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N-TH ROOT RINGS

HENRY HEATHERLY AND ALTHA BLANCHET

A ring for which there is a fixed integer n > 2 such that every

element in the ring has an n-th root in the ring is called an

n-th root ring. This paper gives numerous examples of diverse types

of n-th root rings, some via general construction procedures. It is

shown that every commutative ring can be embedded in a commutative

n-th root ring with unity. The structure of n-th root rings with

chain conditions is developed and finite n-th root rings are

completely classified. Subdirect product representations are given

for several classes of n-th root rings.

A wide and diverse class of rings have the property that for a fixed

integer n £ 2 every element of the ring has an w-th root in the ring;

these rings are called n-th root rings. Similarly one can define M-th

root fields, groups, semigroups, etc. Rings with unique cube root were

considered by Abian [7]. He was primarily concerned with those rings under

the order relation given by: x > !/ if and only if xy = X . As noted

in that paper, many results therein carry over to unique n-th root rings.

We have taken a different approach to n-th root rings in this paper.

Unique n-th root rings play only a minor role herein. This paper provides

numerous examples of n-th root rings, some through general construction

schemes. It is shown that every commutative ring can be embedded in an

n-th root ring with unity.
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A key result is that an n-th root ring of bounded index of

nilpotence is a reduced ring. Consequently a right Artinian n-th root

ring is a finite direct sum of the n-th root division rings. Using an

entirely different approach the same end result is achieved for n-th root

rings with ascending chain condition on principal right ideals. Finite

n-th root rings are completely classified.

Properties of ideals of an n-th root ring are considered. Subdirect

product representations for various classes of n-th root rings are given;

these representations are sharpest in the commutative case. Reduced

rings, and thereby, through the Andrunakievic-Rjabuhin Theorem, entire

rings CZ], play a key r61e in the structure of n-th root rings. Yet the

embedding result mentioned and a class of examples built via homomorphic

images of certain polynomial rings in infinitely many indeterminants

show that n-th root rings need not be reduced.

We show where not to look for n-th root rings and raise several

conjectures as to the scarcity of n-th root rings among certain important

classes of rings.

All rings herein are associative rings but need not have a unity

element. A ring R has bounded index of nilpotence (for convenience:

bounded index), if there is a fixed positive integer n such that r" = 0

for each nilpotent element r e R . For a given r the minimal such

is called the index of T , written: index (r) . If R has bounded

index the minimal n such that index (T) S n for each nilpotent v £ R

is called the index of R .

A ring is reduced if it has no non-zero nilpotent elements and entire

if it has no non-zero divisors of zero. A commutative entire ring is

called an integral domain. The phrases "n-th root ring" and "ring with

n-th root" will be used interchangeably. An n-th root ring with n = 2

(respectively: n = 3) is called a square root ring (respectively: cube

root ring) . If R is an n-th root ring for all n £ 2 , then R is an

all root ring.

For the purposes of this paper the following notation is adopted

(here R is a ring, S a subset of R , and n a positive integer) ;
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1. R , the set of non-zero elements of R,

2. R+, the additive group of R,

3. A(S) = {x e R : Sx = xS = 0} , the annihilator of S in R ,

4. |s| , the cardinality of S,

5. M (R) , the full ring of n by n matrices over i? .

1. Basic properties, examples and constructions.

The class A of all n-th root rings is closed under the formation of

homomorphic images, direct sums, and direct products. It is not closed

under the formation of subdirect products. However, the K.-direct

product of the n-th root rings R. , i e I , (defined as the subring of
Is

the direct product Jl R., i e I , composed of those elements (a.) for

which a- \ 0 for less than N, terms i e I ) is again an n-th root ring

and is a subdirect product of the R• , i e I. The class of all w-th root

unital algebras over an n-th root field K is closed under tnesor product.

The class A is not closed under the formation of full matrix rings,

polynomial rings, formal power series rings, or the standard type extensions

of a ring to a ring with unity.

Examples of subclasses of A which come readily to mind are:

Boolean rings (all n ) ; p-rings (« = p); algebraically closed fields

(all n); real closed fields (n odd); the quaternions over a real closed

field (all n ) ; the algebraic integers, or more generally the integral

closure of an integral domain (all n ) ; and finite fields of characteristic

p = n. Each of the rings from these classes of examples is a reduced ring.

