analysis. Infection density rate (IDR), conditional maximum likelihood estimate (CMLE) of rate ratio (RR), 95% confidence intervals (CI), and P values were calculated. The Fisher exact test was used to compare IDRs among years. $P < .05$ was considered statistically significant.

The IDR did not increase for ESBL-EC after cessation of contact precautions in our hospital. Also, no change was observed for IDR for ESBL-producing K. pneumoniae or for CR K. pneumoniae between 2015 and 2016. An increase in CR E. coli bacteremia at the Oncology Hospital was observed, but it was not statistically significant (Table 1).

A recent Swiss study showed the safety of cessation of contact precautions for ESBL-EC in a setting where compliance with standard infection control precautions and hand hygiene is high. Compliance with infection control precaution is highly variable in our hospital. The rate of compliance with hand hygiene before patient contact is nearly 90% in the oncology ICU and BMT units; however, it was 30%–60% in the surgical ICUs. Nevertheless, we did not observe an increase in the rate of ESBL-EC bacteremia.

This study has some limitations. First, we did not compare the types of ESBL-EC infection other than bacteremia between 2015 and 2016, but no clusters of ESBL-EC infections were detected in any of the wards during surveillance activities. Bacteremia surveillance is the only type of surveillance that is performed hospital-wide, so we decided to compare the bacteremia rates. Also, we did not have access the molecular epidemiology of ESBL-EC because it is very difficult to analyze the genetic relatedness of ESBL-EC in daily practice for infection control purposes.

Despite all limitations, our study showed that, in a middle outcome country where compliance to infection control precaution is highly variable, cessation of contact precautions for ESBL-EC did not result in a negative outcome. However, infection control teams practicing in crowded hospitals under high workload with insufficient staff should be cautious because ESBL-EC outbreaks are common.

Acknowledgments

Financial support: No financial support was provided relevant to this article.

Potential conflicts of interest: Gökhan Metan has received honoraria for speaking at symposia and lectures organized by Gilead; Merck, Sharp, and Dohme (MSD); and Pfizer. He received financial compensation from Pfizer for a meeting organized to discuss the content of a review paper, and he is a member of the advisory board of Pfizer and Astellas. He has received travel grants from MSD, Pfizer, and Gilead to participate in conferences. Serhat Ünal has received honoraria for lectures from Pfizer, MSD, and Gilead, as well as travel grants from MSD, Pfizer, and Gilead to participate in conferences. All other authors report no conflicts of interest relevant to this article.

ICD-9-CM Coding for Multidrug Resistant Infection Correlates Poorly With Microbiologically Confirmed Multidrug Resistant Infection

Hanife Aytaç; Burcu Çınar, MSc; Hümeyla Zengin, MSc; Serhat Ünal, MD

Affiliations: 1. Department of Infectious Diseases and Clinical Microbiology, Hacettepe University, Faculty of Medicine, Ankara, Turkey; 2. Infection Control Committee, Hacettepe University Hospital, Ankara, Turkey; 3. Department of Public Health, Hacettepe University, Faculty of Medicine, Ankara, Turkey.

Address correspondence to Gökhan Metan, MD, Hacettepe Üniversitesi Tip Fakültesi Hastanesi, İr Hastalıkları Binası, Enfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Anabilim Dalı, Sihhiye, Ankara, Turkey (gokhanmetan@gmail.com, gokhanmetan@hacettepe.edu.tr).

Infect Control Hosp Epidemiol 2017;38:1379–1381
© 2017 by The Society for Healthcare Epidemiology of America. All rights reserved. 0889-823X/2017/3811-0022. DOI: 10.1017/ice.2017.198

References

Table 1. Organism and Multidrug-Resistant Organism (MDRO) Discharge International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) Codes for Various Sterile Site MDRO Infections

<table>
<thead>
<tr>
<th>Drug-Resistant Organism (No.)</th>
<th>Coded for Correct Organism, No. (%)</th>
<th>Any MDRO Code, No. (%)</th>
<th>Any V09 Code, No. (%)</th>
<th>Any V098, V0981, V099, V0991 Code, No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRSA after 10/1/2008 (1,113)</td>
<td>835 (75.0)</td>
<td>843 (75.7)</td>
<td>39 (3.5)</td>
<td>10 (0.9)</td>
</tr>
<tr>
<td>MRSA before 10/1/2008 (504)</td>
<td>300 (59.5)</td>
<td>168 (33.3)</td>
<td>168 (33.3)</td>
<td>0</td>
</tr>
<tr>
<td>VRE (735)</td>
<td>209 (29.4)</td>
<td>169 (23.0)</td>
<td>162 (22.0)</td>
<td>24 (3.3)</td>
</tr>
<tr>
<td>Enterococcus (851)</td>
<td>242 (28.4)</td>
<td>172 (20.2)</td>
<td>164 (19.3)</td>
<td>24 (2.8)</td>
</tr>
<tr>
<td>Enterobacteriaceae (1226)</td>
<td>802 (65.4)</td>
<td>41 (3.3)</td>
<td>26 (2.1)</td>
<td>6 (0.5)</td>
</tr>
<tr>
<td>Acinetobacter spp. (107)</td>
<td>31 (29.0)</td>
<td>12 (11.2)</td>
<td>9 (8.4)</td>
<td>3 (2.8)</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa (204)</td>
<td>152 (74.5)</td>
<td>17 (8.3)</td>
<td>10 (4.9)</td>
<td>6 (2.9)</td>
</tr>
</tbody>
</table>

