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Abstract

In this paper we identify a monotonicity in all countable-state-space reversible Markov
chains and examine several consequences of this structure. In particular, we show that
the return times to every state in a reversible chain have a decreasing hazard rate on the
subsequence of even times. This monotonicity is used to develop geometric convergence
rate bounds for time-reversible Markov chains. Results relating the radius of convergence
of the probability generating function of first return times to the chain’s rate of convergence
are presented. An effort is made to keep the exposition rudimentary.
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1. Introduction

In this paper we identify a decreasing hazard rate (DHR) monotonicity inherent in all
reversible Markov chains on countable state spaces and study some ramifications of this
structure. Time-reversible Markov chains frequently arise in practice (Ross (1996), Stroock
(2005), Chen (2005)) and include many Markov chain Monte Carlo-generated chains. Here
we show that the first return time to every state in a countable-state-space reversible Markov
chain has the DHR property along the even time indices. This structure is first proven for
finite-state Markov chains and then extended to countable state spaces via truncation. The
DHR property identified is then used to derive a ‘clean’ geometric convergence rate bound for
reversible Markov chains. The bound is even optimal in some cases.

The DHR result imparts a geometry to reversible chain analyses. For example, a DHR first
return time distribution implies that a fixed state is less likely to be visited in the immediate future
if it has not been visited in the immediate past (the notion is made precise in the next section).
The DHR property identified here appears weaker than the classical stochastic monotonicity
structure discussed in Stoyan (1983, pp. 64–67). In particular, the DHR property identified holds
for all states in any reversible Markov chain (the class of reversible chains is vast); however,
there are many Markov chains that are not stochastically monotone. Stochastic monotonicity
was exploited by Lund and Tweedie (1996) to extract sharp chain convergence rates. Lindvall
(1992) and Kijima (1997) are other prominent references in which stochastic orderings of
various types are used to assess stability and other chain properties. Keilson and Kester (1978),
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A monotonicity in reversible Markov chains 487

Brown (1980), Shaked and Shanthikumar (1987), (1994), Liggett (1989), Hansen and Frenk
(1991), and Berenhaut and Lund (2001), (2002) are other references linking renewal theory,
Markov chains, and stochastic orderings.

That the DHR monotonicity is identified along the even integers only is also noteworthy.
This implies that the two-step-ahead chain might be more amenable to analysis in reversible
settings than the traditional one-step-ahead chain. For Markov chain Monte Carlo simulators,
this merely involves iterating the chain twice at each step instead of once, a straightforward
task.

The remainder of the paper is organized as follows. In Section 2 we clarify our notation and
review results from renewal theory and distribution classes of discrete random variables. In
Section 3 we present the DHR monotonicity. In Section 4 we apply the DHR structure to obtain
convergence rate bounds for reversible chains. In Section 5 we present several examples, and
in Section 6 prove the main result.

2. Background

We start by clarifying our notation. Let {τi}∞i=1 be a sequence of independent and identically
distributed random variables (lifetimes) supported on {1, 2, . . . }. Let τ denote a lifetime with
distribution equivalent to that of τn for any n ≥ 1. Define fk = P[τ = k] for k ≥ 1 and let
F̄k = P[τ > k] for k ≥ 0. Let Sn = τ1 + τ2 + · · · + τn, n ≥ 1, be the ‘lifelength’ of the
first n items, with S0 = 0, and define the nondelayed probability of a recurrent event (an item
replacement) at time n by

un =
∞∑

k=0

P[Sk = n], n ≥ 1

(we take u0 = 1). The well-known elementary recurrent event relation is

un =
n∑

k=1

fkun−k, n ≥ 1, (2.1)

and its limit is

lim
n→∞ un = 1∑∞

k=1 kfk

=: u∞

(Feller (1968, p. 313)) when τ is aperiodic (take u∞ = 0 when E[τ ] = ∞). Equation (2.1) is
easily manipulated into the tail form

F̄n =
n∑

k=1

(uk−1 − uk)F̄n−k, n ≥ 1, (2.2)

which will be of use later.
The hazard rate, hi , of τ at index i is defined as

hi = P[τ = i | τ ≥ i]
whenever P[τ ≥ i] > 0. We say that τ has a decreasing hazard rate (or is DHR) if hi is
nonincreasing in i. It is easy to show that τ is DHR if and only if the log-convexity relation

F̄ 2
n+1 ≤ F̄nF̄n+2, n ≥ 0, (2.3)
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holds. Mimicking (2.3), we call the renewal sequence {un}∞n=0 DHR or log-convex if

u2
n+1 ≤ unun+2, n ≥ 0.

Renewal theory and lifetime orderings have been previously studied in Brown (1980), Liggett
(1989), Hansen and Frenk (1991), Sengupta et al. (1995), Kijima (1997), and Berenhaut and
Lund (2001), (2002) (among others).

