since A\ covers A3 on JV there exists an E\ such that (m, £1) occurs free in A\ and
id € Dom£i . Then, since <p\ is fixed on N and (p\A\ C /12» <p{m,E\) = (m,<p£i)
is covered by A2. Thus there exists an £2 such that (m, £2) occurs free in /I2 and
id G Dom £2. Thus A2 covers A3 on N. •

Finally, we can state and prove the promised lemma about the existence of (28):

Lemma 6.10
Let 0 = (A,B), 0' = (A',B') and 0* = (A',B') be objects in K and assume that the
diagram (a) below commutes. Let A'Q = Below(.4*,(p*(/1)), let O*Q = (A'0,B'), let A'o
be any assembly satisfying Below(/1', (p(A)) C 4Q C X' and let OQ = (A'o, B'). Then
the diagram (b) exists in K and commutes.

(a) (b)

Proof

That 0* - ^ O Q is a morphism in K follows from Lemmas 6.1 and 6.2. Similarly,
0 - ^ ( B e l o w ^ ' , q>{A)), B') is a morphism in K by Lemmas 6.1 and 6.2. Since A
covers A' on N of B(= JV of B') and A'o Q A' we have that A covers AQ on
N of B. Thus O - ^ O Q is a morphism in K. The real question is whether the
bottom morphism exists. (If it exists, then (b) commutes, since (a) commutes.)
Referring to the definition of K, we certainly have that xp is fixed on N of B'
and that xp(B') = B'. Moreover, xpA'o = v>(Below(yl',,p'(/l))) C Below(,4',y>(<p*04)))

since the morphisms O -2-> 0* -%-* O' exist. Thus, since (a) commutes, we have
\pA'Q C Below(/1', cpA) C. A'o, so IP(AQ) C. A'O, as required. It remains to prove that
AQ covers A'o on N of B. We have q>'(A) C. A'Q and \pA'Q C A'o and ^ covers A'o on
iV of B' and tp* and 1/; are fixed on N of B — since (a) exists. But then Lemma 6.9
gives that A'Q covers A'o on N of B, as required. •
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We can now prove that for all 0 and phrase if one can find 0', q>' and P*
satisfying (1) and (2) of Theorem 6.1, then one thereby has a way of obtaining
principal signatures:

Lemma 6.11 (The main theorem gives principal signatures)
Let 0 e Obj and let phrase be a signature expression. Assume that object 0',
realization q>' and structure P* satisfy (1) and (2) of Theorem 6.1. Let (A',B*) = 0',
AQ = Be\ov/(A',q>'(A)) and E* = Clos^-P*. Then E* is principal for phrase in

This is certainly good news, for the I* constructed above is precisely the E* which
Wpnnsigexp produces (see Fig. 19). Of course, the above lemma does not state that E* is
principal for the signature expression in O, but once we have proved Lemma 6.11, it
is easy to prove that Theorem 6.1 implies Theorem 3.1. We now prove Lemma 6.11:

Proof
Let sigexp = phrase and S* = P*. Let O*Q = (AQ,B'). Following the definition of
principal signature, it suffices to prove

0'0 e Obj (29)

A'Q<A* and A',B' h sigexp => S* (30)

For all cp, 0' and S', if O'0 -^ 0' and 0' h sigexp => S' then (p(L') > S' (31)

Since O - ^ O* we have O - ^ OQ by Lemma 6.2. Thus (29) holds. Also, (30) follows
from Lemma 6.1 and the assumption 0' \- sigexp => S*. Let us now prove (31). Let
q>, O' and S' be such that O'0 - ^ 0' and 0' h sigexp => S'. Clearly, the diagram

(32)

commutes. By assumption, there exists a xp such that the diagram

(33)

commutes and xpS' = S'. To prove <p(S*) > S' it will therefore suffice to prove that
q>{n) = ip(ri), for all n e names(E') — for if so, xp both performs the realization
of the free names in E* and the instantiation of the bound names of £*. By the
definition of E* we have names(E') c names(/4J). Let us prove

<p(m) = \p{m), for all m e names(/4J) (34)
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Since (33) commutes, the diagram

(35)

commutes by Lemma 6.10. By Lemma 6.3 we have that O -2—* O*0 is an epimorphism.
But then, since (32) and (35) commute, we have (34), as required. Thus E* is principal
for sigexp in OQ. •

