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Abstract

In 1981, Thompson proved that, if n > 1 is any integer and G is any finite subgroup of GLn(C),
then G has a semi-invariant of degree at most 4n2. He conjectured that, in fact, there is a universal
constant C such that for any n ∈ N and any finite subgroup G < GLn(C), G has a semi-invariant
of degree at most Cn. This conjecture would imply that the α-invariant αG(Pn−1), as introduced
by Tian in 1987, is at most C . We prove Thompson’s conjecture in this paper.

2010 Mathematics Subject Classification: 20C15 (primary); 13A50, 14B05, 20C33 (secondary)

1. Introduction

Invariants, and more generally, semi-invariants, have been studied since the very
beginning of finite group theory. Let V = Cn and let G < GL(V ) be a finite
group. Then G acts on the dual space V ∗, and a nonzero element f ∈ Symk(V ∗)
is said to be an invariant, respectively a semi-invariant, of degree k for G if G
fixes f , respectively if G fixes the 1-dimensional space 〈 f 〉C. In spite of many
classical results in invariant theory and representation theory of finite groups,
very little is known about the smallest degree of invariants and semi-invariants
for arbitrary finite subgroup of GL(V ). Let

d(G) := min{k ∈ N | G has a semi-invariant of degree k}.

Since Symk(V )∗ ∼= Symk(V ∗), G has a semi-invariant of degree k if and only if
the G-module Symk(V ) contains a 1-dimensional submodule.

In 1981, Thompson proved the following theorem.

c© The Author 2016. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided
the original work is properly cited.

https://doi.org/10.1017/fmp.2016.3 Published online by Cambridge University Press

http://journals.cambridge.org/action/displayJournal?jid=FMP
mailto:tiep@math.arizona.edu
http://crossmark.crossref.org/dialog/?doi=10.1017/fmp.2016.3&domain=pdf
https://doi.org/10.1017/fmp.2016.3


P. H. Tiep 2

THEOREM 1.1 [Th]. Let n ∈ N be any integer and G < GLn(C) be any finite
subgroup. Then d(G) 6 4n2.

It turns out that this result also has interesting implications in algebraic
geometry, in particular, in regard to the α-invariant αG(Pn−1) when G < GL(V )
acts on the projective space PV = Pn−1.

The α-invariant αG(X) for a compact group G of automorphisms of a Kähler
manifold X was introduced by Tian in 1987 [Ti, TY]. This invariant is of
importance in differential geometry and algebraic geometry. In the case X is
a Fano variety, Tian proved in [Ti] that X admits a G-invariant Kähler–Einstein
metric if

αG(X) >
dim(X)

dim(X)+ 1
.

Moreover, it was proved by Demailly and Kollár [DK], see also [CS1,
Appendix A], that in this case the α-invariant coincides with the log-canonical
threshold

lct(X,G)

= sup
{
λ ∈ Q

∣∣∣∣ the log pair (X, λD) has log-canonical singularities
for every G-invariant effective Q-divisor D ∼Q −K X

}
,

cf. [CS1, page 863].
An important example of Fano varieties is the projective space PV = Pn−1,

where V = Cn . Consider the natural action of any finite subgroup G < GL(V )
on Pn−1. Then Thompson’s Theorem 1.1 implies that αG(Pn−1) can be bounded
linearly in terms of n.

THEOREM 1.2 [Th]. Let n ∈ N be any integer and G < GLn(C) be any finite
subgroup. Then αG(Pn−1) 6 4n.

The connection between the α-invariant and semi-invariants follows from the
following inequality

αG(PV ) 6
d(G)

dim(V )
, (1.1)

see [CS2, Section 1]. Under the additional assumption that G contains no
complex reflection, [CS2, Theorems 1.17 and 3.16] shows that the quotient
singularity Cn/G is exceptional if αG(Pn−1) > 1, not exceptional if αG(Pn−1) < 1
or d(G) 6 n, and weakly exceptional if and only if αG(Pn−1) > 1. Furthermore,
for n > 24 the upper bound αG(Pn−1) 6 4n can be improved to αG(Pn−1) 6
12n/5, see [CS2, Theorem 1.24].
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In the same paper [Th], Thompson raised (the first part of) the following
conjecture.

THOMPSON’S CONJECTURE [Th]. There is a positive constant C such that for
any n ∈ N and for any finite subgroup G < GLn(C), the following statements
hold:

(i) d(G) 6 Cn; and

(ii) αG(Pn−1) 6 C.

The goal of the paper is to prove the following result.

MAIN THEOREM. Thompson’s Conjecture is true, with C = 1184036.

Note that, with substantially more efforts, the upper bound 1184036 in Main
Theorem for the constant C in Thompson’s conjecture can be driven down a bit,
but we did not try to do it. On the other hand, this constant C cannot be smaller
than 1, see Example 3.6(i). (In fact, for some specific n there are examples
showing that d(G) can be larger than n for G < GLn(C), see Example 3.6(ii),
(iii).) We also note that Corollary 3.8 gives an example of a weakly exceptional,
but nonexceptional, quotient singularity Cp/G with αG(Pp−1)= 1, for any prime
p > 2. It is an open question, see [CS2, Question 1.9] and [CS3], whether there
exists a finite subgroup G < GLn(C) such that αG(Pn−1) > 1 for n > 8.

The paper is organized as follows. In Section 2 we prove some key estimates
on the character values of symmetric powers, which allow us to give in
Proposition 2.6 a criterion for the existence of semi-invariants of certain
degrees. Analogues of these results for all symmetrizations of a given complex
representation are also established. In Section 3, the classification of finite
simple groups, and their representation theory and structure theory are used
to study some base cases of Thompson’s Conjecture. Relying on these results
and Aschbacher’s theorem on finite subgroups of classical groups [A], we then
prove Thompson’s Conjecture in Section 4. We also give an upper bound on the
smallest degree of a (nonzero) polynomial invariant for any finite linear group,
cf. Corollary 4.4.

2. Character estimates

Our approach relies on bounding character values of symmetric powers
Symk(χ) of a given complex character χ . The symmetric power Symk(χ) is
just a partial case of λ-symmetrizations Symλ(χ) for any λ ∈ Irr(Sk), which
can be defined as follows. Let the complex character χ of a finite group G be
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afforded by a CG-module V . Then we can extend the action of G to the tensor
product W = V⊗k of k copies of V . We can also define the action of Sk on W via
naturally permuting these k copies, and this action is commuting with the action
of G on W . Thus we obtain an action of Sk × G on W , with character say ω.
Then we can decompose

ω(sg) =
∑

λ∈Irr(Sk )

λ(s) · Symλ(χ)(g),

where s ∈ Sk , g ∈ G, and

Symλ(χ)(g) =
1
k!

∑
π∈Sk

λ(π)ω(πg), (2.1)

cf. [LBST, Lemma 5.5] (note that λ = λ̄). Thus, λ ⊗ Symλ(χ) is the Sk ×

G-character afforded by the λ-isotypic component of the Sk-module W . In
particular, Symk(χ) = Symλ(χ) if λ = 1Sk is the trivial character of Sk .

For any π ∈ Sk , we write π as a product of disjoint cycles and let a j(π)

denote the number of cycles of length j in this decomposition, where 1 6 j 6 k.
In particular,

k∑
j=1

ja j(π) = k. (2.2)

With this notation, one has the following lemma.

LEMMA 2.1. For any finite group G with a complex character χ , any g ∈ G,
any positive integer k, and any λ ∈ Irr(Sk), one has

Symλ(χ)(g) =
1
k!

∑
π∈Sk

λ(π)

k∏
j=1

χ(g j)a j (π).