A class of n-th root rings which are not reduced is given next.

EXAMPLE 1.1. Let K be an algebraically closed field of prime

characteristic p and let n = p , m fixed. Let I be the set of all

ordinals less than a given limit ordinal a and consider the polynomial

ring #[X] in the commuting indeterminants x- , i e I. Let A be the

ideal generated by the elements: x . , if i is a limit ordinal or if

i = 1 , and x. - x. if i has a predecessor. Then R = K[_I]/A is an

n-th root ring with unity and R has non-zero nilpotent elements, among
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which are the images of x-< i = 1 or i a limit ordinal, in R . The

hypotheses that K have prime characteristic p and n = pm are crucial.

The next two examples have the flavour of classical analysis.

EXAMPLE 1.2. Let S(R) be the set of all sequences which converge

to zero, where R is either the complex numbers or the real quaternions.

Then SIR) with respect to the operations of termwise addition and

multiplication is an all root ring without unity. More generally, if R

is a topological n-th root ring, then S(.R) is a n-th root ring.

EXAMPLE 1.3. Let C be the set of all real-valued continuous

functions on [0,°°) which are expoential order as t •* °° . Under the

operations of pointwise addition and convolution: f(t) * g{t)

= fQ f(x)g(t - x) dx , the system (C, +, *) is an integral domain

without unity [7, p. 349]. That it is an n-th root ring for all odd n

can be seen by using the Convolution Theorem for Laplace transforms.

Similar results can be obtained for wider classes of real or complex

valued functions.

It is perhaps mildly surprising that the discrete analogue of

(C, +i * ) / the real valued sequences under the operations of termwise

and Cauchy product, is not an n-th root ring for any w > 2 .

The field of quotients for the domain (C, + ,*) , a Mikusinski field

of distributional operators which includes the 6 operator, is an

n-th root field. Obviously the field of quotients for any n-th root

integral domain is an n-th root field. In general the classical ring

of quotients for an n-th root ring need not be an n-th root ring (given

that the ring of quotients exists).

PROPOSITION 1.4. Let R be an n-th root ring with a central

nondivisor of zero. If the set of all central nondivisors of zero is

an n-th root semigroup under multiplication, then R has a right ring

of quotients which is itself an n-th root ring.
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PROOF. The ring of quotients is constructed in the usual fashion

[10, pp. 50-53], from which the n-th root property follows immediately.

The centrality of the nondivisors of zero is needed to obtain

COROLLARY 1.5. If R is an n-th root integral domain and P is

a prime ideal of R , then the localization of R at P is an n-th root

local ring and the unique maximal ideal of this ring is also an n-th root

ring.

Let R be a ring and R the set of ra-tuples from R with

coordinate-wise addition. For m = 2, define: La,b)•(c,d) = (ac - bd,

ad + bo), analogous to the Gauss-Hamilton construction of complex numbers.

This yields a ring, which we call the complexification of R and denote

by G(R\ . Similarly, on R. , define a quaternion multiplication to

obtain a ring, H{R) , called the quaternion ring over R . Each of

these well-known constructions yields examples of n-th root rings under

certain conditions.

EXAMPLE 1.6. Let K be a square root field with characteristics

T* 2 . Then the complexification of K is a square root ring. For any

(a,b) e G(K) , let o = 2~ha + (a2 + & 2 ) 1 / 2 ] 1 / 2 and d = b{2c)~1

and obtain {c,d) = (a,b). Observe that G(K) is commutative with

unity but is a field if and only if K is formally real. If char K = 2,

then G(K) will not be a square root ring.

The complexification G{A) over the ring of algebraic integers is

not a square root ring even though A is an all root ring and has

characteristic zero. If R is a commutative ring with unity and R

contains a square root of -1 , then G(R) a square root ring implies

R is a square root ring.