Lemma 6.12

Theorem 6.1 implies Theorem 3.1

Proof

Let B be a basis, A an assembly, A 3 B, A < A' and A', B \- sigexp => S', for
some S'. Let 0 = (A,B) and 0' = (A',B). Then O-^O' and 0' \- sigexp => S'.
By Theorem 6.1, (O',cp',S') = Wsigexp(O,sigexp) succeeds and O-^O' and 0' h
sigexp => S*. Also by Theorem 6.1, there exists a \p such that the diagram

commutes and xpS' = S'. Let (A',B') = O*. Let A'o = Below(,4*, (?*(/!)) and let
O'0 = (A'0,B'). Since X < A' we have Below(/4', Id(A)) ~ X. Thus by Lemma 6.10 the
diagram

exists in K and commutes. By Lemma 6.11 we have that S* = Clos^-S* is a

principal signature for sigexp in OQ. Thus 0^ h sigexp => Z*. Since OQ -2-» 0 we
have 0 h sigexp => xpi,' by Theorem 5.1. In particular, tpZ* is principal for sigexp

inO. D

We are thus left with proving the main theorem itself. Before doing this, let us
consider the most interesting part of W in isolation, the part concerning functor
signature expressions.

6.3 Functor signatures
--------- -a

Our type discipline for HML admits functor signatures that occur inside signatures.
Since functor signatures take the form O = (N)(S, (N')S') and signatures take the
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form (iVo)So (where O can be a component of So), the type discipline for higher-order
modules involves nested quantification. In this respect, our type discipline is a depar-
ture from the well-known principle of ML-style polymorphism that quantification
is at the outermost level only.

It is actually rather surprising, at least at first sight, that the principality theorem
(Theorem 3.1) holds. For a signature Eo = (No)So t 0 t>e principal for some signature
expression it must be the case that all other possible results of elaborating the
signature expression are instances of Eo, in the sense defined in Section 3.5. But
instantiation only admits realization of the outermost bound names, i.e. those in
No. In other words, for the principality theorem to hold, the inner quantifications
must be the same in every possible elaboration. Fortunately, this can be achieved by
demanding that the argument and result signature expressions in functor signature
expressions be elaborated to principal signatures. To be more specific, consider a
functor signature expression

(strid : sigexp,) sigexp2

to be elaborated in (A,B), say. The functor signature expression may occur deep
inside some signature declaration, so the assembly A and basis B may contain
flexible structures. Assume we can elaborate sigexp x to Zi, a principal signature
for sigexpy in A,B. Now the way possible elaborations can vary is essentially just
by the choice of names of flexible structures, subject to the requirements about
admissibility and cover. Thus one has to consider what sigexp ( would elaborate to
in (A',B'), if (A, B)-2-*(A',B'), for some realization <p. However, we know that (pL\
will be principal for sigexp x in (A',B') — cf. the proof of Theorem 5.1. Notice that
applying a realization to a signature only affects the free names (although it may
require renaming of the bound names), so the nameset prefix is essentially the same
in all possible elaborations.

Thus we see that for the principality theorem to hold, it is crucial that principality
is preserved under realization. But it also has to be preserved under 'inverse'
realization: if there exists some q>, 0' and Z' with 0 -%-* 0' and 0' h sigexp => Z'
and if (0*,<p*,Z*) is the result of W(0,sigexp), then E* had better be principal for
sigexp in 0'.

Thus the situation is somewhat more involved in the higher-order language than
in Standard ML, where signature expressions are only ever elaborated in 'rigid' bases
(compare with Theorems 11.4 and 11.5 of the Commentary — Milner and Tofte,
1991); indeed, the changes we have made relative to the Standard ML semantics are
mostly motivated by the need to obtain good interaction between realization and
principality.

We shall now prove two lemmas that concern precisely the interaction between
realization and principality. The first one will be used in the proof of Theorem 6.1 in
the case where we have assumed 0 -%-+ 0' and 0' \- sigexp => (N')S'. By induction
we will have obtained (0*, cp', S*) and xp such that O* h sigexp => 5* and y(S') = S'.
We now wish to infer \p((N')S') = (N')S', where N' is a suitable nameset prefix.
But this only holds because (N')S' has to be principal:
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w/unsigexp(O as (A, B),funsigexp) : Obj x Rea x FunSig =
case funsigexp of

(strid: sigexp i) sigexp 2 => (* rule 8 *)
let (0 ; as(A\,B'i),(p\,I,\) = Wprinsigexp(0, sigexp J

(Nl)S[ = SJ, where all names in N[ are new
02 = ((Sl,A'i),Bl + Nl + {strid .-> S,#})

(n ^= (pi o CPi

in if N\ O names(/T) = 0 then ((A'.ipjBi*), <j9*,O*)
else fail

Fig. 22. Wfunsigexp.