Now suppose that {Xn}∞n=0 is an ergodic (irreducible, aperiodic, positive recurrent) Markov
chain on the state space {0, 1, . . . } with time-homogeneous transition probability matrix P =
(pi,j )

∞
i,j=0. Here, pi,j = P[Xn+1 = j | Xn = i] for each n ≥ 0. Such chains have a unique

limiting (stationary) measure, denoted by π , that does not depend on the initial state, X0. Of
course, πi := π({i}) is the long-run frequency at which the chain resides in state i:

πj = lim
n→∞ P[Xn = j | X0 = i].

Renewal sequences can be constructed from Markov chains; in fact, the times of visit to any
fixed state k in the chain can be regarded as the renewal epochs. For each pair of states j and
k, we use the notation

τj,k = inf{n ≥ 1 : Xn = k | X0 = j}
for the time of first passage into state k (a first return when j = k). Later, the return times
restricted to the even integers will become important; we denote these by

ηj,k = inf{n ≥ 1 : X2n = k | X0 = j}. (2.4)

A relationship that we will use repeatedly in proofs is the tail formulation

P[τk,k > n] =
n∏

i=1

(1 − hi(k)), (2.5)

where hi(k) = P[τk,k = i | τk,k ≥ i].
Now suppose that the chain is reversible in that, for each pair of states j and k,

πjpj,k = πkpk,j .

Reversible chains include birth-and-death chains, random walks, two-state chains, many Mar-
kov chain Monte Carlo-generated chains, and urn models.

It is frequently desirable to assess convergence speeds. For renewal sequences, a geometric
convergence rate of un to u∞ is a bound of the form

|un − u∞| ≤ κr−n, (2.6)

for some finite κ and geometric rate r > 1. The constants κ and r should be explicit
(computable); moreover, one would clearly like κ to be as small and r to be as large as possible.
It is important to note that (2.6) must hold for every n ≥ 0; this differs fundamentally from
asymptotic approximations. Much of our discourse pertains to obtaining actual values of κ

and r .
A geometric renewal convergence rate exists if and only if E[sτ ] < ∞ for some s > 1

(Kendall (1959)). In particular, if E[sτ ] = ∞ for each s > 1, then no r > 1 satisfying (2.6)
exists. Unfortunately, the finiteness of E[sτ ] for a fixed s > 1 does not imply that (2.6) holds
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with r = s. Indeed, identifying an explicit rate and a first constant from the finiteness of E[sτ ]
for some fixed s > 1 is very difficult in general.

To assess the convergence speed of a chain {Xn}∞n=0 to its limiting measure π , we seek a
geometric rate r > 1 and a first constant κ(j) such that

sup
A

| P[Xn ∈ A | X0 = j ] − π(A)| ≤ κ(j)r−n,

where the supremum is taken over all measurable subsets of the state space. Here, κ(j) is
allowed to depend on the initial state j , but r is not. The fact that one can find some uniform rate
r > 1 in an ergodic chain that holds for all states is generally attributed to Kendall (1959); see
Baxendale (2005) for the latest developments. In addition to aiding conceptual understanding,
quantitative geometric convergence rates are also useful for assessing sampled Markov chain
convergence and for proving large-sample statistical results.

3. The DHR monotonicity

Our first result identifies the DHR monotonicity for reversible chains on a finite state space.

Theorem 3.1. Suppose that {Xn}∞n=0 is a reversible ergodic Markov chain on the finite state
space {0, . . . , N}.

1. The lifetime ηk,k (see (2.4)) has a DHR distribution for each k.

2. P[X2n = k | X0 = k] is nondecreasing and log-convex in n for every state k.

The proof of Theorem 3.1 relies on the spectral decomposition of P and is presented in
Section 6. To avoid the technicalities of spectral theory for unbounded operators, we use a
truncation argument to extend Theorem 3.1 to countably infinite state spaces. In particular,
suppose that {Xn}∞n=0 is a reversible chain on the states {0, 1, . . . } and let M be an arbitrary
positive integer. We truncate {Xn}∞n=0 to the states {0, . . . , M} by disallowing transitions to
states numbered higher than M (i.e. stay in the current state should a transition out of {0, . . . , M}
be suggested). In particular, the truncated chain {X(M)

n }∞n=0 has transition probability matrix
P (M) with p

(M)
i,j = pi,j if 0 ≤ i �= j ≤ M and

p
(M)
i,i = pi,i +

∞∑
k=M+1

pi,k, 0 ≤ i ≤ M.

We can assume that {X(M)
n }∞n=0 is defined on the same probability space for each M ≥ 1 by

enlarging the space supporting {Xn}∞n=0 if necessary.