Proof. The formula is well known, but we give a proof for the reader’s
convenience. According to (2.1), it suffices to prove that

ω(πg) =
k∏

j=1

χ(g j)a j (π) (2.3)

for all g ∈ G and π ∈ Sk . First we consider the case π = (1, 2, . . . , k) is a
k-cycle. We can find a matrix A = (ai j) ∈ Mn(C) and a basis (e j | 1 6 j 6 n :=
dim(V )) of V , such that

g(e j) =

n∑
l=1

al j el, π : v1 ⊗ v2 ⊗ v3 ⊗ · · · ⊗ vk 7→ vk ⊗ v1 ⊗ v2 ⊗ · · · ⊗ vk−1
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for all v1, . . . , vk ∈ V . Now (e j1 ⊗ e j2 ⊗ · · ·⊗ e jk | 1 6 j1, . . . , jk 6 n) is a basis
for W , and it is straightforward to check that

ω(πg) =
n∑

j1, j2,..., jk=1

a j2 j1a j3 j2 . . . a jk jk−1a j1 jk = Tr(Ak) = χ(gk),

establishing (2.3) in this special case. The general case of (2.3) reduces to this
special case by decomposing π into a product of disjoint cycles.

PROPOSITION 2.2. Let G be a finite group and 0 < γ 6 1 be such that
|χ(x)|/χ(1) 6 γ for some χ ∈ Irr(G) of degree n and for all x ∈ G r Z(G).
Then for any g ∈ G r Z(G) and any k ∈ N we have

|Symk(χ)(g)| 6

∏k−1
j=0(γ n + j/γ )

k!
.

In particular, if k is such that n > 3k/γ 3/2, then

|Symk(χ)(g)|
Symk(χ)(1)

6 γ k/2. (2.4)

Proof. Applying Lemma 2.1 to the case λ = 1Sk we get:

Symk(χ)(g) =
1
k!

∑
π∈Sk

k∏
j=1

χ(g j)a j (π).

Setting

f (t) :=
1
k!

k−1∏
j=0

(t + j)

for any t ∈ R, and evaluating the above formula (for characters ϑ of varying
degree n) at g = 1, we see that

f (t) =
1
k!

∑
π∈Sk

k∏
j=1

ta j (π). (2.5)

Now, by substituting t = γ 2n in (2.5) and using (2.2) as well as the bounds

|χ(g)| 6 γ n, |χ(g j)| 6 n, ∀ j > 2,
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we obtain∏k−1
j=0(γ n + j/γ )

k!
=

∏k−1
j=0(γ

2n + j)

γ kk!
=

f (γ 2n)
γ k

=
1
k!

∑
π∈Sk

γ −k
k∏

j=1

(γ 2n)a j (π)

=
1
k!

∑
π∈Sk

k∏
j=1

(
γ 2n
γ j

)a j (π)

=
1
k!

∑
π∈Sk

(γ n)a1(π)

k∏
j=2

(γ 2− j n)a j (π)

>
1
k!

∑
π∈Sk

(γ n)a1(π)

k∏
j=2

na j (π) >
1
k!

∑
π∈Sk

k∏
j=1

|χ(g j)|a j (π)

> |Symk(χ)(g)|.

Next, assume that k is such that n > 3k/γ 3/2. Then for any 0 6 j 6 k − 1 we
have

γ n + j/γ 6 γ 1/2(n + j),

whence

|Symk(χ)(g)| 6

∏k−1
j=0(γ n + j/γ )

k!
6 γ k/2

∏k−1
j=0(n + j)

k!
= γ k/2 Symk(χ)(1).

Note that∣∣∣∣∣∣ 1
k!

∑
π∈Sk

λ(π)

k∏
j=1

χ(g j)a j (π)

∣∣∣∣∣∣ 6 λ(1) ·
1
k!

∑
π∈Sk

k∏
j=1

|χ(g j)|a j (π).

Hence, the proof of Proposition 2.2 also yields the following corollary.

COROLLARY 2.3. Let G be a finite group and 0 < γ 6 1 be such that
|χ(x)|/χ(1) 6 γ for some χ ∈ Irr(G) of degree n and all x ∈ G r Z(G). Then
for any g ∈ G r Z(G), k ∈ N, and for all λ ∈ Irr(Sk), we have

|Symλ(χ)(g)| 6 λ(1) ·

∏k−1
j=0(γ n + j/γ )

k!
.

For a normal subgroup N of a finite group G, χ ∈ Irr(G), and λ ∈ Irr(N ), if
λ is an irreducible constituent of the restriction χN , we will say that χ lies above
λ and that λ lies under χ .

The next statement shows that the symmetrizations Symλ(χ) are
equidistributed in the following sense.
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COROLLARY 2.4. Let G be a finite group and 0 < γ 6 1 be such that
|χ(x)|/χ(1) 6 γ for some χ ∈ Irr(G) and all x ∈ G r Z(G). Let χ be of
degree

χ(1) = n > max(k2, 3k/γ 3/2)

for some k ∈ N, and let ν denote the character of Z(G) lying under χ . Also,
assume that

|G/Z(G)| 6 (2e−1/2
− 1)γ −k/2.

Then for any λ ∈ Irr(Sk) and any ρ ∈ Irr(G) lying above νk , ρ is an irreducible
constituent of Symλ(χ).

Proof. The assumption n > k2 implies that

nk

k!
6 Symk(χ)(1) =

nk

k!

k−1∏
j=1

(1+ j/n) 6
nk

k!
e
∑k−1

j=1 j/ne1/2 nk

k!
. (2.6)

On the other hand, Corollary 2.3 and the proof of Proposition 2.2 show under the
assumption n > 3k/γ 3/2 that

|Symλ(g)| 6 λ(1) ·

∏k−1
j=0(γ n + j/γ )

k!
6 λ(1)γ k/2 Symk(χ)(1)

for all g ∈ G \ Z(G). It follows from (2.6) that

|Symλ(g)| 6 λ(1) · e1/2γ k/2nk/k!.

Also, using (2.1) and (2.6) we have

Symλ(χ)(1) =
1
k!

∑
π∈Sk

λ(π)

k∏
j=1

na j (π) >
1
k!

λ(1)nk
− λ(1)

∑
16=π∈Sk

k∏
j=1

na j (π)


=
λ(1)

k!

2nk
−

∑
π∈Sk

k∏
j=1

na j (π)

 = λ(1)(2nk

k!
− Symk(χ)(1)

)

> (2− e1/2)λ(1)
nk

k!
.

Thus we have shown that

|Symλ(χ)(g)| 6
e1/2

2− e1/2
γ k/2 Symλ(χ)(1)
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for all g ∈ G r Z(G). Clearly, χ(z) = ν(z)χ(1) and Symλ(χ)(z) =
νk(z)Symλ(χ)(1) for all z ∈ Z(G). Now we can estimate the scalar product
[Symλ(χ), ρ]G from below:

|G| · [Symλ(χ), ρ]G

=

∣∣∣∣∣∣
∑

z∈Z(G)

Symλ(χ)(z)ρ̄(z)+
∑

g∈GrZ(G)

Symλ(χ)(g)ρ̄(g)

∣∣∣∣∣∣
> |Z(G)| · Symλ(χ)(1)ρ(1)− |G r Z(G)| ·

e1/2

2− e1/2
γ k/2 Symλ(χ)(1)ρ(1)

> |Z(G)| · Symλ(χ)(1)ρ(1) ·
(

1− |G/Z(G)| ·
e1/2

2− e1/2
γ k/2

)
> 0,

whence ρ is an irreducible constituent of Symk(χ).

Whereas the bound (2.4) applies to many finite subgroups of GLn(C)
(particularly the ones ‘close’ to be quasisimple), it does not apply to the groups
with a normal irreducible extraspecial subgroup of order p3 (cf. Proposition 3.7
below). To handle the latter, we will need the following consequence of
Proposition 2.2.