Lemma 6.13 (Realization and principality)

Let Ot = (At,Bi) be objects in K, for i = 1,2, let q> be a realization and assume
0i -2-> 02 . Further let Si and S2 be structures, Ni and N2 be name sets. If Nt n
names(y4,) = 0 and N; £ names(S,) and (Nj)S,- is principal for sigexp in 0, (i = 1,2),
and pSi = S2 then <p((Ni)Si) = (N2)S2.

Proof

We wish to prove that cp maps bound names to bound names:

(p is injective on JVi and î ATi c jV2 (36)

without capture of names:

N2 n ^(namesttN! )Sl)) = 0 (37)

Since (Nj)S,- is principal for sigexp in 0,-, there exists an A- (i = 1,2) such that At < A\
and A';, B \- sigexp => S,-. Let q>' be a realization which satisfies (p'(n) = <p(n), for all
n € names(^i) but in addition maps all names in the set names(i4j) \ names(Ai) to
distinct fresh names. By Lemma 6.7 we have (iV,)S, = Closes,-, i = 1,2. In particular,
Ni £ names(>lj) \ names(^i), so

<p' maps the names in Ni to distinct fresh names (38)

Since A\ <1 A\ and {A\,B\)-^{Ai,Bi) there exists an assembly A'2 such that cpAi C.

A2 E A'2 and (A'1,B1)-£->(A1,B2). Since A\,Bi \- sigexp => Si we then have A2,B2 \-
sigexp => (p'S\, by Theorem 5.1. But then, since A2 C A2 and (N2)(<pSi) is principal
for sigexp in (/42,B2), we have (N2)(cpSi) > (p'S\. This, together with (38), gives (36).
As for (37), we have names((Ni)Si) £ names(zli). Since (N2)(<pS\) = Clos^cpSi)
and q>A\ C A2 we then have (37), as desired. •

The other lemma is used in the proof of Theorem 6.1 in the case concerning functor
signature expressions. The inference of 0' \- funsigexp => O' takes the following
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0

- 0 '

(a) (b) (c)

Fig. 23. The diagrams involved in the proof case concerning functor signature expressions

form:
A',B'\-sigexPi^{N[)S[
(S[,A'),B' + N[+{stride

N[ n names(/4') = 0

(39)
A',B>> (strid:sigexPl)sigexp2 => (N'^S'^N^)

This is to be compared with the the algorihm Wfunsigexp in Fig. 22.
Using induction on 0-%-*0' and sigexpi it will be possible to construct the

diagram in Figure 23(a), where q>\ and 0\ are as given in the algorithm. Next, the
algorithm constructs O2; let 0'2 = ({S[,A'),B' + N[ + {strid H-> S[}), i.e. the object
in the second premise of (39). It turns out that one has O2 - ^ 0'2 (as well as
O\ -2!-» O'). Thus we use induction again and get the diagram in Fig. 23(b). The
crucial step is now that we want to "cut down" this diagram to the diagram in
Fig. 23(c). (Note that the realizations in (b) and (c) are the same; the difference is
that in (c) we have removed those structures which are quantified by N\ and N[.) If
only this can be done, then we can paste (a) and (c) together along the morphism
xpi and get

9 =

- 0 '

However, can (c) be constructed from (b)? Can one be sure, for example, that q>*2

does not map a name which was free in B\ to a name which is a member of N[ ?
A related problem is that in order to prove A',B* \-funsigexp => $*, where A',

B' and O* are the objects constructed by W, the inference rule (8) demands that
sigexp2 be elaborated in the assembly (q>'2S{,A'). The induction hypothesis will give
us that sigexp2 elaborates in A\; but how are these two assemblies related?

The lemma below answers the above questions. The proof of the lemma is a bit
draining, so it is relegated to the Appendix. In the statement of the lemma, we refer
to diagrams (b) and (c) of Fig. 23.

