SOME REMARKS ON TALENTI'S SEMIGROUP

BY

A. CHRYSOVERGIS

1. Introduction. Let X be a Banach space. Consider the family $I(\alpha)$ of linear continuous operators from X into itself, depending on the parameter $\alpha \geq 0$. Suppose that $I\left(\alpha_{1}+\alpha_{2}\right)=I\left(\alpha_{1}\right) I\left(\alpha_{2}\right) \forall \alpha_{1}, \alpha_{2} \geq 0$ and $I(0)=I$ (semigroupal property). Such a semigroup is said to be strongly continuous for $\alpha>0$, if $\lim _{h \rightarrow 0} I(\alpha+h) x$ $=I(\alpha) x, \forall x \in X$. We shall study here an example of such semigroup, generalizing the well-known semigroup generated by the Riemann-Liouville Integral (see [2]). The semigroup we are studying here appeared in a paper by G. Talenti [1].
2. Take $X=C[0,1]$ the space of continuous functions on $[0,1]$ with the topology of the uniform convergence. Take also $p(t)$ a positive and continuous function in $[0,1]$ and define, $\forall g \in C[0,1]$ the operator

$$
\begin{equation*}
I(\alpha) g(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t} g(w)\left(\int_{w}^{t} p(s) d s\right)^{\alpha-1} p(w) d w, \quad \alpha>0 \tag{2.1}
\end{equation*}
$$

where $I(\alpha)=\left[p^{-1}(d / d t)\right]^{-\alpha}$.
Remark. If $p(t) \equiv 1$ then (2.1) reduces to Riemann-Liouville Integral.

$$
\begin{equation*}
I(\alpha) g(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t} g(w)(t-w)^{\alpha-1} d w \tag{2.2}
\end{equation*}
$$

which belongs to $C[0,1]$, and

$$
\begin{equation*}
\|I(\alpha)[g]\| \leq \frac{\|g\|}{\Gamma(\alpha+1)}, \quad \alpha>0 \tag{2.3}
\end{equation*}
$$

It is trivial that $I(\alpha)\left(g_{1}+g_{2}\right)=I(\alpha) g_{1}+I(\alpha) g_{2}, \alpha>0$.
Theorem I. $I(\alpha)$ maps $C[0,1]$ into itself and

$$
\begin{equation*}
\|I(\alpha)[g]\| \leq \frac{\|g\|}{\Gamma(\alpha+1)}\|p\|^{\alpha}, \quad \alpha>0 \tag{2.4}
\end{equation*}
$$

Proof. Let $0 \leq t<t+h \leq 1$ and $0<\alpha<1$.

$$
\begin{align*}
I(\alpha) g(t+h)-I(\alpha) g(t)= & \frac{1}{\Gamma(\alpha)} \int_{0}^{t+h} g(w)\left(\int_{w}^{t+h} p(s) d s\right)^{\alpha-1} p(w) d w \tag{2.5}\\
& -\frac{1}{\Gamma(\alpha)} \int_{0}^{t} g(w)\left(\int_{w}^{t} p(s) d s\right)^{\alpha-1} p(w) d w
\end{align*}
$$

We make the substitution
Received by the editors March 17, 1970 and, in revised form, August 10, 1970.