PROPOSITION 2.5. Let G be a finite group, and let χ ∈ Irr(G) of degree n > 80
be such that |χ(x)|6 χ(1)/

√
2 for all x ∈ GrZ(G). Then for any g ∈ GrZ(G)

we have
|Symn(χ)(g)|
Symn(χ)(1)

6
8
7
·

(
27
32

)n/2

.

Proof. (i) According to [AS, 6.1.38], for any n ∈ N we have

n! =
√

2πn · nne−n+θ/12n, (2.7)

where 0 < θ < 1. This version of Stirling’s formula implies that
√

2πn
(n

e

)n
< n! 6 e

√
n
(n

e

)n
. (2.8)

Indeed, the first inequality in (2.8) follows from (2.7). The second inequality in
(2.8) is an equality for n = 1, and follows from (2.8) when n > 2, since

√
2πe1/24 < e.

(ii) Note that
Symn(χ)(1) = A/2, (2.9)
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where

A :=
1
n!

n∏
j=1

(n + j) =
(2n)!
(n!)2

.

Applying (2.8), we obtain

22n

√
n
·

e

π
√

2
> A >

22n

√
n
·

2
√
π

e2
. (2.10)

Next we choose γ = 1/
√

2 and apply (the first statement of) Proposition 2.2 to
get

|Symn(χ)(g)| 6
B

3γ n
, (2.11)

where

B :=
1
n!

n∏
j=1

(γ 2n + j).

First suppose that n = 2m is even. Then

B =
1

(2m)!

2m∏
j=1

(m + j) =
(3m)!

m!(2m)!
6

33n/2

2n
√

n
·

e
√

3
2π

(2.12)

by an application of (2.8).
If n = 2m + 1 is odd, then

B =
1

2nn!
·
(2m + 2)(2m + 3) . . . (6m + 3)
(2m + 2)(2m + 4) . . . (6m + 2)

=
(3n)!m!

22n(n!)2(3m + 1)!
.

Using (2.8) to bound (3n)! and m! from the above, and n! and (3m + 1)! from
below, we get

B 6
33n

22n
·

e2
√

3m
2π
√

2πn(3m + 1)
· C, (2.13)

where

C :=
nnmm

(3m + 1)3m+1
=

(
2m + 1
3m + 1

)2m+1

·

(
m

3m + 1

)m

=
2n

3n+m
· xy. (2.14)

Here,

x :=
(

6m + 3
6m + 2

)2m+1

, y :=
(

3m
3m + 1

)m

.

https://doi.org/10.1017/fmp.2016.3 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2016.3


P. H. Tiep 10

Now,

e < x3
=

(
6m + 3
6m + 2

)6m+3

=

(
1+

1
6m + 2

)6m+2

·
6m + 3
6m + 2

< e ·
6m + 3
6m + 2

.

Similarly,

e > 1/y3
=

(
3m + 1

3m

)3m

=

(
1+

1
3m

)3m+1

·
3m

3m + 1
> e ·

3m
3m + 1

.

It follows that

1 < x3 y3 <
6m + 3
6m + 2

·
3m + 1

3m
=

n
n − 1

and so xy < n/(n − 1). Putting this bound in (2.14), we see that (2.13) yields

B 6
33n/2

2n
√

n
·

3e2

√
8π 3
·

√
n2

(3n − 1)(n − 1)
. (2.15)

Note that the upper bound in (2.15) is larger than the one in (2.12). So for all
n ∈ N we can use (2.15) to bound B from the above. Putting (2.9), (2.11), (2.10),
and (2.15) together, we obtain for n > 80 that

|Symn(χ)(g)|
Symn(χ)(1)

6
2B

3Aγ n
6

33n/2

25n/2
·

e4

π 2
√

8
·

√
n2

(n − 1)(3n − 1)
6

8
7
·

(
27
32

)n/2

,

and the statement follows.

In the same fashion, one can also get an analogue of Proposition 2.5 for any γ
between 0 and 1 (instead of γ = 1/

√
2), but we will not need it in the paper.

Now we can present a criterion for the existence of semi-invariants of certain
degrees.

PROPOSITION 2.6. Let G be a finite group, β > 0 a constant, k ∈ N, and let
χ ∈ Irr(G) be such that

(i) |Symk(χ)(g)| 6 β · Symk(χ)(1) for all g ∈ G r Z(G);

(ii) |G/Z(G)| 6 1/β; and

(iii) |Z(G) ∩ G ′| divides k.

Then Symk(χ) contains a constituent of degree 1.
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Proof. Let λ ∈ Irr(Z(G)) be such that χ |Z(G) = χ(1)λ. The condition (iii)
implies that λk is trivial on Z(G) ∩ G ′, and so it can be viewed as a (linear)
character of

X := Z(G)G ′/G ′ ∼= Z(G)/(Z(G) ∩ G ′).
As X is a subgroup of the abelian group G/G ′, it follows that we can find a linear
character µ of G such that µ|Z(G) = λk . Using the conditions (i) and (ii), we now
obtain

|G| · [Symk(χ), µ] =

∣∣∣∣∣∣
∑

g∈Z(G)

Symk(χ)(g)µ̄(g)+
∑

g∈GrZ(G)

Symk(χ)(g)µ̄(g)

∣∣∣∣∣∣
> Symk(χ)(1) · |Z(G)| − β · Symk(χ)(1) · |G r Z(G)|
> Symk(χ)(1) · |Z(G)| · (1− β · |G/Z(G)|) > 0,

that is, µ is a linear constituent of Symk(χ).

The following statement, pointed out to the author by N. Katz, is convenient
in many situations.

LEMMA 2.7. Let G 6 GL(V ) be a finite group. Suppose that Symk(V ) contains
a 1-dimensional G-submodule. Then Symkm(V ) contains a 1-dimensional
G-submodule for all m ∈ N.

Proof. Fixing a basis (e1, . . . , en) of V , we can identify Symk(V )∗ ∼= Symk(V ∗)
with the space of homogeneous polynomials of degree k in n variables x1, . . . , xn .
By assumption, G fixes 〈 f 〉C for some nonzero f ∈ Symk(V ∗). Hence G also
fixes 〈 f m

〉C, and 0 6= f m
∈ Symkm(V ∗).

We will also need the following consequence of [GT3, Corollary 2.14].

LEMMA 2.8. Let G be a finite group with a perfect normal subgroup N. Let χ
be a character of G and 0 < β 6 1 be a constant such that |χ(x)|/χ(1) 6 β for
all x ∈ N r Z(N ). Then |χ(g)|/χ(1) 6 (3+ β)/4 for all g ∈ G r CG(N ).

Proof. Consider any g ∈ G r CG(N ). Note that there exists some h ∈ N
such that [g, h] := ghg−1h−1

∈ N r Z(N ). (Indeed, otherwise we would have
[g, N ] ⊆ Z(N ), and so

[g, N ] = [g, [N , N ]] ⊆ [[g, N ], N ] · [[N , g], N ] = 1,

contradicting the condition g /∈ CG(N ).) Now |χ([g, h])| 6 βχ(1), whence

4|χ(g)| 6 3χ(1)+ |χ([g, h])| 6 (3+ β)χ(1)

by [GT3, Corollary 2.14(ii)].
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3. Base cases

LEMMA 3.1. Let G be a finite group and let the CG-module V be induced
from a module W of a subgroup H 6 G. Suppose that Symk(W ) contains
a 1-dimensional H-submodule. Then Symkm(V ) contains a 1-dimensional
G-submodule, where m := [G : H ].