Lemma 6.14
Let 0, 0' and 0\ be objects in K (with 0\ = {A\,B\\ etc). Assume that
and A\ 3 {N\)S\ and A' 3 (N[)S[ and Nj = N[ and Njntnames
0. Let 02 = ((Sl,A[),B\ + N{ + {strid •-> S,'}) and 0'2 = {(S[,A'), B' + N[ + {strid •-*
S[}). Let A\ be an assembly satisfying A\ ~ Be\ov/{A'2,<p'2{A of 02)). Let A' =
Below^j ,^^! ) ) and O' = (A',<p'2B[). If (b) commutes, then A\ ~ (A',y2{S\)\
N\ n names(/4*) = 0 and the diagram (c) commutes.
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6.4 Proof of the main theorem

This section is the proof of Theorem 6.1. The proof is by induction on the depth
of inference of 0' \- phrase => P'. There is one case for each rule. The cases for
rules 6, 9-11, and 13 are all straightforward and are not included. The case for
local (rule 12) is very similar to the case for sequential specifications (rule 14)
and is therefore also omitted. We now deal with each of the remaining cases. For
clarity, each case is divided into two parts, corresponding to parts (1) and (2) of
Theorem 6.1.

Rule 4, sigexp = sig spec end

Part 1: Assume O -2-> 0' and 0' h sig spec end => (m', £')• Then 0' \- spec => E'.
By induction, (O\,cp\,E\) = Wspec(O,spec) succeeds and we have O-^O\ and
O\ V- spec => E[. Following W, let (A\,B\) = 0\ and let m be a fresh structure
name. Let A* = ((m,E\),A\l 0' = (A',B\), q>' = q>\ and S' = (m',E[). Note that

O* is admissible because m* is fresh. By 0 -^-> O\ and the definition of A* we have

0 sL> o' as required. From O[ h spec => E\ and O\ - ^ 0' we get 0* I- spec => E\,
by Theorem 5.1. Thus O* > sig spec end => S', by rule 4, and since 0* 3 S* we
then have O' h sig spec end => S*, as desired.

Part 2: Let 0', cp and S' be objects satisfying 0-^0' and 0' h sigexp => S'.
Let (m', £') = S". By induction there exists a i/>i such that the diagram

(40)

commutes and \p\E[ = £'. Let t/j = \p\ + {m* H^ m'}. Since (40) commutes and m' is
fresh, the diagram

commutes. Also, since xp\E[ = E' we have ^S* = (m',£'), as required.

Rule 5, sigexp = sigid

5') = 0'.
does not

Part 1: Assume 0-^0' and 0' I- sigid => S'. Let (>1,B) = 0 and
Then sigW e DomB' and B'(sigid) > S'. Then sigid e DomB, so
fail here. As in W, write B(sigid) in the form {N')S', where AT* n names(O) = 0.
Let <p* = Id and let O* = (A',B), where X* = (S',A). Then W succeeds with
result (O*,(p',S'). Clearly, 0* is admissible and 0-2—>0', as required. Moreover,
(N')S' > S' and A' 3 S*, so O* h sigirf => S*.

Part 2: Let 0' = O4',B')> q> and S' by any objects satisfying 0 -2->0' and
0' h sigid => S'. Then B'(sigid) > S', i.e., <p((N')S') > S'. Instead of trying to apply
<p into (N')S' (which may involve renaming), it is easier to note that q>((N')S') > S'
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holds precisely if there exists a realization xp such that ip(S') = S' and xp(m) = m, for
all m free in (N')S' (xp does realization on free and bound names simultaneously).
Indeed, since N* n names(O) = 0, we can obtain xp(m) = (p(m), for all m e names(O).
Thus the diagram

commutes and xpS' = S'.

Rule 7, principal signatures

Part 1: Assume 0 -£-»• 0' and O' h sigexp => I ' . Since 0' h sigexp => I ' must be
inferred by rule 7, U must be principal for sigexp in 0'. Thus, writing £' = (N')S',
where N'nnames(O') = 0, there exists ̂  such that A' < A\ a n d ^ B ' h sigexp => S'.
Note that N' ^ names(S'), as £' is well-formed. We now wish to use the induction
hypothesis to prove that sigexp elaborates to a principal signature E* in some
O*. To this end, let 0\ = (A\,B'). Since A' < A\ and 0-^0' we have 0 - ^ 0 ; .
Thus by the induction hypothesis on A\,B' (- sigexp => S' and 0-^0^, the
call (0* &s(A\,B'),(p',S') = Wsigexp{0,sigexp) succeeds and 0-^0\ and 0\ h
sigexp => S*. Following W, let ,4* = Below(/i;, cp'{A)\ 0' = (^*,Bi) and let N'
and S* be given by S* = (N*)S* = Clos^-S*. Then WPrinsigexp(0,sigexp) returns