Lemma 3.1. The chain {X(M)
n }∞n=0 is time reversible with limiting measure

π
(M)
i := lim

n→∞ P[X(M)
n = i] = πi∑M

i=0 πi

.

Proof. See Problem 4.44 of Ross (1996, p. 228).

Corollary 3.1. The statements in Theorem 3.1 also hold for reversible ergodic chains with
countably infinite state spaces.
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Proof. Given {Xn}∞n=0, let {X(M)
n }∞n=0 be the truncated chain defined above. Since {X(M)

n }∞n=0
is also reversible, Theorem 3.1 implies that

(F̄
(M)
n+1 )2 ≤ F̄ (M)

n F̄
(M)
n+2 , n ≥ 0,

for each fixed M , where

F̄ (M)
n = P[η(M)

k,k > n] and η
(M)
k,k = inf{n ≥ 1 : X

(M)
2n = k | X

(M)
0 = k}.

To obtain Theorem 3.1 for {Xn}∞n=0, it is sufficient to establish that limM↑∞ F̄
(M)
n = F̄n for

each fixed n ≥ 0.
Since Xj is a proper random variable for each fixed j with 1 ≤ j ≤ n,

lim
M↑∞ P[Xj ≤ M, 1 ≤ j ≤ n | X0 = k] = 1.

Now, on the set {Xj ≤ M, 1 ≤ j ≤ n}, η
(M)
k,k ≤ n if and only if ηk,k ≤ n. Hence,

lim
M↑∞ P[η(M)

k,k ≤ n | X0 = k] = lim
M↑∞ P[{η(M)

k,k ≤ n} ∩ {Xj ≤ M, 1 ≤ j ≤ n} | X0 = k]
= lim

M↑∞ P[{ηk,k ≤ n} ∩ {Xj ≤ M, 1 ≤ j ≤ n} | X0 = k]
= P[ηk,k ≤ n | X0 = k],

and the result follows.

4. Convergence rates of reversible chains

Convergence rates of reversible Markov chains can be extracted from the DHR structure of
the last section. Reversible chain convergence rates have received considerable recent attention;
Diaconis and Stroock (1991), Rosenthal (1995), Stroock (2005), and Chen (2005) are excellent
references. Some of the rates obtained here are good (tight), and others are not. The advance here
lies primarily in connecting convergence rates of reversible chains to hazard rates and finiteness
of the probability generating function of state return times; in particular, no eigenvalues of P

are needed.
We begin by linking geometric Markov chain convergence rates to the hazard rates of the first

return times of the chain. This topic has been studied further in Berenhaut and Lund (2001).
The following power series bound will prove useful in the ensuing analysis.

Lemma 4.1. Suppose that {ak}∞k=0 is a sequence of real numbers, and set

Sn(t) =
∞∑

k=n+1

(ak−1 − ak)t
k (4.1)

for each fixed n ≥ 0 and t ∈ (0, 1). If ak ∈ [0, C] for all k ≥ 0 and some C > 0, then
|Sn(t)| ≤ Ctn+1 for all n ≥ 0.

Proof. Fix n ≥ 0 and regroup terms in (4.1) to obtain

Sn(t) = ant
n+1 +

∞∑
k=n+1

ak(t
k+1 − tk). (4.2)
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Since t ∈ (0, 1), tk+1 − tk ≤ 0 for all k ≥ 0 and a sign analysis of (4.2) shows that Sn(t) is
maximized for each fixed t (over all {ak}∞k=0 with ak ∈ [0, C]) by taking an = C and ak = 0 for
k ≥ n + 1. Similarly, Sn(t) is minimized over all such {ak}∞k=0 by taking an = 0 and ak = C

for k ≥ n + 1. Both choices of {ak}∞k=0 give the same value of |Sn(t)|. The claimed bound for
|Sn(t)| follows by inserting the maximizing/minimizing values of the ak into (4.1).

The following result cleanly bounds chain convergence rates. The result applies to any
ergodic chain on a countable state space.

Theorem 4.1. Suppose that {Xn}∞n=0 is an ergodic Markov chain on the state space {0, 1, . . . }.
Then

| P[Xn = k | X0 = k] − πk| ≤ (1 − hmin(k))n+1, (4.3)

where hmin(k) = inf{hi(k) : i ≥ 1} and, recall, hi(k) = P[τk,k = i | τk,k ≥ i].
Proof. Inequality (4.3) clearly holds when hmin(k) = 0. Hence, suppose that hmin(k) > 0

and choose a ρ such that 1 < ρ < (1 − hmin(k))−1. Let τ ∗
k,k be a random variable with

distribution

P[τ ∗
k,k = n] = P[τk,k > n − 1]ρn−1 − P[τk,k > n]ρn, n ≥ 1, (4.4)

whence
P[τ ∗

k,k > n] = P[τk,k > n]ρn (4.5)

for all n ≥ 0. We show below that (4.4) defines a legitimate discrete lifetime distribution over
{1, 2, . . . }.