Proof. By hypothesis, V admits a G-invariant decomposition V = V1 ⊕ V2 ⊕

· · · ⊕ Vm , where H = StabG(V1) and V1
∼= W . Furthermore, Symk(V1) contains

a 1-dimensional H -submodule A1. Write G =
⋃m

i=1 gi H with g1 = 1, and note
that Ai = gi(A1) is a 1-dimensional submodule for gi Hg−1

i = StabG(Vi). Now,
for any g ∈ G and any 1 6 i 6 n, there are some 1 6 j 6 n and some h ∈ H such
that ggi = g j h and so g(Ai) = g j(A1) = A j . Thus G permutes the m subspaces
A1, . . . , Am and so acts on the 1-dimensional space A1⊗ A2⊗ · · · ⊗ Am . Hence
the statement follows by noting that Symkm(V1 ⊕ V2 ⊕ · · · ⊕ Vm) contains

Symk(V1)⊗ Symk(V2)⊗ · · · ⊗ Symk(Vm) ⊇ A1 ⊗ A2 ⊗ · · · ⊗ Am,

see [FH, page 80].

Recall that a finite group G is said to be almost simple if S � G 6 Aut(S)
for some nonabelian simple group S, in which case S is called the socle of G.
Furthermore, G is said to be almost quasisimple if S � G/Z(G) 6 Aut(S) for
some nonabelian simple group S, in which case E(G) = G(∞) denotes the last
term of the derived series of G. We also use the notation Mult(X) to denote the
Schur multiplier H 2(X,C×) of a finite group X .

LEMMA 3.2. Let G be a finite group. Then

|Z(G) ∩ G ′| 6 Mult(H)

for H := G/Z(G). If in addition H is almost simple with socle S, then

|Mult(H)| 6 |Mult(S)| · |Mult(H/S)|.

Proof. Let K 6 G be minimal subject to K Z = G, where Z := Z(G). Then

H = G/Z = K Z/Z ∼= K/(K ∩ Z),

and so (K , K∩Z) is a central extension of H . Next, if L < K but L(K∩Z) = K ,
then L Z > K Z = G, contradicting the minimality of K . Thus L(K ∩ Z) < K
for all L < K , whence the central extension (K , K ∩ Z) of H is irreducible
in the sense of [Suz, Ch. 2, (9.10)]. It then follows from [Suz, Ch. 2, (9.13)]
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that |K ′ ∩ Z | 6 |Mult(H). Since G ′ = (K Z)′ = K ′, G ′ ∩ Z = K ′ ∩ Z , and so
we arrive at the first statement.

For the second statement, observe that H 1(S,C×) = 0 as S is perfect. Hence
the sequence

0→ H 2(H/S,C×)→ H 2(H,C×)→ H 2(S,C×)

is exact, see [Suz, Ch. 2, (7.30)], whence we are done.

LEMMA 3.3. Let B be a normal subgroup of a finite group G.

(i) Assume G/B can be generated by s elements. Then

|H 2(G,C×)| 6 |H 2(B,C×)| · |H 2(G/B,C×)| · |B/B ′|s .

(ii) If G/B is cyclic, then |H 2(G,C×)| 6 |H 2(B,C×)| · |B/B ′|.

(iii) If both B and G/B are cyclic, then |H 2(G,C×)| 6 |B/B ′|.

Proof. By [Lyn, Theorem 4’], H 2(G,C×) = H 0 > H 1 > H 2, where H 0/H 1

embeds in H 0(G/B, H 2(B,C×)) = H 2(B,C×)G/B and so has order at most
|H 2(B,C×)|. Next, H 2 is a factor group of H 2(G/B, H 0(B,C×)) = H 2

(G/B,C×) and so has order at most |H 2(G/B,C×)|. Finally, H 1/H 2 is a
subquotient of H 1(G/B, H 1(B,C×)). Clearly,

X := H 1(B,C×) = Hom(B,C×) = Hom(B/B ′,C×);

in particular, |X | = |B/B ′|. Now, if G/B is generated by s elements, then

H 1(G/B, X) 6 |X |s

(as each 1-cocycle on G/B is completely determined by its values at the s
generators). Hence (i) follows. If G/B is cyclic, then we can take s = 1 and so (ii)
follows, since H 2(G/B,C×)= 0. If B is cyclic in addition, then H 2(B,C×) = 0
and so (iii) follows.

LEMMA 3.4. Let S � H 6 Aut(S) for some nonabelian finite simple group S.
Then

|Mult(H/S)| 6 |Out(S)|2.

Proof. The statement is obvious if H/S is cyclic. If H/S is metacyclic, then
we are done by Lemma 3.3(iii). It remains therefore to consider the case
O := Out(S) is not metacyclic. According to [GLS, Theorem 2.5.12], in this
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case S is a simple group of Lie type over Fq with q = p f , of type An , Dn ,
or E6. If in addition S is not of type D2m , then O has a metacyclic normal
subgroup with cyclic quotient, whence H/S has a metacyclic normal subgroup
B such that (H/S)/B is cyclic. By Lemma 3.3(iii), |H 2(B,C×)| 6 |B|, whence
|H 2(H/S,C×)| 6 |B|2 6 |H/S|2 by Lemma 3.3(ii). The same argument applies
if S is of type D2m and p = 2.

In the final case, S is of type D2m and p > 2. Let r be any prime,
R ∈ Sylr (H/S), and assume that r divides |Mult(H/S)|. Then R cannot be
cyclic, and so r 6 3. If r = 3, then we must have that m = 2 and R is metacyclic;
indeed, R is a subgroup of C f o C3. In this case,

|Mult(H/S)|3 6 |Mult(R)| 6 f3

by Lemma 3.3(iii), where Nr denotes the r -part of any positive integer N for any
prime r . Assume now that r = 2. Then R has a normal subgroup B 6 C2

2 , where
R/B is metacyclic and so generated by two elements. Note that |Mult(B)| 6 2
and |Mult(R/B)| 6 f2 by Lemma 3.3(iii), since R/B has a cyclic normal
subgroup of order at most f2 with cyclic quotient. Also, |B/B ′| 6 4, whence

|Mult(R)| 6 2 f2 · 42
= 32 f2

by Lemma 3.3(i). Thus

|Mult(H/S)| 6 32 f2 f3 6 32 f < (8 f )2 6 |Out(S)|2.

THEOREM 3.5 [Th]. Let G < GL(V ) = GLn(C) be a finite subgroup.

(i) Let p be any prime not dividing |G|. Then Sym(p−1)n(V ) contains a
1-dimensional G-submodule. The same conclusion holds if p - |G/Z(G)|
and the G-module V is irreducible.

(ii) Suppose that the G-module V is irreducible. If p > 2n + 1 is a prime, then
Sym(p−1)n(V ) contains a 1-dimensional G-submodule. Furthermore, such
p can be chosen to not exceed 4n + 1.

Proof. (i) The first statement is [Th, Lemma 2]. For the second statement, let
A := Op(Z(G)). By assumption, p - |G/A| and so gcd(|A|, |G/A|) = 1. Hence,
A has a complement B in G by the Schur–Zassenhaus theorem. In this case, G =
A × B, p - |B|, and A acts on V as scalars. Now we can apply [Th, Lemma 2]
to B.

(ii) Suppose first that the G-module V is primitive. Then the statement is
established in the proof of [Th, Theorem 1]. In the general case, consider a
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G-invariant decomposition V = V1 ⊕ V2 ⊕ · · · ⊕ Vd with d largest possible,
and let H := StabG(V1). Then the H -module V1 is irreducible and primitive. By
the previous case, if p > 2n/d + 1 is a prime (and such prime can be chosen
in the interval [2n + 2, 4n + 1] by Bertrand’s postulate), then Sym(p−1)n/d(V )
contains a 1-dimensional H -submodule. By Lemma 3.1, Sym(p−1)n(V ) contains
a 1-dimensional G-submodule.

EXAMPLE 3.6. (i) For any n ∈ N, Thompson [Th] gave an example of a
nilpotent group G ∈ GLn(C) of order n3 with d(G) = n.