(0*, <?*,£*). By Lemma 6.11, S* is principal for sigexp in 0*. Since O - ^ O J and
,4* = Be\ow(A\,(p'A) we have the desired 0 -2-> 0*, by Lemma 6.2. Next we want
to prove that 0* V- sigexp => Z*. This almost follows from the results of applying
Lemma 6.11 above, but we have to prove that A* 3 £*• Now Z* is well-formed (by
Lemma 6.5 on A' < A\ and A\ 3 S*). But then A' 3 £* follows from the definition
of £* and the fact that A' < A\ and A\ 3 S*. Thus 0* h sigexp => S* holds, as
required.

Fart 2: Now let (O' as (.4', B'), cp, I') be such that 0-^0' and 0' h sigexp => S'.
We then obtain A\, 0[, N' and S' as above. By induction there exists a v> such that
the diagram

(41)

commutes and xpS* = S'. But then, by Lemma 6.10, the diagram

(42)
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commutes. By Lemma 6.7 we have Z' = Closes'. By Lemma 6.13 we then get

Since \pS' = S' we thereby have tpZ* = Z', as required.

Rule 8, funsigexp = (strid : sigexp x) :sigexp2

Part 1: Assume 0 -2-> 0' and 0' h funsigexp => $'. Then by rule 8, O' is of the
form (JV;)(S{,E'2) and 0 ' I- sigexp, => (JVJ)S{ and

{S[,A'),B' + N[ + {strid ^ S[}\- sigexp2 => Z.'2 (43)

where (A',B') = 0' and N[ n names(O') = 0.
By induction on 0-^0' and 0 ' I- sigexpx => (N[)S[, the call (0{ as(A\,B[),

<p\,T.\ as(N\)S\) = Wprinsigexp(0,sigexpt) succeeds and 0 - ^ O J and

01 h sigexp, => (AfDs; (44)

Moreover, there exists a i/;, such that the diagram

(45)

commutes and xpi({N[)Si) = {N[)S{.
Without loss of generality, we may assume that N'{ n names(OJ,O') = 0; in

addition we can assume that N[ = N[ and that ipi is fixed on N^. Notice that with
these assumptions, ipi(Nl) = N[, xpiS^ = S{ and

Vi((JVr)S,') = (VlN,') (viS,-) = (N[)S[ (46)

Let

A2 = (S,-,Xi) A'2 = (S[,A')
B2 = B\+ N\ + {strid i-> S,*} B^ = B' + NJ + {strid <-* S[}
O2 = (A2,B2) O'2 = (A'2,B'2)

We have 0 2 ^ ^ 0^. (To see this, first note that 0'2 is an object in K by (43); similarly,
02 is an object in K by (44). Moreover, ^1^2 Q A'2, since y>i/l| E A' and yiS,* = S(.
Finally, A2 covers A'2 on N of B2 = (N of B) U NJ, for /4J covers X' on N of B so
by (46) and the fact that A\ 3 (N\)S\ and A' 3 (N'^Sj' we have that A2 covers
(S|,i4') on (N of B) U Nj.) Also, by (43) we have 0'2 h sigexp2 => Z'2. By induction
on 02-^0'2 and 0 2 I- sigexp2 => Z'2, the call {0'2, <p\, JL\) = Wprinsigexp(O2,sigexp2)

succeeds and 02 -^-> 0'2 and

0\ \- sigexp2 => r2 (47)
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Moreover, there exists a xpi such that the diagram

.02

0- '- *l S0'2 (48)

commutes and v^Z^ = Z'2. Let (A*2, B2) = 02. By the definition of Wpnasigexp we know
that A'2 = Below(Xo, q>'2(A2)), for some AQ. Thus A*2 ~ Below^j. (pli^))- Following
the definition of W, let A* = ~Ro[ovi{A'2,(p2'{A\)). By Lemma 6.14 we have

A'2~{q>'2SlA') (49)

JV1'nnames(y4*) = 0 (50)

and also that the diagram

O:

O' — ^ — - 0 ' (51)

commutes, where O* = {A* ,<p*2(B\)). Thus, by (50), W(O,funsigexp) does not fail
here; on the contrary, it succeeds with result (0*, <?*,<!>*), where <p' = q>'2 o cp\ and
<b'={N\)[<pXSl,l\).