$$
\begin{equation*}
\int_{0}^{s} p(s) d s=P(s) \tag{2.6}
\end{equation*}
$$

Then

$$
\int_{w}^{t} p(s) d s=P(t)-P(w) .
$$

Therefore the R.H. side of (2.5) is equal to

$$
\begin{aligned}
& \begin{array}{l}
\frac{1}{\Gamma(\alpha)} \int_{0}^{t+h} g(w)(P(t+h)-P(w))^{\alpha-1} P^{\prime}(w) d w-\frac{1}{\Gamma(\alpha)} \int_{0}^{t} g(w)(P(t)-P(w))^{\alpha-1} P^{\prime}(w) d w \\
=\frac{1}{\Gamma(\alpha)} \int_{0}^{t} g(w)(P(t+h)-P(w))^{\alpha-1} P^{\prime}(w) d w+\frac{1}{\Gamma(\alpha)} \int_{t}^{t+h} g(w) \\
\quad \times(P(t+h)-P(w))^{\alpha-1} P^{\prime}(w) d w-\frac{1}{\Gamma(\alpha)} \int_{0}^{t} g(w)(P(t)-P(w))^{\alpha-1} P^{\prime}(w) d w \\
=\frac{1}{\Gamma(\alpha)} \int_{0}^{t} g(w)\left[(P(t+h)-P(w))^{\alpha-1}-(P(t)-P(w))^{\alpha-1}\right] P^{\prime}(w) d w \\
\quad+\frac{1}{\Gamma(\alpha)} \int_{t}^{t+h} g(w)(P(t+h)-P(w))^{\alpha-1} P^{\prime}(w) d w . \\
|I(\alpha) g(t+h)-I(\alpha) g(t)| \leq \frac{\|g\|}{\Gamma(\alpha)}\left\{\int_{0}^{t} \mid(P(t+h)-P(w))^{\alpha-1}\right. \\
\left.\quad-(P(t)-P(w))^{\alpha-1}\left|P^{\prime}(w) d w+\int_{t}^{t+h}\right|(P(t+h)-P(w))^{\alpha-1} \mid P^{\prime}(w) d w\right\} . \\
\text { Since } P(t+h)-P(w)>P(t)-P(w) \text { and, for } 0<\alpha<1, \\
\quad(P(t+h)-P(w))^{\alpha-1}<(P(t)-P(w))^{\alpha-1},
\end{array}
\end{aligned}
$$

this implies that

$$
\begin{aligned}
&\left|(P(t+h)-P(w))^{\alpha-1}-(P(t)-P(w))^{\alpha-1}\right| \\
&=(-1)\left[(P(t+h)-P(w))^{\alpha-1}-(P(t)-P(w))^{\alpha-1}\right]
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \int_{0}^{t} \mid(P(t+h)-P(w))^{\alpha-1}-(P(t)-P(w))^{\alpha-1} \mid P^{\prime}(w) d w \\
&=\int_{0}^{t}\left[(P(t+h)-P(w))^{\alpha-1}-(P(t)-P(w))^{\alpha-1}\right]\left(-P^{\prime}(w) d w\right) \\
&=\frac{(P(t+h)-P(w))^{\alpha}}{\alpha}-\left.\frac{(P(t)-P(w))^{\alpha}}{\alpha}\right|_{0} ^{t} \\
& \quad=\frac{1}{\alpha}\left[(P(t+h)-P(t))^{\alpha}+P(t)^{\alpha}-P(t+h)^{\alpha}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{t}^{t+h}(P(t+h)-P(w))^{\alpha-1} P^{\prime}(w) d w & =-\left.\frac{1}{\alpha}(P(t+h)-P(w))^{\alpha}\right|_{t} ^{t+h} \\
& =\frac{1}{\alpha}(P(t+h)-P(t))^{\alpha}
\end{aligned}
$$

Thus,

$$
|I(\alpha) g(t+h)-I(\alpha) g(t)|
$$

$$
\leq \frac{\|g\|}{\Gamma(\alpha+1)}\left[2(P(t+h)-P(t))^{\alpha}+P(t)^{\alpha}-P(t+h)^{\alpha}\right] \rightarrow 0 \text { as } h \rightarrow 0 .
$$

This proves continuity on the right and left continuity is proved in a similar manner.
Using the same techniques one can estimate that

$$
\|I(\alpha) g\| \leq \frac{\|g\|}{\Gamma(\alpha+1)}\|P\|^{\alpha}
$$

from which (2.3) follows.
Thus we have proved that $I(\alpha) \in \mathscr{L}(X, X) \forall \alpha>0$, and the semigroupal property $I\left(\alpha_{1}+\alpha_{2}\right)=I\left(\alpha_{1}\right) I\left(\alpha_{2}\right)$ is proved in [1].

Next we proceed to show that the above considered semigroup is not only strongly continuous for each $\alpha>0$, but it is fact continuous in the operator norm.