NOTE. MRSA, methicillin-resistant Staphylococcus aureus; VRE, vancomycin-resistant Enterococcus.

a For MRSA after 10/1/2008: 038.12, 482.42, 041.12. For MRSA before 10/1/2008: 038.11, 482.41, 041.11. For VRE and Enterococcus: 041.04. For Enterobacteriaceae: 038.4, 038.40, 038.42, 038.44, 038.49, 041.3, 041.4, 041.49, 041.6, 041.85, 48.20, 48.282, 48.283. For Acinetobacter spp.: 038.40, 038.49, 482.83. For Pseudomonas aeruginosa: 038.43, 041.7, 48.21.

b Any of the following: 038.12, 482.42, 041.12 (MRSA codes); V09, V09.0, V09.1, V09.2, V09.3, V09.4, V09.5, V09.50, V09.51, V09.6, V09.7, V09.71, V09.70, V09.8, V09.80, V09.81, V09.9, V09.91, V09.90.

c A distinction was made for V098, V0981, V099, and V0991 because these code for multidrug resistance, rather than single drug or single class resistance of the other V09 codes.
The correlation between microbiologically confirmed non-MRSA MDRO infection and V09 diagnosis codes for drug resistance was poor. Previous research showed poor correlation between V09 codes and confirmed MRSA infection prior to the introduction of MRSA-specific ICD-9-CM codes.3 Our MRSA coding rates after the introduction of MRSA-specific ICD-9-CM codes were higher than previously reported.7 We also found that ID consultation increased rates of MRSA coding, likely due to increased recognition and documentation of the presence and importance of MRSA by ID physicians.

In addition, coding rates for MRSA were significantly higher than coding rates of drug resistance for other organisms, suggesting a need for unique codes for other MDROs. This conclusion is reinforced by the fact that for patients with MRSA, introduction of MRSA-specific codes resulted in a dramatic increase in coding for resistant S. aureus. As ICD-9-CM codes are assigned by nonmedical personnel, universal drug resistance definitions and organism-specific drug resistance codes will likely assist in the proper coding of MDROs. Our findings are likely applicable to ICD-10-CM codes because the structure of ICD-10-CM drug resistance codes mimics those from ICD-9-CM.

Our results demonstrate that ICD-9-CM diagnosis codes cannot be used to estimate the burden of MDRO infections in hospitals. Additionally, researchers should be aware of the limitations of ICD-9-CM codes for studying MDRO infections from large retrospective medical databases. More specific MDRO codes are needed to facilitate future research using administrative data, a problem not addressed by ICD-10-CM.

To our knowledge, this study is the first to examine drug resistance coding rates for a variety of MDRO pathogens. The study is limited to a single tertiary-care referral center, and these results may not be generalizable. However, the study draws strength from its large sample size and has implications for hospital rankings, reimbursements, and future MDRO research utilizing large administrative databases.

Acknowledgments

The content is solely the responsibility of the authors and does not necessarily represent the official view of the National Institutes of Health (NIH).

Financial support: This work was supported by the Washington University Institute of Clinical and Translational Sciences (grant no. UL1TR000448) from the National Center for Advancing Translational Sciences (NCATS) of the NIH. Dr Marin Kollef is supported by the Barnes-Jewish Hospital Foundation. Dr. Kwon reports that the research reported in this publication was supported by the Washington University Institute of Clinical and Translational Sciences (grant no. UL1TR000448, sub-award K2TR000450) from the National Center for Advancing Translational Sciences (NCATS) of the National Institutes of Health (NIH).

Potential conflicts of interest: All authors report no conflicts of interest relevant to this article.

References

Clostridium difficile RT 078/ST11: A Threat to Community Population and Pigs Identified in Elder Hospitalized Patients in Beijing, China

Hilary M. Babcock, MD, MPH;1
Margaret A. Olsen, PhD, MPH;1
Marin H. Kollef, MD2

Affiliations: 1. Division of Infectious Diseases Washington University School of Medicine, St. Louis, Missouri; 2. Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri.

Address correspondence to Jason P. Burnham, MD, Division of Infectious Diseases, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8051, St. Louis, MO 63110 (burnham@wustl.edu).

Infect Control Hosp Epidemiol 2017;38:1381–1383 © 2017 by The Society for Healthcare Epidemiology of America. All rights reserved. 0899-823X/2017/3811-0023. DOI: 10.1017/ice.2017.192

To the Editor—Clostridium difficile ribotype (RT) 078 has been known as the predominant strain in animals (swine and cattle), and it has been increasingly identified in human C. difficile infection causing severe disease and increased

Jason P. Burnham, MD;1
Jennie H. Kwon, DO, MSCI;1

To the Editor—Clostridium difficile ribotype (RT) 078 has been known as the predominant strain in animals (swine and cattle), and it has been increasingly identified in human C. difficile infection causing severe disease and increased