The governing recurrent event recursion, (2.1), and its tail form, (2.2), also apply to τ ∗
k,k (in

our notation we will use u∗
n as the probability of a renewal at time n in a renewal process with

independent lifetimes each having the same distribution as τ ∗
k,k).

Multiplying both sides of (2.2) by ρn and applying (4.5) yields

P[τ ∗
k,k > n] =

n∑
�=1

ρ�(u�−1 − u�) P[τ ∗
k,k > n − �], n ≥ 1. (4.6)

Comparing (4.6) with the version of (2.2) that applies for τ ∗
k,k and inductively equating coeffi-

cients gives
(u�−1 − u�)ρ

� = u∗
�−1 − u∗

�, � ≥ 1.

From this, we find that

|un − u∞| =
∣∣∣∣

∞∑
i=n+1

(ui−1 − ui)

∣∣∣∣ =
∣∣∣∣

∞∑
i=n+1

(u∗
i−1 − u∗

i )ρ
−i

∣∣∣∣.
Since u∗

k is a probability for each k, we have 0 ≤ u∗
k ≤ 1, and Lemma 4.1 with C = 1 and

t = ρ−1 gives |un − u∞| ≤ ρ−(n+1). Letting ρ ↑ (1 − hmin(k))−1 gives the result of the
theorem.

It remains to show that (4.4) defines a legitimate lifetime distribution on {1, 2, . . . }. To do so,
we must show that P[τk,k > n]ρn is nonincreasing in n and that limn→∞ P[τk,k > n]ρn = 0.
By choice of ρ and use of (2.5), we have

P[τk,k > n]
P[τk,k > n − 1] = 1 − hn < ρ−1
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for all n ≥ 0. It now follows that

P[τk,k > n]ρn

P[τk,k > n − 1]ρn−1 < 1

for all n ≥ 0; thus, P[τk,k > n]ρn is nonincreasing in n. To show that P[τk,k > n]ρn → 0 as
n → ∞, we use (2.5) to obtain

P[τk,k > n] = ρn
n∏

j=1

(1 − hj ) → 0

as n → ∞, which holds because supj≥1 ρ(1 − hj ) < 1 by choice of ρ.

Note that the convergence rate in Theorem 4.1 depends on the initial state k. This can be
advantageous if there is a state in the chain that lends itself to easy analysis. Theorem 4.1
only addresses convergence of the state-k probabilities. Frequently, more global convergence
measures are needed in applications. For this, we consider the total variation separation of
the chain at time n, defined by supA | P[Xn ∈ A | X0 = k] − π(A)|. Our next result uses
Theorem 4.1 to extract a total variation convergence rate.

Theorem 4.2. For a reversible ergodic Markov chain {Xn}∞n=0 on the state space {0, 1, . . . }
we have

sup
A

| P[Xn ∈ A | X0 = k] − π(A)| ≤
√

(1 − hmin(k))2n+1

4πk

.

Proof. The argument of Proposition 3 of Diaconis and Stroock (1991) yields

sup
A

| P[Xn ∈ A | X0 = k] − π(A)| ≤
√

P[X2n = k | X0 = k] − πk

4πk

(4.7)

using only reversibility and the Cauchy–Schwarz inequality; in particular, a finite state space
is not needed. Substituting the bound for P[X2n = k | X0 = k]−πk of Theorem 4.1 into (4.7)
proves the result.

It is worth noting that the quantity under the radical in (4.7) must be positive; Theorem 3.1
shows this to be the case (the quantity is also nondecreasing and log-convex in n).

We close this section by linking convergence rates of reversible chains to the radii of
convergence of state return times. In general, reversible chains may not converge at rates up to
the radius of convergence of E[rτk,k ]. Such a convergence property holds for many stochastically
monotone chains (Lund and Tweedie (1996)) and for reversible chains in continuous time (see
Theorem 4.1 of Chen (2000)). Example 5.2, below, provides a reversible chain counterexample
in discrete time. There is, however, a connection between chain convergence rates and the
convergence radius of E[rηk,k ], the latter of which we denote by Rη > 1.

The tail form for probability generating functions (see Meyn and Tweedie (1993, p. 527))
gives

E[rηk,k ] = 1 + (r − 1)

∞∑
n=0

rn P[ηk,k > n]

= 1 + (r − 1)

∞∑
n=0

n∏
i=1

r(1 − h
η
i (k)), (4.8)
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where h
η
i (k) denotes the hazard rate of ηk,k at index i and (2.5) has been applied. Theorem 3.1

shows that h
η
i (k) is decreasing in i and we denote its limit in i by h

η∞(k). We use this
monotonicity and a ratio test in (4.8) to see that Rη = (1 − h

η∞(k))−1. Applying Theorems 4.1
and 4.2 to the chain {X2n}∞n=0 and noting that π is also the stationary measure of {X2n}∞n=0
proves the following result.