By composing the diagrams (45) and (51) we get the desired 0-2—*0'. By
Theorem 5.1 on (44) we get

O' h sigexp, => <pl((Ni)S;) (52)

Also, since <p'2 is fixed on JVj and SJ C ^J and ipj^i E -4* and (50) we have
q>l((Nl)Sl) = (N[)((p'2S[). Thus (52) reads 0* h sigexp! => (JVi)^S;, i.e.

A',<p'2B\ h sigexp, => (N\)<p'2S{ (53)

Expanding (47) we get

A'2, <pXB\ + N\ + {strid i-» (pj^} h sigexp2 => Zj (54)

Thus by Lemma 3.1 on (54) and (49) we have

((p'2S{,A'),(p'2B\ + ATJ + {strid i-> q>'2Sl} h sigexp2 => Zj (55)

We now wish to use rule 8 on (53) and (55). The side-condition iVj nnames(/l*) = 0
is met by (50). Moreover, $* is well-formed, for the following reasons. (NjX^Si*) is
well-formed by (53), ~L*2 is well-formed by (54) and if (m,E) is a structure occurring
in Zj with m g N[ then since A*2 3 Zj and (49) we have m e names(/T). Since
A' < A\ we therefore have (m,skel(£)) C yl*, so names(skel(£)) n Nj = 0, showing
that O* is well-formed and that A' 3 $*. Thus rule 8 applies and we get the desired
0* h funsigexp => <1>*.

Part 2: Let 0', q> and <J>' be objects satisfying 0 -2-+ 0' and 0 ' h funsigexp => <£'.
By using induction twice, we get diagrams (45), (48) and (51) exactly as above, but
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with tpi and \p2 depending on the new choice of 0', q> and <D'. Let xp = xpi- We wish
to prove that the diagram

(56)

commutes and that i/>O* = <J>'. But (56) commutes since (45) and (51) commute.
Moreover, as A' 3 <5* and O'-^O' and names(0')n7Vi = names(O')nN{ = 0, we
can perform the application ip(<&') = v H W H ^ S ^ I j ) ) = (N*l)(y><p'2Si,\pI.*2) directly,
without causing name capture. Thus

=
=

=

as required.

Rule 15, shareq

(N[)(S[X2)
<5'

= longstrid y

2)

= longstrid 2

as (48) commutes
by (46)

Part 1: Assume O-^O' and 0' \- longstrid, = longstrid2 => {}. Let (A,B) = 0
and (A1, B') = O'. By the side-condition on rule 15 we have m of (B'(longstrid,)) =
m of (B1(longstrid2)), but the problem is that we do not necessarily have m of
(B(longstridx)) = m of (B(longstrid2)). (One reason is that whenever we choose
names in the proof, e.g. in the cases for rules 4 and 5, we always choose them to
be suitably 'new'.) Since 0-2-»O' and B'(longstridx) and B'(longstrid2) exist and
have the same name, W does not fail when it computes (mi,E\) = B(longstrid{)
and (m2,£2) = B(longstrid2). Also, (p is a unifier for m\ and W2 in A under AT of B.
By Theorem 4.1, the call cp' = Unify (A, N of B, (mi,m2)) succeeds and <p* is a most
general unifier for m\ and m2 in A under N of B. Thus W(O,s/iareg) succeeds
with result (O\ ?*,£') , where 0' = q>'(0) and £* = {}. We have O-^-*O' and
0* V- shareq => £*, since q>' is a unifier for mi and m2 in A under JV of B.

Part 2: Let 0' , q> and £ ' be arbitrary objects satisfying 0-^-*0' and 0 ' h
shareq => £'. Then cp is a unifier for mi and m2 in /4 under N of B. Since <p' is a
most general such unifier, there exists a xp which is fixed on N of B and satisifies
tp(<p*(/l)) = <p(/l). Thus the diagram

commutes and \pE" = £'.

Rule 14, spec = atspec^ (;) spec2

Part 1: Assume 0-2->0' and 0' I- atspecx ( ;) spec2 => £ ' . Let (^ ' ,B ' ) = O'. By
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E\ andrule 14 there exist E[ and E'2 such that £ ' = E\ + E'2 and A',B' h atspecl

4 ' ,B' + E[\- spec2 => Ej- B y induction on O-^O' and 0 ' h atspecx => £ b we have

that the call (0\ a.s{A\,B\), <p\,E\) = WatspedO^tspec^ succeeds and 0 -^-> 0\ and
OJ h atspecl => E[. Moreover, there exists a yi such that the diagram

(57)

commutes and ipi^i* = E[. Let 02 = (X^Bj + £j*) and 0 2 = 04', B' + E[).