EXAMPLE 1.7. Let K be a field of characteristic f 2 and let

HOC) be the quaternion ring over K . If K is not formally real, then

H(K) is isomorphic to M~iK) and hence cannot be an n-th root ring for

any n £ 2 . If K is a real closed field, then H(K) is an algebraically

closed division ring [8].
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Having a unity element in an n-th root ring can be helpful in

certain calculations. Since n-th root rings need not have a unity it is

natural to ask if an n-th root ring can be embedded in an n-th root ring

with unity. The usual Dorroh type extensions of a ring to a ring with unity

do not preserve the n-th root property. However, an extension procedure

similar to that used in proving the Steinitz Theorem for algebraic closure

of a field gives the desired result and much more in the commutative case.

PROPOSITION 1.8. Let n > 2 be a fixed integer. Then any commutative

ring R can be embedded in a commutative n-th root ring nrith unity.

PROOF. Since every ring can be embedded in a ring with unity, we can

assume R has unity. Let S be the set of all elements of R which do

not have an n-th root in R and assume S is nonempty. Let

Q = {oo : a e S] be a set of symbols which we use as commuting indetermin-

ants over R to form the ring i?[ft] of polynomials in these indeterminants.

Define A to be the ideal in RlQl generated by the polynomials of the

form to - a, a e S . Observe that R embeds in i?[fi]//5 via the mapping

r -> r + A . Then (u + A) = a+ A and in this sense every element of

R has an n-th root in R\_ti]/A • Let R^ = Rinl/A and repeat the process

which led from R to R now using f?, as a starting point to obtain an

extension ring R^ of /?.. such that every element in R, has an n-th

root in i?2 . Continuing this process results in a tower of rings:

R = RQ C R C J C .,, . In the usual fashion form the ring T = u R• ,

i = 1,2,..., and observe that T is an n-th root ring with unity and

R embeds in T .

If R is not commutative, it is easy to find examples where the

mapping r •*• r + A is not injective. So the above proof cannot be

extended to all rings. This leads to the open question: can every ring

be embedded in an n-th root ring?

The procedure in Proposition 1.8 can be used to build n-th root rings
2

with some interesting properties. For example, by using R = Klxl/ix ),
2

where K is a field of characteristic zero and (x ) is the ideal in
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2
generated by x , the ring 2" in the above procedure will be an

n-th root ring containing nilpotent elements and having a torsion-free

additive group.

2. N-th root rings with finiteness conditions

We begin with a lemma which while quite elementary has considerable

value in determining the structure of n-th root rings.

LEMMA 2.1. If R is a n-th root ring of bounded index, then R is

reduced.

Proof. If x is nilpotent and y = x , then either y = x = 0

or index (y) > index (x) , from which R reduced follows immediately.

This result yields that if A is a reduced ring, then M (A) cannot

be an n-th root ring for n > 1 . Since any semiprime right Goldie ring

or any semiprime ring satisfying a polynomial identity has bounded index,

such a ring with the n-th root property must be reduced.

PROPOSITION 2.2. A right (left) Artinian n-th root ring is a

finite direct sum of n-th root division rings.

Proof. Right Artinian rings have bounded index; so R is reduced

and right Artinian. Such rings are known to be finite direct sums of

division rings.

COROLLARY 2.3. A finite n-th root ring is a direct sum of fields,

F • 3 each hewing the property: \F,\ and n are relatively prime.
3 3

Proof. From Proposition 2.2. and the Wedderburn Theorem for finite

division rings we obtain R = F, ©...© F , where each F- is a field.
J. Tit J

JJ

That \F. I and n are relatively prime follows from: if G is a cyclic
3

groups of order k, then every element in G has an n-th root if and
only if k and n are relatively prime.

A finite field GF(pm) can be one of the summands in the above

decomposition if and only if p - 1 and n are relatively prime. This

characterizes finite n-th root rings in terms of the numerical invariants

of finite fields. Since in a finite n-th root ring the mapping x -»• aP

is bijective, elements in these rings have unique n-th roots. (This
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affords an alternate way to obtain the results of Corollary 2.3.) If n

is even, then a finite n-th root ring must have characteristic two.

Consequently, finite ring is an all root ring if and only if it is a finite

direct sum of copies of GF(2) .