Theorem 4.3. Consider a reversible ergodic Markov chain {Xn}∞n=0 on the state space {0, 1,

. . . }. Let h
η∞(k) be the limiting state-k hazard rate of ηk,k . Then

| P[X2n = k | X0 = k] − πk| ≤ R−(n+1)
η ,

sup
A

| P[X2n ∈ A | X0 = k] − π(A)| ≤ R
−(n+1/2)
η√

4πk

.

An implication of Theorem 4.3 is that total variational convergence of reversible chains holds
for rates up to

√
Rη (at least). Convergence rates along the subsequence of odd times will not

‘destroy’ the derived even-time rates, since the total variation distance is nonincreasing in n

(see Tuominen and Tweedie (1979)). The above discourse also suggests that {X2n}∞n=0 may be
easier to analyze than {Xn}∞n=0. This is intuitive, as all eigenvalues of P 2 are real, positive, and
lie in [0, 1], while those of P are only known to be real and to lie in [−1, 1] (see Lemma 6.1,
below).

Established methods exist for showing that E[rηk,k ] < ∞ for a fixed r > 1. For example,
E[rηk,k ] < ∞ if a drift function V and a constant b < ∞ can be found such that

E[V (X2) | X0 = x] ≤ r−1V (x) + b1{k}(x).

Here it is necessary that both V (x) ≥ 1 for all x and r > 1 to establish the drift inequality
as a legitimate contraction. The reader is referred to Meyn and Tweedie (1993, p. 367) and
Kalashnikov (1994, p. 9) for more on drift methods.

5. Examples

Example 5.1. In this example we present a renewal setting in which the optimal rate of
convergence is achieved. Fix ρ, 0 < ρ ≤ 1, and consider the lifetime τ with tail distribution

P[τ > n] = (2n)!
n! (n + 1)!

(
ρ

4

)n

, n ≥ 0.

This lifetime is DHR, since

P[τ > n]2

P[τ > n − 1] P[τ > n + 1] = 2(2n − 1)(n + 2)

(2n + 2)(2n + 1)
< 1,

and the radius of convergence of E[rτ ] is ρ−1, since

E[rτ ] = 1 + (r − 1)

∞∑
n=0

rn (2n)!
n! (n + 1)!

(
ρ

4

)n

,

which is finite if and only if rρ < 1 (use a ratio test).
Applying Theorem 4.1 gives the bound |un − u∞| ≤ ρn+1, and this is the best convergence

bound possible. To see this, we use the fact that un ↓ u∞, to obtain

un − u∞ ≥ un − un+1 = ρ

4
P[τ > n],
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where the equality follows from an identity of Liggett (1989). Thus, if r > ρ−1 then

lim inf
n→∞ rn(un − u∞) ≥ lim

n→∞ rn ρ

4
P[τ > n] = ∞,

and the convergence rate cannot be improved upon.

Example 5.2. Consider a chain on the two states {0} and {1} with transition matrix

P =
[

α 1 − α

1 − β β

]
, 0 < α, β < 1.

This simple chain is reversible and, as exact computations are possible, will allow us to compare
the rate bounds. This example was discussed in Rosenthal (1995).

The limiting measure π has

π0 = 1 − α

2 − α − β
and π1 = 1 − β

2 − α − β
,

and simple calculations give

P[τ0,0 > n] = (1 − α)βn−1 and P[τ1,1 > n] = (1 − β)αn−1, n ≥ 1.

The state-0 hazard rates are easily identified as h1(0) = α and hk(0) = 1 − β for k ≥ 2. The
state-1 hazard rates are h1(1) = β and hk(1) = 1−α for k ≥ 2. Hence, hmin(0) = min(α, 1−β)

and hmin(1) = min(β, 1 − α). Applying Theorem 4.2 gives

sup
A

| P[Xn ∈ A | X0 = 0] − π(A)| ≤
√

2 − α − β

4(1 − α)
[1 − min(α, 1 − β)]n+1/2,

sup
A

| P[Xn ∈ A | X0 = 1] − π(A)| ≤
√

2 − α − β

4(1 − β)
[1 − min(1 − α, β)]n+1/2.

To obtain the optimal geometric convergence rate, we use induction to obtain

P n = 1

2 − α − β

[
1 − β 1 − α

1 − β 1 − α

]
+ (α + β − 1)n

2 − α − β

[
1 − α α − 1
β − 1 1 − β

]
.