(ii) Consider G < GL(V ) = GL2(C) with G ∼= SL2(5). Then a computation
with [GAP] shows that d(G) = 12. Thus the bound (p − 1)n in
Theorem 3.5(i) is best possible: just take (n, p) = (2, 7).

(iii) Let G < GL(V ) = GL3(C) with G ∼= 3A6, or G < GL(V ) = GL6(C) with
G ∼= 6A7, 2J2. Then using [GAP] one can show that d(G) = 2 dim(V ).

PROPOSITION 3.7. Let G < G = GL(V ) = GLn(C) be a finite irreducible
subgroup with n > 8300. Suppose that n = pm for some prime p, Z(G)G =
Z(G)H for some finite subgroup H < G, P � H a p-group, and P = Z(P)E
for some extraspecial p-group E of order p1+2m . Then Symn(V ) contains a
1-dimensional G-submodule.

Proof. Since Z(G)G = Z(G)H , it suffices to show that Symn(V ) contains a
1-dimensional H -submodule. So we may replace G by H and assume that
P � G 6 NG(P). Note that |Z(G) ∩ G ′| divides n = dim V by Schur’s
lemma, and that V |P is irreducible. Consider any element g ∈ G \ Z(G). Then
g 6∈ CG(P) = Z(G) again by Schur’s lemma, and so CP(g) < P . It follows that
either CP/Z(P)(g) < P/Z(P) ∼= E/Z(E), or CP/Z(P)(g) = P/Z(P) but g does
not act trivially on the complete inverse image P of P/Z(P) in P . Applying
[GT1, Lemma 2.4], we get

|χ(g)| 6 pm−1/2 6 χ(1)/
√

2, (3.1)

where χ is the G-character afforded by V . Hence, by Proposition 2.5 we have

|Symn(χ)(g)| 6 β · Symn(χ)(1),

with β := (8/7) · (27/32)n/2. Observe that

|G/Z(G)| 6 |P/Z(P)| · |Out(P)| 6 p2m
· |Sp2m(p)| < p2m2

+3m .
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To complete the proof, it therefore suffices by Proposition 2.6 to show that

δ pm/2 > p2m2
+3m+1

for δ := 32/27. Note that for n = pm > 8300 we have

n > 48.96(log2 n)2 = 48.96m2(log2 p)2 > 48.96m2
· log2 p

> 12m2
· logδ p > 2(2m2

+ 3m + 1) logδ p,

since logδ 2 < 4.08. It follows that

pm/2 > logδ p2m2
+3m+1,

as required.

COROLLARY 3.8. Let p > 2 be any prime, V = Cp, and let G < SL(V ) be
isomorphic to an extraspecial p-group of order p3. Then

(i) V/G is weakly exceptional but not exceptional.

(ii) αG(Pp−1) = 1.

Proof. The weak exceptionality of V/G is [CS4, Theorem 1.15]. Let χ be the
character of G afforded by V and g ∈ G rZ(G). Then |χ(g)/χ(1)| 6 1/

√
p <

2/3 by (3.1). On the other hand, if g were a complex reflection, then we would
have that

|χ(g)|
χ(1)

>
χ(1)− 1
χ(1)

> 1− 1/p > 2/3.

Also, any z ∈ Z(G) cannot be a complex reflection by irreducibility of V .
Thus G contains no complex reflection. As Cp/G is weakly exceptional, [CS2,
Theorem 3.16] now implies that αG(Pp−1) > 1.

Next, observe that the G-module V can be induced from a 1-dimensional
module of a subgroup of index p. It follows by Corollary 3.1 that d(G) 6 p.
But d(G) > p as |Z(G) ∩ G ′| = p. Thus d(G) = p and so αG(Pp−1) 6 1
by (1.1). Consequently, αG(Pp−1) = 1. The equality d(G) = p also implies by
[CS2, Theorem 1.17] that V/G is not exceptional.

PROPOSITION 3.9. Let G < G = GL(V ) = GLn(C) be a finite group with a
normal subgroup L ∼= Am or 2Am . Suppose that V |L is irreducible and m > 81.
Then Symk(V ) contains a 1-dimensional G-submodule for k := 2dn/8e.

Proof. Let χ be the character of G afforded by V . First we consider the case
where L ∼= Am and χL is extendible to, say, a character ρ of Aut(L) ∼= Sm .
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It is well known, see for example [JK, Theorem 2.1.11], that ρ is afforded by
a QSm-module W , and so W supports a nondegenerate Sm-invariant symmetric
bilinear form. The same is certainly true for the L-module WL . It follows that
[Sym2(χL), 1L] = 1. Thus the subspace U of L-fixed points on Sym2(V ) is
1-dimensional, and U is certainly stabilized by G � L . Hence we are done by
Lemma 2.7.

Next we consider the case where L ∼= Am but χL is not Sm-invariant. It follows
that the (unique) irreducible character ρ of Sm lying above χL is labeled by a
self-conjugate partition λ = (λ1, . . . , λt) ` m. In this case, 2λ1 − 1 6 m, and so
λ1 6 (m + 1)/2. It follows by [GLT, Theorem 5.1] that

n = χ(1) = ρ(1)/2 > 2(m−5)/4. (3.2)

Next, we observe that CG(L) = Z(G) by Schur’s lemma, and G/CG(L) 6> Sm

as χL is not Sm-invariant. Hence, G = Z(G)× L and Z(G)∩G ′ = 1. Applying
[GM, Theorem 1.6], we see that

|χ(g)|/χ(1) 6 γ := 1− 1/2m (3.3)

for all g ∈ G r Z(G). Choosing k as specified in the proposition, we also have
that k > n/4 and n > 3k/γ 1.5. Hence, by Propositions 2.2 and 2.6, it suffices to
prove the first inequality in the following chain

m! < γ −2(m−17)/4
6 γ −n/8 6 γ −k/2.

Note that 1/γ > e1/2m and m! < mm
= em log m . Hence, we are reduced to proving

2(m−21)/4 > m2 log m,

which indeed holds for all m > 81.
Finally, we consider the case L ∼= 2Am . As m > 81 and VL is irreducible

and faithful, we see that (3.2) holds in this case. Furthermore, by [GT3,
Lemma 2.23],

|χ(x)|/χ(1) 6 7/8

for all x ∈ L r Z(L). Since CG(L) = Z(G) by Schur’s lemma, Lemma 2.8
implies that

|χ(g)|/χ(1) 6 31/32

for all g ∈ G r Z(G). As m > 81, it follows that (3.3) holds in this case as well.
Now we can finish as in the previous case.

Now we can prove the main result of this section.
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THEOREM 3.10. There is a constant D such that the following statement holds
for any n ∈ N and any finite irreducible subgroup G < G := GL(V ) = GLn(C).
Suppose that the G-module V is irreducible, primitive, tensor indecomposable,
and not tensor induced. Then one of the following holds.

(i) If p > D is any prime then Sym(p−1)n(V ) contains a 1-dimensional
G-submodule.

(ii) G is almost quasisimple and V |E(G) is irreducible. Furthermore, there is
some k ∈ N depending on G such that either k = 2dn/8e or k 6 n(10/31+
1/174), and Symk(V ) contains a 1-dimensional G-submodule.

(iii) n = pm for some prime p, Z(G)G = Z(G)H, H is finite, P � H 6 NG(P),
P a p-group, and P = Z(P)E for some extraspecial p-group E of order
p1+2m . Furthermore, Symn(V ) contains a 1-dimensional G-submodule.

In fact, D can be taken to be 592000.

Proof. (a) We will choose D = 592000 in this proof. Let G < GL(V ) satisfy the
hypothesis of the theorem. If all prime divisors of |G/Z(G)| do not exceed D,
then conclusion (i) holds for G by Theorem 3.5(i). So in what follows we will
assume that

(?): Some prime divisor of |G/Z(G)| exceeds D.