Proof.

$$
\begin{aligned}
& I(\alpha+h) g(t)-I(\alpha) g(t)=\int_{0}^{t} g(w)\left[\frac{(P(t)-P(w))^{\alpha+h-1}}{\Gamma(\alpha+h)}-\frac{(P(t)-P(w))^{\alpha}}{\Gamma(\alpha)}\right] P^{\prime}(w) d w . \\
& |I(\alpha+h) g(t)-I(\alpha) g(t)| \\
& \quad \leq \int_{0}^{t}|g(w)|\left|\left(\frac{(P(t)-P(w))^{\alpha+h-1}}{\Gamma(\alpha+h)}-\frac{(P(t)-P(w))^{\alpha-1}}{\Gamma(\alpha)}\right) P^{\prime}(w)\right| d w
\end{aligned}
$$

from which we have

$$
\begin{aligned}
\|I(\alpha+h) g-I(\alpha) g\| & =\sup _{0 \leq t \leq 1}|I(\alpha+h) g(t)-I(\alpha) g(t)| \\
& \left.\leq\|g\| \sup _{0 \leq t \leq 1}\left|\frac{(P(t)-P(w))^{\alpha+h}}{(-)(\alpha+h) \Gamma(\alpha+h)}+\frac{(P(t)-P(w))^{\alpha}}{\alpha \Gamma(\alpha)}\right|_{0} \right\rvert\, \\
& =\|g\| \sup _{0 \leq t \leq 1}\left|\frac{P(t)^{\alpha+h}}{\Gamma(\alpha+h+1)}-\frac{P(t)^{\alpha}}{\Gamma(\alpha+1)}\right|
\end{aligned}
$$

Let

$$
E=\left|\frac{P(t)^{\alpha+h}}{\Gamma(\alpha+h+1)}-\frac{P(t)^{\alpha}}{\Gamma(\alpha+1)}\right|
$$

We want to show it converges uniformly to 0 for $t \in[0,1]$ as $h \rightarrow 0, \forall \alpha>0$.

$$
\begin{aligned}
E & =\left|\frac{P(t)^{\alpha}}{\Gamma(\alpha+h+1)}\right|\left|P(t)^{h}-\frac{\Gamma(\alpha+h+1)}{\Gamma(\alpha+1)}\right| \\
& \leq\left|\frac{P(t)^{\alpha}}{\Gamma(\alpha+1)}\right|\left|\frac{\Gamma(\alpha+1)}{\Gamma(\alpha+h+1)}\right|\left\{\left|P(t)^{h}-1\right|+\left|1-\frac{\Gamma(\alpha+h+1)}{\Gamma(\alpha+1)}\right|\right\} .
\end{aligned}
$$

For small h,

$$
\frac{\Gamma(\alpha+1)}{\Gamma(\alpha+h+1)}=e^{-h} \frac{\Gamma^{\prime}(\alpha+1)}{\Gamma(\alpha+1)}+O\left(h^{3 / 2}\right), \quad|h|<1
$$

Choose h so small that $1-\varepsilon<[\Gamma(\alpha+1)] /[\Gamma(\alpha+h+1)]<1+\varepsilon$.

$$
\left|P(t)^{h}-1\right|<\frac{\varepsilon}{2 M}, \quad\left|1-\frac{\Gamma(\alpha+h+1)}{\Gamma(\alpha+1)}\right|<\frac{\varepsilon}{2 M}
$$

where

$$
M=\max _{0 \leq t \leq 1} \frac{P(t)^{\alpha}}{\Gamma(\alpha+1)}
$$

Then

$$
\|I(\alpha+h) g-I(\alpha) g\|<M(1+\varepsilon)\left[\frac{\varepsilon}{2 M}+\frac{\varepsilon}{2 M}\right]\|g\|
$$

or

$$
\|I(\alpha+h) g-I(\alpha) g\|<\varepsilon(1+\varepsilon)\|g\|
$$

and this implies

$$
\sup _{\|g\| \leq 1}\|I(\alpha+h) g-I(\alpha) g\|=\|I(\alpha+h)-I(\alpha)\|<\varepsilon(1+\varepsilon) \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0 .
$$

References

1. G. Talenti, Sul Problema di Cauchy Per Le Equazioni A Derivate Parziali, Ann. Mat. Pura Appl. Vol. LXVII, (1965), 365-394.
2. Einar Hille and Ralph S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ., v. 31.

Sir George Williams University,
 Montreal, Quebec