This gives

sup
A

| P[Xn ∈ A | X0 = 0] − π(A)| = 1 − α

2 − α − β
|α + β − 1|n. (5.1)

Here, the rate bounds are informative (i.e. they exceed unity) but are not optimal. Equation (5.1)
shows that the optimal geometric convergence rate is |α+β−1|−1. Note that the chain converges
at an infinite rate when α + β = 1. Indeed, when α + β = 1 the Xn are independent and have
distribution π for each n ≥ 1.

In this example, E[rτj,0 ] < ∞ for all initial states j when r < β−1 and E[rτj,1 ] < ∞ for all
j when r < α−1. However, when X0 = 0 the chain does not converge at geometric rates up to
β−1. Indeed, when α = β = 0.05, the best geometric rate is 10

9 but the radius of convergence of
E[rτj,k ] is 20 for every j and k. This gives a very simple example of a discrete-time reversible
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chain where geometric convergence does not take place out to the radii of convergence of the
generating function of the first return times. Note, however, that

P 2 =
[
α2 + (1 − α)(1 − β) α(1 − α) + β(1 − α)

β(1 − β) + α(1 − β) β2 + (1 − α)(1 − β)

]

and that E[rηj,k ] is finite for all j and k when

r < min([α2 + (1 − α)(1 − β)]−1, [β2 + (1 − α)(1 − β)]−1).

When α = β = 0.05, Theorem 4.3 provides a total variational geometric convergence rate of
1.0383 (to four decimal places), which is somewhat less than the optimal rate of 10

9 .

Remark 5.1. The radii of convergence of E[rηi,i ] may not be the same for each i. In Exam-
ple 5.2, E[rη0,0 ] has radius of convergence [β2 + (1 − β)(1 − α)]−1 and E[rη1,1 ] has radius of
convergence [α2 + (1−β)(1−α)]−1. In general, if E[rη0,0 ] < ∞ then E[rηk,0 ] < ∞ for every
other initial state k. To see this, note that if E[rη0,0 ] < ∞, then some k ≥ 1 can be found such
that the probability of going from state 0 to state k in j steps without passing through state 0
again, denoted by p

j
0,k/{0}, is positive. Then, by the Markov property,

E[rη0,0 ] ≥ p
j
0,k/{0}r

j E[rηk,0 ],
implying that

E[rηk,0 ] ≤ E[rη0,0 ]
p

j
0,k/{0}rj

< ∞.

Remark 5.2. Since P[X2n = k | X0 = k] decreases to its limit, πk , the entries of P 2 satisfy
P 2(k, A) ≥ πk1A(k) for all sets A and a minorization condition holds. In fact, in a reversible
chain, if E[rηk,k ] < ∞ for some r > 1, then conditions A1–A3 of Baxendale (2005) hold with

C = {k}, β = πk, ν(A) = 1A(k), λ = r−1,

K = r−1(E[rηk,k ] − 1), and V (x) = E[rηx,k ] for x �= k;
see Theorem 5.1 of Lund and Tweedie (1996) for construction details of the drift V . Such a
minorization may prove useful in splitting arguments for reversible chains on a continuum of
states.

6. Proof of Theorem 3.1

To prove Theorem 3.1, we establish a sequence of technical facts.

Lemma 6.1. In a reversible Markov chain on the finite state space {0, . . . , N}, all eigenvalues
of P 2 are real and nonnegative.

Proof. As the eigenvalues of a reversible transition probability matrix P must be real (see
Theorem 3.29 of Kulkarni (1995, p. 146) or Example 2.19 of Kijima (1997, p. 62)) and the
eigenvalues of P 2 are the squares of those of P , the result follows.

Without loss of generality, we proceed with the eigenvalues, {λi}Ni=0, of P arranged in the
descending absolute order

1 = λ0 > |λ1| ≥ |λ2| ≥ · · · ≥ |λN | ≥ 0. (6.1)
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The standard spectral decomposition of P 2 yields

P[X2n = k | X0 = k] = πk +
N∑

j=0

λ2n
j x2

j,k (6.2)

for each state k, where xj,k is the j th component of the eigenvector xj . To elaborate, xj is the
eigenvector of the matrix �

1/2
d P�

−1/2
d corresponding to the eigenvalue λj (the eigenvalues

of P equal those of �
1/2
d P�

−1/2
d (see Kijima (1997, p. 62))), chosen orthonormally in j , where

�d is the diagonal matrix whose diagonal entries are the stationary probabilities {πi}Ni=0.
As was noted in Kijima (1997, p. 63), (6.2) implies that P[X2n = k | X0 = k] converges

monotonically downwards to πk . However, more can be said; in particular, we offer the
following result.