(b) Next, we apply [GT2, Proposition 2.8] (which is a simplified version of
Aschbacher’s theorem [A]) to G and let H be the finite subgroup of G obtained
by this statement. In particular, Z(G)G = Z(G)H , and H is irreducible as so is
G. It follows by Schur’s lemma that G ∩ Z(G) = Z(G) and H ∩ Z(G) = Z(H).
Hence,

G/Z(G) ∼= Z(G)G/Z(G) = Z(G)H/Z(G) ∼= H/Z(H).

If, furthermore, case (iii) of [GT2, Proposition 2.8] holds for H , then we are in
case (iii) of the theorem with pm > D by virtue of (?), whence we are done by
Proposition 3.7. We may now assume that case (ii) of [GT2, Proposition 2.8]
holds for H .

Clearly, Symk(V ) contains a 1-dimensional G-module precisely when it does
as an H -module, and E(G) = E(H). So without loss we may replace G by H .
Thus we are in case (ii) of the theorem, that is, G is almost quasisimple. Now,
L = E(G) is quasisimple, and V |L is irreducible by [GT2, Lemma 2.5]. Let S
denote the simple quotient L/Z(L) � G/Z(G). Then the condition (?) implies
that S cannot be any of the 26 sporadic simple groups. If L ∼= Am or 2Am , then
again m > D by virtue of (?), and so we are done by Proposition 3.9.
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We have shown that L is a quasisimple group of Lie type, say in characteristic
p. It follows by [GM, Theorem 2.4] that

|χ(x)|/χ(1) 6 19/20

for all x ∈ LrZ(L), if χ denotes the character of G afforded by V . As CG(L) =
Z(G) by Schur’s lemma, we see by Lemma 2.8 that

|χ(g)|/χ(1) < γ := 0.99 (3.4)

for all g ∈ G r Z(G). Furthermore, the condition (?) implies that L is generic,
in the broad sense that, first, |Mult(S)| is nonexceptional and so described in
[KL, Theorem 5.1.4], and, second, the Landazuri–Seitz–Zalesskii bound d(S),
as given in the middle column of [KL, Table 5.3.A], applies to L . (Also see [T]
for more recent improvements on the Landazuri–Seitz–Zalesskii bound.) As V |L
is irreducible, we have

n > d(S). (3.5)

We will assume that |Z(G)∩G ′|6 e for some suitably chosen e ∈ N. Lemmas 3.2
and 3.4 yield the universal choice |Mult(S)| · |Out(S)|2 for e, but in certain
cases, depending on the structure of Out(S), which is described in [GLS,
Theorem 2.5.12], we can make better choices for e. We will aim to show that

n > 174e. (3.6)

If (3.6) holds, then we can choose an integer k,

10n
31

6 k 6
10n
31
+

n
174

(3.7)

such that |Z(G) ∩ G ′| divides k and n > 3k/γ 3/2, where γ is given in (3.4); in
particular, all conclusions of Proposition 2.2 apply. At the same time, we will
aim to show that n

430
> log2 |Aut(S)|. (3.8)

Claim that (3.8) implies |G/Z(G)| < γ −k/2. Indeed, Ḡ := G/Z(G) ↪→ Aut(S)
as G is almost quasisimple. Next, k > 10n/31 by (3.7), and 1/γ > 21442/105 by
(3.4). Hence,

γ −k/2 > 2(1442/105)·(5/31)·n > 2n/430 > |Aut(S)| > |Ḡ|

as stated. Thus, all the hypotheses of Proposition 2.6 hold for β := γ −k/2 and so
Symk(V ) contains a 1-dimensional G-submodule, provided that (3.6) and (3.8)
hold for n = dim(V ) = χ(1).
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Now we proceed to establish (3.6) and (3.8). We will use the fact that

x > 1454(log2 x)2 if x > 526000, and x > 1610(log2 x)2 if x > 592000.
(3.9)

(Indeed, the function f (x) := x/(log2 x)2 is strictly increasing on (e2,∞);
furthermore, f (526000) > 1454 and f (592000) > 1610.) We will also assume
that L is defined over Fq with q = p f . Although the consideration of various
series of finite groups of Lie type follows the same outline, we feel it would be
best to give a treatment for each of these series.

(b) Consider the case S = PSL2(q). Then Out(S) is abelian of order d f with
d := gcd(2, q − 1); in fact, it has a cyclic subgroup B of order d such that
Out(S)/B ∼= C f . It follows by Lemma 3.3(iii) that |Mult(Ḡ/S)| 6 d , whence
we can choose e = d2 6 4. The condition (?) implies that q > 592000 > 219.
Next, n > d(S) = (q − 1)/d > (q − 1)/2, and so (3.6) holds. Furthermore,
|Aut(S)| = q(q2

− 1) f < q3 f < q4. Using (3.9) for x := q we get

n > (q − 1)/2 > 700(log2 q)2 > (700 · 19) log2 q > 430 log2 q4,

and so (3.8) holds as well.

(c) Next, assume that S = PSLεm(q), where m > 3, and PSLε stands for PSL if
ε = + and for PSU if ε = −. Note that Out(S) has a metacyclic normal subgroup
B such that Out(S)/B ∼= C f . Here, B has a cyclic normal subgroup B1 of order
d := gcd(m, q − ε1) and B/B1

∼= C2. Certainly, Ḡ/S has a similar structure,
with B replaced by B ∩ Ḡ/S. Now, Lemma 3.3(iii) applied to B ∩ Ḡ/S yields
|Mult(B∩Ḡ/S)| 6 |B|. Applying Lemma 3.3(ii) to Ḡ/S, we get |Mult(Ḡ/S)| 6
|B|2. Hence by Lemma 3.2 we can choose e = 4d3.

Recall by (?) that |Aut(S)| has a prime divisor r larger than 592000. Claim
that

qm−1 > 526000 (3.10)

in this case. Indeed, if r divides |Out(S)| = 2d f then r 6 q + 1 < qm−1. If
r - |Out(S)| and ε = −, then r 6 (qm

+ 1)/(q + 1) < qm−1. Assume now that
r - |Out(S)| and ε = +. Certainly, if r |q or r |(q j

− 1) for some j 6 m − 1, then
r 6 (qm−1

−1)/(q−1) < qm−1. In all these cases, we must have that qm−1 > r >
592000. It remains to consider the case where r |(qm

−1) but r -
∏m−1

j=1 (q
j
−1) and

qm−1 6 526000. If m is not a prime, then we have r 6 (qm
−1)/(q2

−1) < qm−1,
a contradiction. So we may assume m is a prime. If q > 9, then

r 6
qm
− 1

q − 1
<

q
q − 1

· qm−1 6
9
8
· 526000 < 592000,
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again a contradiction. If q = 2, then m 6 20, whence m 6 19 and r 6 219
−

1 < 592000. A similar argument shows that r < 592000 if 3 6 q 6 8. This
contradiction completes the proof of (3.10).

Now we have that

n > d(S) >
qm
− q

q + 1
= (1− q−m) ·

q
q + 1

· qm−1 >
1.999

3
qm−1. (3.11)

In particular, n > 350490 by (3.10). Applying (3.9) and (3.10) to x := qm−1 we
get

n > 1.999
3 · 1454 · (m− 1)2(log2 q)2 > 1.999

3 · 1454 · 4
9 m2(log2 q)2 > 430m2 log2 q.

Since |Aut(S)| < 2 f qm2
−1 6 qm2 , (3.8) holds. Next, if m > 9, then (m − 4)/

(m − 1) > 5/8, whence

n > 1.999
3 q3qm−4 > 1.999

3 q3
· (qm−1)5/8 > 2507q3.