Then O a - ^ ^ O j a n d °2 h sPec2 => £2- BY induction, the call (0'2, (p'2, E2) =

Wspec{O2,spec2) succeeds and Oi-^O2 and 0\ V spec2 => E2. Moreover, there

exists a \pi such that

(58)

commutes and \p2E*2 = £2 . Let (A'2,B2) = O\, 0* = {A*2,q>'2(Bl)), cp* = cp'2 o q>\ and
£* = q>'2E\ +E*2. Then Wspec(O,spec) succeeds with result (O',cp',E'). We wish to

prove 0 -s-^ O* and

0* \- atspec^ (;) spec2 => £* (59)

' 0'Since B[ C A\ we have (pjBj C <p\A\ Q A\. Thus O* is an object in K and 0\
holds. Since (58) commutes we then have that

»0' (60)

commutes. We get O -^—* O' by composition of (57) and (60). Moreover, by The-

orem 5.1 on O\ h atspecx => E\ and O\-^2-^O' we have O* h atspecY => q>'2E\.

Also 0'2 = (A'2,B'2) = {A'2,cp'2B\ + (p'2E\), so from O\ \- spec2 => E\ we get

O* + <p\E\ h spec2 => E2- Thus by rule 14 we have (59) as required.
Part 2: Now let 0', cp and £ ' be arbitrary objects satisfying 0-^*0' and

0 ' h spec => £' . By proceeding as above, we obtain v>i a n d y>2 (and O2, 0'2)
depending on the new 0', q> and E' such that the diagrams (57), (58) and (60)
commute. Let \p = \p2. Since (57) and (60) commute, the diagram

• 0 '
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commutes and moreover, since (58) commutes, we have tpE' = \p{(p'2E[ + £j) =
\p<p'2E[ + \pE2* = tpijEj + xpE2 = E[ + E'2 = £', as required.

7 Conclusion

We have presented a language, called HML, which is intended for programming
with higher-order modules. From a programmer's point of view, HML is largely
compatible with Standard ML, but HML allows functors to be declared in structures
and specified in signatures.

We have defined the static semantics of signature expressions and shown that if
a signature expression elaborates at all, then it can be elaborated to a principal
signature, using an algorithm, which we have presented and proved correct. We have
not defined the semantics of structure matching or functor application.

Part of the motivation behind the work reported in this paper was to see whether,
and how smoothly, the semantics of first-order functors presented in the Definition
of Standard ML could be extended to higher-order functors. As far as the semantic
objects are concerned, a major difference is that one now has to deal with nested
quantification. Also, in some situations, it is important to distinguish between the
substructures of a given structure S and those structures that only occur (free) inside
some functor signature inside S.

In HML we have to be able to find principal signatures in bases that contain
flexible structures. This is not the case in Standard ML. Also, for type-checking
reasons, we need principality to be preserved under realization, which is not the case
in Standard ML. This has been achieved first and foremost by introducing assemblies
into the inference rules and by promoting the notion of cover to ensure that the
assembly serves as a consistent frame of reference for different views of structures.
These changes have had effects that are useful, even for first-order modules. For
example, principal signatures are now always well-formed.

With one exception, we feel that the semantics of Standard ML signature expres-
sions scaled well to the higher-order language. The exception is local and overlapping
sequential specifications, which have rather subtle implications for the semantics (see
the discussions in sections 3.3 and 3.5).