Lemma 6.2. Consider a reversible Markov chain {Xn}∞n=0 on the state space {0, . . . , N}, and
fix a state k. Let �n = u2n − u2(n−1), where un = P[Xn = k | X0 = k]. Then {�n}∞n=1 is a
positive, nonincreasing, log-convex sequence in n.

Proof. From (6.2), we have

�n =
[
πk +

N∑
j=0

(λ2
j )

n−1x2
j,k

]
−

[
πk +

N∑
j=0

(λ2
j )

nx2
j,k

]

=
N∑

j=0

(λ2
j )

n−1(1 − λ2
j )x

2
j,k =

N∑
j=0

(λ2
j )

n−1ωj , (6.3)

where ωj = (1 − λ2
j )x

2
j,k is nonnegative. The positivity and nonincrease claims now follow.

To show log-convexity of {�n}∞n=1, we use (6.3) and (6.1) to obtain

�2
n =

N∑
j=0

N∑
�=0

(λ2
j )

n−1ωj (λ
2
�)

n−1ω�

=
N∑

�=0

(λ2
�)

n−1(λ2
�)

n−1ω�ω� + 2
∑ ∑
{�,j : �<j}

(λ2
j )

n−1(λ2
�)

n−1ωjω�

≤
N∑

�=0

(λ2
�)

2(n−1)ω2
� + 2

∑ ∑
{�,j : �<j}

(λ2
j )

n−1(λ2
�)

n−1 λ2
�

λ2
j

ωjω�

=
N∑

�=0

(λ2
�)

2(n−1)ω2
� + 2

∑ ∑
{�,j : �<j}

(λ2
j )

n−2(λ2
�)

nωjω�

=
N∑

�=0

(λ2
�)

n−2(λ2
�)

nω�ω� + 2
∑ ∑
{�,j : �<j}

(λ2
j )

n−2(λ2
�)

nωjω�

=
[ N∑

j=0

(λ2
j )

n−2ωj

][ N∑
�=0

(λ2
�)

nω�

]

= �n−1�n+1.
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Now consider a sequence {κn}∞n=1 in the form of (2.2) defined recursively by

κn =
n∑

�=1

C�κn−�, n ≥ 1, (6.4)

with κ0 = 1. Here {C�}∞�=1 is assumed to be positive, nondecreasing, and log-convex. The
following result is similar to Lemma 2.4 of Hansen and Frenk (1991).

Lemma 6.3. Suppose that {κ�}∞�=0 and {Cn}∞n=1 are related by (6.4). If {Cn}∞n=1 is positive,
nonincreasing, and log-convex, then {κ�}∞�=0 is also log-convex.

Proof. First, (6.4) and C2 ≥ 0 give

κ2
1 − κ0κ2 = C2

1 − (κ1C1 + C2) = −C2 ≤ 0.

Hence, κ2
1 ≤ κ0κ2. Similarly (6.4) gives

κ0κ3 − κ2κ1 = (κ2C1 + κ1C2 + κ0C3) − κ2C1 = κ1C2 + κ0C3 ≥ 0. (6.5)

An identity that will allow us to exploit log-convexity is

n∑
�=1

(κn−�κn+2 − κn+1κn+1−�)(Cn+2C� − C�+1Cn+1)

= κn+2Cn+2

n∑
�=1

κn−�C� − κn+2Cn+1

n∑
�=1

κn−�C�+1 − κn+1Cn+2

n∑
�=1

κn+1−�C�

+ κn+1Cn+1

n∑
�=1

κn+1−�C�+1

= κn+2Cn+2κn − κn+2Cn+1(κn+1 − κnC1) − κn+1Cn+2(κn+1 − κ0Cn+1)

+ κn+1Cn+1(κn+2 − κn+1C1 − κ0Cn+2)

= (Cn+2 + C1Cn+1)(κnκn+2 − κ2
n+1). (6.6)

Taking n = 1 in (6.6) yields

(C3 + C1C2)(κ1κ3 − κ2
2 ) = (κ0κ3 − κ2κ1)(C3C1 − C2

2 ) ≥ 0.

By (6.5) and nonnegativity and convexity of the C�, we must have κ2
2 ≤ κ1κ3.

To complete the proof via induction, suppose that

κ2
n+1 ≤ κnκn+2

for all n ≤ p − 2, where p > 2. Taking n = p − 1 in (6.6) yields

(Cp+1 + C1Cp)(κp−1κp+1 − κ2
p)

=
p−1∑
�=1

(κp−1−�κp+1 − κpκp−�)(Cp+1C� − C�+1Cp). (6.7)
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The induction hypothesis and nonnegativity and convexity of the C� imply that each term
in parentheses on the right-hand side of (6.7) is nonnegative. Since Cp+1 + C1Cp is also
nonnegative, we conclude that

κ2
p ≤ κp−1κp+1,

as required.