As e = 4d3 6 4(q + 1)3 6 13.5q3, (3.6) holds in this case. If m 6 7, then

174e 6 174 · 4m3 6 238728 < n.

If m = 8, then q7 > 526000 implies that in fact q > 7, whence n > 548750 by
(3.11), and so

174e 6 174 · 4m3 6 356532 < n.

Thus we have verified (3.6) for all groups of type A.
(d) Now we consider the case S = P Sp2m(q) with m > 2. It is easy to see

that the condition (?) now implies that qm > 592000. Suppose first that q is odd.
Then n > d(S) > (qm

− 1)/2 > 295000. Applying (3.9) to x := qm (and noting
that 2m2

+ m + 1 6 (11/4)m2), we get

n > 804m2(log2 q)2 > (804 · log2 3 · 4/11)(2m2
+ m + 1) log2 q

> 463(2m2
+ m + 1) log2 q.

Next assume that 2|q . Then n > d(S) > qm > 592000. Applying (3.9) to
x := qm , we obtain

n > 1610m2(log2 q)2 > (1608 · 4/11)(2m2
+ m + 1) log2 q

> 584(2m2
+ m + 1) log2 q.

As |Aut(S)| 6 2 f q2m2
+m 6 q2m2

+m+1, (3.8) holds in both cases. Also, Out(S)
has a normal subgroup B of order 6 2 with Out(S)/B ∼= C f . Hence by
Lemma 3.3(iii) and Lemma 3.2 we can choose e = 4, and so (3.6) holds as well.
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(e) Here we consider the orthogonal groups. Suppose first that S = Ω2m+1(q)
with q odd and m > 3. Again, the condition (?) implies that qm > 592000. Also,
n > d(S) > qm , |Aut(S)| < q2m2

+m+1, and Out(S) has a similar structure as in
the case of symplectic groups. So we can apply the same arguments as in (d).

Assume now that S = PΩε
2m(q) with m > 4, and note that qm > 592000 by

(?). Also, |Aut(S)| < 6 f qm(2m−1) < q2m2 , and n > d(S) > qm+1. Applying (3.9)
to x := qm we get n > 1610m2 log2 q , and so (3.8) holds.

Suppose in addition that 2|q if S = PΩ+8 (q). Then |Out(S)| 6 8 f and so we
can take e = 256 f 2 by Lemmas 3.2 and 3.4. Since n > qm+1 > 1184000, (3.6)
holds if f 6 5. On the other hand, if f > 6, then

174e = 44544 f 2 < 25 f 6 q5 6 n,

yielding (3.6) as well.
It remains to consider the case where S = PΩ+8 (q) and 2 - q . Then |Out(S)| =

24 f and so we can take e = 2304 f 2 by Lemmas 3.2 and 3.4. Since n > qm+1 >
1776000, (3.6) holds if f 6 2. On the other hand, if f > 3, then

174e = 400896 f 2 < 35 f 6 q5 6 n,

completing the proof of (3.6) for orthogonal groups.
(f) Finally, we handle the exceptional groups of Lie type, and we start with the

smaller ones. Assume S = 2 B2(q). The condition (?) implies that q > 219. Next,
n > (q−1)

√
q/2, |Aut(S)| 6 f q5 < q6, Out(S) is cyclic, and we can take e = 1.

Hence, using (3.9) for x := q we have

n > 500q > (1610 · 500) log2 q > 430 log2 q6,

yielding (3.6) and (3.8).
Assume S = 2G2(q). The condition (?) implies that q > 311. Next, n > d(S)>

q(q − 1), |Aut(S)| 6 f q7 < q8, Out(S) is cyclic, and we can take e = 1. Hence,
using (3.9) for x := q we have

n > 311q > (1610 · 311) log2 q > 430 log2 q8,

yielding (3.6) and (3.8).
Let S = G2(q). Then any prime divisor of |Aut(S)| is at most q2

+ q + 1,
so (?) implies that q > 769. Next, n > d(S) > q(q2

− 1) > q5/2, |Aut(S)| <
2 f q14 6 q15, Out(S) is cyclic, and we can take e = 1. Hence, using (3.9) for
x := n we have

n > 1610(log2 n)2 > 104(log2 q)2 > 430 log2 q15,

yielding (3.6) and (3.8).
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Let S = 3D4(q). Then any prime divisor of |Aut(S)| is at most q4
− q2
+ 1, so

(?) implies that q > 29. Next, n > d(S) > q3(q2
−1) > q4, |Aut(S)| < 3 f q28 <

q30, Out(S) is cyclic, and we can take e = 1. Hence, using (3.9) for x := n we
have

n > 1610(log2 n)2 > 25760(log2 q)2 > 430 log2 q30,

yielding (3.6) and (3.8).
(g) For the remaining exceptional groups of Lie type, we prove the stronger

result that (ii) holds even under the weaker assumption.

(??): Some prime divisor of |G/Z(G)| exceeds 73.

Suppose first S = E8(q). Then n > d(S) > q28, |Aut(S)| < f q248 < q249,
Out(S) is cyclic, and we can take e = 1. Hence, using (3.9) for x := n we have

n > 1610(log2 n)2 > (1610 · 282)(log2 q)2 > 430 log2 q249,

yielding both (3.6) and (3.8).
Next assume that S = E7(q). Then n > d(S) > q16 > 216, |Aut(S)| < f q133 <

q134, Out(S) is metacyclic of order gcd(2, q−1) f , and we can take e = 4. Hence,

n > 4096 log2 n > (4096 · 16) log2 q > 430 log2 q134,

yielding (3.6) and (3.8).
Assume now that S = E6(q) or 2 E6(q). The condition (??) implies that q > 3.

Next, n > d(S) > q10 > 310, |Aut(S)| < 2 f q78 6 q79, and we can take e =
108 f 2 by Lemmas 3.2 and 3.4. Hence,

n > 3725 log2 n > 37250 log2 q > 430 log2 q79,

yielding (3.8). Similarly,

n > 235(log2 n)2 > 23500(log2 q)2 > 23500 f 2 > 174e,

yielding (3.6).
Let S = F4(q). The condition (??) implies that q > 4. Next, n > d(S) >

q6(q2
− 1) > 57 (note that d(F4(4)) > 57), |Aut(S)| < 2 f q52 6 q53, and we can

take e = 1 since Out(S) is cyclic. Hence,

n > 4806 log2 n > 33642 log2 q > 430 log2 q53,

yielding (3.6) and (3.8).
Finally, let S = 2 F4(q)′. The condition (??) implies that q > 8. Now,

n > d(S) > q4(q − 1)
√

q/2 > 7 · 213, |Aut(S)| < f q26 < q27, and we can
take e = 1 since Out(S) is cyclic. Hence,

n > 3627 log2 n > 18135 log2 q > 430 log2 q27,

yielding both (3.6) and (3.8).
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4. Proof of Main Theorem

First we begin with the tensor induced case.

PROPOSITION 4.1. Let G < GL(V ) = GLn(C) be a finite irreducible subgroup
such that the G-module V is tensor induced: V = V1 ⊗ V2 ⊗ · · · ⊗ Vm with V1,

. . . , Vm transitively permuted by G and m > 2. If p > 2 dim(V1)+ 1 is a prime,
then Symk(V ) contains a 1-dimensional G-submodule, with k = (p−1) dim(V1).
Furthermore, p can be chosen to not exceed 4 dim(V1)+ 1, so that k 6 4n.

Proof. By hypothesis, G acts transitively on the set {V1, V2, . . . , Vm}. Let H :=
StabG(V1), and write G =

⋃m
i=1 gi H with g1 = 1.