For n-th root rings a relatively mild ascending chain condition

yields the same conclusion as Proposition 2.2. The key here is the rings

in question are strongly regular. An element r of a ring R is said to

be left strongly regular if there exists x e R such that r = r x ;

right strongly regular elements are defined analogously. If each element

of R is left (right) strongly regular, then R is strongly regular and

2 2
r = r x = xv = rxr . Some useful properties of strongly regular rings are

collected in the next lemma. These are well-known; proofs can be found in

[70] with appropriate minor modifications to accommodate rings without

unity.

LEMMA 2.4. Let R be a strongly regular ring. Then

(2.4.1) R is reduced and von Neumann regular;

(2.4.2) each idempotent of R is central;

(2.4.3) every finitely generated right (left) ideal of R is a

principal ideal generated by an idempotent;

(2.4.4) each one-sided ideal of R is a two-sided ideal;

(2.4.5) if R is unitalj then each element of R is either a

two-sided divisor of zero or is invertible;

(2.4.6) if R is unital and is right Noetherian, then R is

Artinian semisimple.

Since a priori R is not assumed to be unitdl, it will be

convenient to call right ideals of the form xR cyclic right ideals.

PROPOSITION 2.5. If R ̂  (0) is a n-th root ring which satisfies

the ascending chain condition on cyclic right ideals, then R is a finite

direct sum of n-th root division rings.

Proof. For any b, e R we have b • = b . . and the resulting chain
*- 3 </•'•-'•

given by b Jt £ b . .R , where here j = 1,2,.. . . Then for some j ,
3 3"**-

' and hence V = T^
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So b. .r = b. , or b . r' = b . . Thus i. is left strongly

regular and consequently b is also.

So if is a strongly regular ring and thus is either a division ring

or has an idempotent e ? 0, 1 with which we can decompose R as

R = eReA(e) . Since A ( e ) is strongly regular this process can be

repeated. Invoking the given chain condition yields R = e R ©...© efJ^>

where the e. are orthogonal idempotents. Then R is unital with
It

l=e1+...+ek .

Finally, the given ascending chain condition on (now) principal right

ideals lifts to all right ideals and (2.4.6) gives the desired conclusion.

It is worth noting that an n-th root ring need not be strongly

regular or even von Neumann regular (the algebraic integers); nor need a

strongly regular ring with even the most stringent chain conditions on

one sided ideals be an n-th root ring.

3. Subdirect Product Representations

An ideal of an n-th root ring need not be an n-th root ring itself,

for example: the ideal generated by 2 in the ring of algebraic integers.

The extreme case in the other direction occurs in Boolean rings and finite

direct sums of n-th root fields where every ideal is an n-th root ring.

An ideal J of an n-th root ring R is called an n-the root ideal if

J is an n-th root ring; R is called a fully n-th root ring if every

ideal of R is an n-th root ideal. In an n-th root ring every reduced

ideal ( and consequently every very large ideal and every completely

prime ideal) is an n-th root ideal and every maximal ideal is prime.

(Terminology: Let J be an ideal of a ring A; then I is reduced

if A/I is reduced, equivalently if x e J implies x e. I [4] ,- I is

very large if A/I is finite C5] ; J is completely prime if A/I is

entire, or equivalently if xy e I implies x e I or y e I [9].) if

R is a fully n-th root ring, then every ideal of R is semiprime ;

consequently R is isomorphic to a subdirect product of fully n-th root

prime rings. More can be said in the commutative case.
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PROPOSITION 3.1. A fully n-th root commutative ring is ieomorphic

to a eubdirect product of n-th root fields.

Proof. From the preceding remarks it suffices to show that a fully

n-th root integral domain D is a field. For any non-zero x e D we have

yn = x. If y 7* x , then D will be unital and x wil be invertible. If

y = x, then the semiprime ideal Dx contains y and hence contains

both a; and y . This forces D to be unital and x to be invertible.

(Since a priori D was not required to have unity, the calculation at

key points can be carried out in an integral domain with unity in which D

is embedded).

The next subdirect product representation is in terms of subdirectly

irreducible rings. Following McCoy [6] and Divinsky [3] we recognise

that a subdirectly irreducible commutative ring S must fall into one of

the following classes.