Proof of Theorem 3.1. Let

un = P[X2n = k | X0 = k]
for a fixed state k. Then, by (2.2),

P[ηk,k > n] =
n∑

�=1

(u�−1 − u�) P[ηk,k > n − �]. (6.8)

By Lemma 6.2, u�−1 −u� is positive, nonincreasing, and log-convex in �. Applying Lemma 6.3
to (6.8) proves the first part of the theorem.

To prove the second statement of the theorem, simply use the representation in (6.2) and
argue as in the proof of Lemma 6.2.

Acknowledgements

The authors acknowledge support from the National Science Foundation, grant number
DMS 0304407. Our thanks go to the referee for several insightful comments that improved the
paper.

References

Baxendale, P. H. (2005). Renewal theory and computable convergence rates for geometrically ergodic Markov chains.
Ann. Appl. Prob. 15, 700–738.

Berenhaut, K. S. and Lund, R. (2001). Geometric renewal convergence rates from hazard rates. J. Appl. Prob. 38,
180–194.

Berenhaut, K. S. and Lund, R. (2002). Renewal convergence rates for DHR and NWU lifetimes. Prob. Eng. Inf.
Sci. 16, 67–84.

Brown, M. (1980). Bounds, inequalities, and monotonicity properties for some specialized renewal processes. Ann.
Prob. 8, 227–240.

Chen, M.-F. (2000). Equivalence of exponential ergodicity and L2-exponential convergence of Markov chains. Stoch.
Process. Appl. 87, 281–297.

Chen, M.-F. (2005). Eigenvalues, Inequalities and Ergodic Theory. Springer, London.
Diaconis, P. and Stroock, D. (1991). Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Prob. 1, 36–61.
Feller, W. (1968). An Introduction to Probability Theory and Its Applications, 3rd edn. John Wiley, New York.
Hansen, B. G. and Frenk, J. B. G. (1991). Some monotonicity properties of the delayed renewal function. J. Appl.

Prob. 28, 811–821.
Kalashnikov, V. V. (1994). Topics on Regenerative Processes. CRC Press, Boca Raton, FL.
Keilson, J. and Kester, A. (1978). Unimodality preservation in Markov chains. Stoch. Process. Appl. 7, 179–190.
Kendall, D. G. (1959). Unitary dilations of Markov transition operators, and the corresponding integral representations

for transition-probability matrices. In Probability and Statistics, ed. U. Grenander, John Wiley, NewYork, pp. 139–
161.

Kijima, M. (1997). Markov Processes for Stochastic Modeling. Chapman and Hall, London.
Kulkarni, V. G. (1995). Modeling and Analysis of Stochastic Systems. Chapman and Hall, London.
Liggett, T. M. (1989). Total positivity and renewal theory. In Probability, Statistics, and Mathematics, eds T. W.

Anderson, K. B. Athreya and D. L. Iglehart, Academic Press, Boston, MA, pp. 141–162.
Lindvall, E. T. (1992). Lectures on the Coupling Method. John Wiley, New York.
Lund, R. B. and Tweedie, R. L. (1996). Geometric convergence rates for stochastically ordered Markov chains. Math.

Operat. Res. 21, 182–194.

https://doi.org/10.1239/jap/1152413736 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1152413736


A monotonicity in reversible Markov chains 499

Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability. Springer, Berlin.
Rosenthal, J. S. (1995). Convergence rates for Markov chains. SIAM Rev. 37, 387–405.
Ross, S. M. (1996). Stochastic Processes, 2nd edn. John Wiley, New York.
Sengupta, D., Chatterjee, A. and Chakraborty, B. (1995). Reliability bounds and other inequalities for discrete

life distributions. Microelectron. Reliab. 35, 1473–1478.
Shaked, M. and Shanthikumar, J. G. (1987). IFRA properties of some Markov jump processes with general state

space. Math. Operat. Res. 12, 562–568.
Shaked, M. and Shanthikumar, J. G. (1994). Stochastic Orders and Their Applications. Academic Press, Boston,

MA.
Stoyan, D. (1983). Comparison Methods for Queues and other Stochastic Models. John Wiley, Chichester.
Stroock, D. W. (2005). An Introduction to Markov Processes. Springer, Berlin.
Tuominen, P. and Tweedie, R. L. (1979). Exponential ergodicity in Markovian queueing and dam models. J. Appl.

Prob. 16, 867–880.

https://doi.org/10.1239/jap/1152413736 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1152413736

	1 Introduction
	2 Background
	3 The DHR monotonicity
	4 Convergence rates of reversible chains
	5 Examples
	6 Proof of Theorem 3.1
	Acknowledgements
	References