(i) Suppose that Syma(V1) contains a t-dimensional H -submodule A1, for
some a, t ∈ N. Then Ai = gi(A1) is a t-dimensional submodule for gi Hg−1

i =

StabG(Vi). Now, for any g ∈ G and any 1 6 i 6 n, there are some 1 6 j 6 n
and some h ∈ H such that ggi = g j h and so g(Ai) = g j(A1) = A j . Thus G
permutes the m subspaces A1, . . . , Am and so acts on A1 ⊗ A2 ⊗ · · · ⊗ Am .

(ii) Applying the observation in (i) with a = 1, we conclude by irreducibility
of V that H is irreducible on V1. By Theorem 3.5(ii), if p > 2 dim(V1) + 1
is a prime then Symk(V1) contains a 1-dimensional H -submodule A1, with
k = (p − 1) dim(V1). Again applying the observation in (i) with (a, t) = (k, 1),
we see that G acts on the 1-dimensional subspace A1 ⊗ A2 ⊗ · · · ⊗ Am . Hence
the statement follows by noting that Symk(V1 ⊗ V2 ⊗ · · · ⊗ Vm) contains

Symk(V1)⊗ Symk(V2)⊗ · · · ⊗ Symk(Vm) ⊇ A1 ⊗ A2 ⊗ · · · ⊗ Am,

see [FH, page 80].

PROPOSITION 4.2. Let G < GL(V ) = GLn(C) be a finite irreducible subgroup
such that the G-module V is primitive, but tensor decomposable. Let p > D be
any prime, where D is the constant in Theorem 3.10. Then Symk(V ) contains a
1-dimensional G-submodule for some k 6 2(p − 1)n.

Proof. We decompose V = A⊗ B⊗C , where the G-modules A, B, and C have
the following properties. First,

A = A1 ⊗ A2 ⊗ · · · ⊗ Al,

where each Ai is a tensor induced G-module. Next,

B = B1 ⊗ B2 ⊗ · · · ⊗ Bm, C = C1 ⊗ C2 ⊗ · · · ⊗ Cq,
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where each Bi , respectively Ci , is a tensor indecomposable, not tensor induced,
G-module. Furthermore, each Bi satisfies conclusion (i) of Theorem 3.10. Next,
if Ki is the kernel of G acting on Ci , then the G/Ki -module Ci satisfies
conclusion (ii) or (iii) of Theorem 3.10. Note that the irreducibility and
primitivity of V imply that all Ai , Bi , and Ci are irreducible and primitive.

First we deal with A. Recall that Ai = Ai1⊗ Ai2⊗· · ·⊗ Aili is tensor induced,
with li > 2. Let ai be the common dimension of the Ai j , 1 6 j 6 li , and let

a := max{a1, a2, . . . , al}.

Then, by Proposition 4.1, there is a prime r ∈ [2a + 2, 4a + 1] such that
Sym(r−1)ai (Ai) contains a 1-dimensional G-module. By Lemma 2.7, Syml(Ai)

contains a 1-dimensional G-module for

l := (r − 1)
l∏

i=1

ai 6 4a
l∏

i=1

ai 6 4 dim(A).

As Syml(A) contains
⊗l

i=1 Syml(Ai), we see that Syml(A) contains a
1-dimensional G-module.

Next we fix a prime p > D. By Theorem 3.10(i), Sym(p−1)bi (Bi) contains a
1-dimensional G-module, if bi := dim(Bi). By Lemma 2.7, Symm(Bi) contains
a 1-dimensional G-module for

m := (p − 1)
m∏

i=1

bi 6 (p − 1) dim(B),

whence Symm(B) contains a 1-dimensional G-module.
Finally, by Theorem 3.10(ii), (iii) and Lemma 2.7, Symqi (Ci) contains a

1-dimensional G-module for some qi 6 dim(Ci). By Lemma 2.7, Symq(Ci)

contains a 1-dimensional G-module for

q :=

q∏
i=1

qi 6 dim(C),

whence Symq(C) contains a 1-dimensional G-module.
Now we can choose

k = lcm(l,m, q) 6 2(p − 1) dim(A) dim(B) dim(C) = 2(p − 1)n

and note by Lemma 2.7 that

Symk(V ) ⊇ Symk(A)⊗ Symk(B)⊗ Symk(C)

contains a 1-dimensional G-submodule.
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Now we can prove the main result of the paper.

THEOREM 4.3. Let G < GL(V ) = GLn(C) be any finite subgroup. Let p > D
be any prime, where D is the constant in Theorem 3.10. Then Symk(V ) contains
a 1-dimensional G-module for some k 6 2(p−1)n. In particular, we can choose
D = 592000 and p = 592019.

Proof. Replacing V = Cn by any irreducible G-submodule U of V and G by
the image of G acting on U , we may assume that the G-module V is irreducible.

(i) First we consider the case where the G-module V is primitive. If V is
furthermore tensor induced, then we can apply Proposition 4.1. On the other
hand, if V is tensor decomposable, then we are done by Proposition 4.2. Finally,
if the G-module V is tensor indecomposable and not tensor induced, then the
statement follows from Theorem 3.10.

(ii) In the general case, choose a subgroup H 6 G of minimal order such
that the G-module V is induced from an H -module W . Since V is irreducible,
W is irreducible over H . The minimality of H implies that the H -module W
is primitive. By the result of (i), Symk(W ) contains a 1-dimensional H -module,
with k 6 2(p − 1)(dim W ) and p > D any prime. It follows by Lemma 3.1 that
Symkm(V ) contains a 1-dimensional G-module, with

m = [G : H ] = (dim V )/(dim W ),

and so we are done.

COROLLARY 4.4. Let G 6 GL(V ) be a finite group. Then G has a nonzero
polynomial invariant, of degree at most min(1184036 · dim(V ) · exp(G/G ′),
|G|).

Proof. There is no loss in assuming that G acts irreducibly on V . Now, by Main
Theorem, G has a semi-invariant f of degree k 6 1184036 · dim(V ). Arguing
as in the proof of Lemma 2.7, we see that f exp(G/G ′) is a nonzero polynomial
invariant for G; in particular, C[V ]G 6= 0. The existence of nonzero polynomial
invariants of degree 6 |G| now follows from the classical Noether bound [N].
Alternatively, the last statement also follows from the stronger result that, for
any linear character λ of G, the G-submodule of C[V ] consisting of all semi-
invariants corresponding to λ is generated by homogeneous polynomials of
degree at most |G|, see [St, Theorem 1.3].

As we mentioned in Section 1, the constant 1184036 in Corollary 4.4 can
perhaps be improved. On the other hand, the next Example 4.5 shows that
the term 1184036 · dim(V ) · exp(G/G ′) cannot be replaced by C · dim(V ) or
C · exp(G/G ′) for any absolute constant C .
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EXAMPLE 4.5. Consider any fixed constant C > 0.

(i) For any integer n > 4 consider the irreducible subgroup G = An+1 ×CN <

GLn(C), with N > Cn. As the central subgroup CN acts faithfully as scalars
on V = Cn , any nonzero polynomial invariant f of G on V has degree
divisible by N ; in particular, deg( f ) > C · dim(V ).

(ii) For any prime p > max(C, 2), consider q = 2p−1 and H = SLp(q). It
is well known, see for example [TZ, Theorem 3.1], that H has a faithful
irreducible complex (Weil) representation of degree n := (q p

− 1)/(q − 1),
giving rise to an embedding H < GL(V ) with V = Cn . Note that
Z(H) ∼= C p acts faithfully as scalars on V and H = H ′. It follows that
any nonzero semi-invariant f of H on V is also an invariant and has degree
divisible by p. Thus d(H) > p > C · exp(H/H ′). This example also shows
that for quasisimple subgroups G < GLn(C) with n arbitrarily large, d(G)
can exceed

√
log2 n (indeed, taking G = H as in this example, we get

2(p−1)2 < q p−1 < n < q p < 2p2 and so d(H) > p >
√

log2 n).
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