Type a : 5 is a field.

Type 3 : Every element of S is a zero divisor. The

heart, H , has a prime number of elements, p ,

and H2 = (o) .

Type y : S has both non-zero divisors and nilpotents.

The heart, H , has a prime number of elements, p , and H = (0) . The

set D of zero divisors in S is equal to AiM) and S/D is a field.

PROPOSITION. 3.2. Let S be a subdirectly irreducible ring of

Type y • Then S/D is isomorphia to Z . If S is also an n-th root

ring, then

(3.2.1) p - 1 and n are relatively prime;

(3.2.2) D is an n-th root ideal.

Proof. If x is a non-zero divisor in S , then xH = H and there

exists a unique integer i , with 0 < i < p, such that xh = i h .
X X X

This sets up the relation: x + D + i e + D , where e + D is the unity

element in S/D and i = 0 if x e D • A calculation shows this
x
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relation is an injective function from S/D onto a subset of S/D with

no more than p elements. Since S/D is a field and e + D has additive

order p , S/D is forced to have exactly p elements and hence S/D

is isomorphic to Z CNote that pS £ D .)

Under the assumption that S is also an n-th root ring, S/D and

consequently Z are n-th root fields; so p - 1 and n must be

relatively prime. Conclusion (3.2.2) follows because D is a prime ideal

in S .

PROPOSITION 3.3. Let S be a subdirectly irreducible commutative

n-th root ring. If any one of the following conditions holds, then S is a

field.

(3.3.1) S has bounded index of nilpotence;

(3.3.2) S satisfies the ascending chain condition on cyclic ideals;

(3.3.3) S satisfies the descending chain condition on annihilator

ideals;

(3.3.4) S has no elements of order two and n = 2™ .

Proof. Bounded index implies no nilpotents for n-th root rings

and hence S must be of Type a , a field. The ascending chain condition

on cyclic ideals implies S is a direct sum of fields, but subdirectly

irreducible rings are indecomposable, so S is a field. If S has

unbounded index, then there is a sequence {d • e S : j = 2,3,... } such
3

that a. , = d- and index (d •) £ nj . This yields strictly increasing
3 -̂  3 3

chain of annihilator ideals: Aid-) £ A(d,) £ ...; so (3.3.3) implies

(3.3.1). Finally, if n = "f1 , then p = 2 and since S has no

elements of order two, S cannot be of Type 6 or Type y •

Now using Birkhoff's Theorem (every ring is isomorphic to a subdirect

product of subdirectly irreducible rings) a representation for commutative

M-th root rings with unity is obtained.

PROPOSITION 3.4. Let R be a commutative ring with unity. If R is

an n-th root ring, then R is isomorphic to a subdirect product of n-th

root rings each either a field or of the type given in Proposition 3.2.
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If R also has a non-zero nilpotent element, then at least one of the

components in any subdirect product representation of R in terms of

eubdireotly irreducible rings must be of this latter type.

COROLLARY 3.5. Let R be a commutative tP'-th root ring with unity.

In any subdireat product representation of R in terms of subdirectly

irreducible rings each of the Type y components must have p = 2 . If

R is torsion, then each of the Type y components is a 2-group. If R

is torsion, and contains no elements of order two, then R is isomorphic

to a subdirect product of fields and hence is reduced.

Note that in general if ^ is an n-th root ring and A is

torsion, then each prime component of A is an n-th root ideal.

If I) is an n-th root ring for which x = y implies x = y, then

we call U a unique n-th root ring. Abian has examined these rings

for n = 3 from the viewpoint of an order relation induced on them by

a £ b if and only if ab = a [7]. Unique n-th root rings are reduced

rings. If n is even, then they have characteristic two, but no

analogous conclusion is possible for n odd. In a unique n-th root ring

every n-th root ideal is a reduced ideal.

PROPOSITION 3.6. If U is a unique n-th root ring, then U is

isomorphic to a subdirect product of entire n-th root rings.

Proof. This follows immediately from the above remarks and the

Andrunakievic-Rjabuhin Theorem: every reduced ring is isomorphic to a

subdirect product of entire rings [2].
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