The algorithms in this paper have been implemented in the ML Kit, by Lars
Birkedal, who has also extended the theorems and proofs presented in this paper
to cover all the constructs found in Standard ML signatures. David MacQueen and
Pierre Cregut have recently implemented higher-order functors, including functor
application, in Standard ML of New Jersey.
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Appendix: Proof of Lemma 6.14

Let (A2, B2) = O2 and (A'2, B'2) = O2. We first prove

A'2~(A',(p2(A2)) (61)

We have (A',cp'2A2) C A2 by the definition of A' and the fact that O2-^O2. Let
us show the converse A*2 Q (A',(p'2A2). Since by assumption A*2 Q Be\ovj(A2, cp'2A2) it
will suffice to prove

Below^j, <P'2A2) C (A', cp'2A2) (62)

Consider the sequence No £ N\ £ N2 £ • • • of name sets defined by letting No — 0
and, for i > 0,

Ni+i = {me names(X2) |

V£.if (m,E) occurs free in A2, then names(skel(£)) £ JV,-}

Note that N^+i = Nk = n ames^ ) , for some k, since A2 is finite and cycle-free. Thus
we can prove (62) by proving by induction on i that Be\ov/(A2,(p*2Nj) C. (A',(p*2A2).
Base Case, i = 0. Here Below(A2,0) is the empty assembly which trivially is covered
by (A',(p'2A2).
Inductive Step, i > 0. Assume Below^j, q>'2Ni-\) C. (A', q>'2A2). We wish to prove that
Below(/f2\<7>2iV'-) Q {A',(p'2A2). As we already have B e l o w ^ , ^ ; - ! ) Q {A',cp'2A2), it
will suffice to prove that for all (m, E) occurring free in A\ with m e be\ov/(A*2, (plNt)\
below(^2><P2^'-0 t h a t 0",skel(E)) Q (A*,<p2A2). So let (m,E) be such a structure.
As m € bdovf(A'2,(p'2Nj) there exists an m,- € iV,\N,_i such that m € be\ow(A'2,(p'2mi).
There are two cases to consider:
Case 1, mi e N\. As cp'2 is fixed on N\, we have <p'2mi = m,- and hence m e
below^j.m,). However, since m £ below(A2,(p'2Nj-\) and A2 covers A\ on N\, we
must have m = m,.
Let strid be a structure identifier in Dom£. Since A2 covers A'2 on N\ there exists
an environment E\ such that (m, E\) occurs free in A2 and strid e Dom£[. Thus
(p2(m,E\) Q (p'2A2. But then (p'2(mof E^strid)) = mof E(strid), since A'2 is consistent.
Also, mof {Ei(strid)) £ AT,_,, so skel(£(strid)) C Below^j.cpj^i-i) E ( X * , ^ ^ ) , by
the induction hypothesis. Thus

(m, skel(S£ of £)) C (A*, ^ 2 ) (63)

Next, let funid be a functor identifier in Dom£. Since A2 covers A\ on N\ there
exists an environment £1 such that (m,E\) occurs free in A2 and funid e Dom£i
and (m,<p\E\) = (p'2(m,£1) C (pj^- Thus

(m, skel(F£ of £)) C (p\ A2 (64)

But from (63) and (64) we immediately get (m, skel(£)) Q (A',(p2A2), as required.
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Case 2, m, e names(/4J). Since m € below^j, (p2mt) we then have (m, skel(£)) C A*,
by the definition of A*. This proves (61).

But then A\ ~ {<p\S\,A') for the following reason. Since A' = Below(A'2, (p*2A\)

and 02-^0'2 we have y\A\ C X*. Thus <p'2A2 = {(p*2S\,<p'2A\) Q (<p\S\,A*). Thus
{(p2S\,A') ~ ( / T , ^ ^ ) ~ A\. This proves the desired (<p'2S{,A') ~ Xj.

That 7Vj n names(^*) = 0 is seen as follows. Assume Nj n names(/T) ^ 0; and
let m be an element of JV, n names(>T). Since m € names(/4*), there exists an
m' e names(/4J) such that m e be low^ , </>2m')- Then, since 0'2-^0'2 we have
y;m e below(A'2,ip((p2m')), i.e. m e below(y42,i/>im'), since diagram (b) of Fig. 23
commutes and all the realizations are fixed on JVJ. Since m' £ N^ and \piA\ Q A'
we have \p\m' e names(A'). Since A' < A'2 we therefore have belov/(A'2,y)im') £
names(/4'), so m e names(/4'). But m e names(zl') n Nj contradicts the assumption
iVj = names(^42) \ nnmes(A').

Finally, let us show that Fig. 23(c) exists and commutes. Since A\ < A2 and

A' = B e l o w ^ ^ i ) and 02-^0'2 we have O\-^O', by Lemma 6.2. This
shows that the left-hand morphism exists. The right-hand morphism exists by
assumption. But then, since (b) commutes, the bottom morphism exists and (c)
commutes; the fact that 0* covers 0' on N of B follows from Lemma 6.9. •
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