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GLACIER SLIDING DOWN AN INCLINED WAVY BED WITH 
FRICTION 
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(School of Mathemati cs and Physics, University of East Anglia, Norwich NR4 7Tj, England) 

ABSTRACT. The effects of fri ctional ta ngential traction combined with regela tion on the basal sliding 
of a tempera te glacier down an inclined wavy bed are examined. Two fri ction m od els a re trea ted. First. 
a Coulomb law model hav ing the assumptio ns tha t sliding occurs everywhere and that the tangentia l traction 
is proportional to the normal pressure. Secondly, a velocity p ower law in which the tangen tial trac tion is 
proportional to a power of the slip velocity. The ice motion is approximated by stead y slow Newtonia n flow 
a nd the bed undula tion a bout a mean bed-line has a maximum slope < <!; I. Flow solutions a re constructed 
as perturbations (in powers of <) of the pla ne la minar flow corresponding to non-slip on the mean b ed-line, 
assuming tha t the ice remains everywh ere in contact with the bed; that is, no cavita tion takes place. If the 
norma l traction is predic ted to be tensil e over part of the bed , implying tha t cavitation has occurred , then a 
n ew solution is need ed in which the ice base over cavities is tract ion-free. Since the cavity sec tions a nd profile 
of the free ice base are then part of the overa ll solution, an intrica te mixed boundary-value problem is se t up 
for the fl ow and the present ana lys is is inadeq ua te. 

For a sinusoida l b ed the perfec t-slip (zero tangen tia l traction ) solution predic ts compressive norma l 
traction everywhere on the bed provided that the mean bed-line incl ination", ( to the hori zontal) is less than 
a critica l value "'c which is of order <. F or grea ter va lues o f <x, including a ra nge of order <, the normal 
trac tion is tensile on som e parts of the bed , and a solution with cavita tion is need ed. If the tensile sec tions 
are relatively small it is expec ted that the resulting cavita tion will no t change the overa ll solution significantly. 
H owever, the Coulomb fri ction solution h as extensive zones of tensile trac tion fo r a ll values of "', so that 
extensive cavitation would occur. J n contras t, the veloci ty-power fri ction solutio n has compressive trac tion 
everywhere on the bed for ", .;;; "'c = O( I ) provided that the ice depth is no t too la rge, and also for deep 
glaciers for", .;;; "'c ~ 0 « ). Furthermore, the predicted basal sliding velocity var ies much less with the 
length scale of the bed undulat ion tha n in the perfec t-slip solu tion, and is smalle r. 

R ESUME. Glissemellt d 'ulI glacier avecfrottemCllt SliT !Ill lit illcline Olldllli. On a examine les effets de la traction 
tangent ielle de fro ttement combinee avec le regel sur le lit d 'un g lacier tempere g lissa nt sur un fond incline 
avec d es ondula tions. Deux modeIes de fro ttement son t envisages: le premier es t une lo i de Coulomb d ans 
laq uelle la traction ta ngentielle est proportio nnclle a la press io n normale, le second es t une loi-puissance en 
fon ction de la vitesse dans laquelle la trac tio n tangentielle es t p roportionn lie a une puissance de la vitesse 
de glissement. Le m ouvement de la g lace es t assimile a un ecoulcmen t stat ionna ire lent Newtonien e t les 
ondulations du lit a utour d 'une direc tion moyenne, on t une p ente maximum < <Si I . Les solutions p our 
I'ecoulement sont construites comme d es p erturbations en p uissances de < a utour d e l'ecoulement plan 
laminaire correspondant a u non-glissem ent sur le lit pla n moyen, avec l'hypothcse que la glace reste partout 
a u contact du lit , c'es t-a-dire qu'il n'y a p as cavita tion . Si I'on prevoit que I'effort normal sur une partie 
d u lit sera une traction, cc qui implique q u e la cavi ta tion peut se produirc, a lors il fa ut une nouvelle solution 
dans laquelle la glace d e la base au-dessus d es cavites n 'es t pas soumise a une trac tion . Des lors que Ies 
profil e t sections des cavites de la glace li b re de la base font partie de la solutio n generale, un probleme 
inextricable de valeurs a ux limites es t souleve par la dc termina tion de I'ecoulement c t la presente analyse 
es t inadcqua te. 

Pour un ~it sinusoidal, la solution d u glissement parfa it ( trac tion tangentie lle n ulle) prt:voit un effort 
normal d e compression partout sur le lit pourvu que la pente moyenne '" (sur I' horizon tale) soit inferieure a 
une va leur critique "'c qui est de l'OI·dre de <. Pour des va leurs superi eures dc <x, y compris un ord re d e 
grandeur voisin de <, il y a un effort de trac tio n normal quclque part sur le lit, e t il es t necessa ire de ch ercher 
une solu tion avec cavita tion. Si les sec tio ns avec traction sont rela tivement pe tites, on s'a ttend a cc que 
la cavitation resulta nte ne cha nge pas la solution genera le d e m a niere significa ti vc. Cependant, la solution 
de la fri ction de Coulomb presente de la rges zones avec efforts normaux de trac tio n pour toutes les valeurs 
d e <x, si bien qu'une cavita tion import a nte p eut s'y produire. Pa r conlre, la solution avec frottem ent en 
puissance de la vi lesse es t valable partout si <X " "'c avec une valeur "'c = O( I ), pourvu que la profond eur 
du glacier ne soit pas excess ive, et a uss i pour les glaciers profonds lorsque '" " "'c avec "'c = 0 « ). En conse
quence, la vitesse d e glissement a la base qui es t pred ite, va ri e beaucoup moins avec I'echelle des longueurs 
d'onde des irregulari tes du lit que da ns la so lution a glissem ent pa rfait et es t plus fa ible. 

ZUSAMMENFASSUN G. Gletschergleitert iiber eill geneigtes 1I11d gewelltes Bett //lit Reibllllg. Untersucht wird d ie 
A uswirkung tangentialen R eibungszuges in K ombina tion mit R egela tion aur das G leiten eines temperie rt en 
G le tsch ers ober ein geneigtes und gewelltes Bett. Zwei R eibungsmodelle werden h erangezogen: erste ns e in 
Coulomb-Gese tz, bei d em die tangen ti a le R eibung proportiona l zum ormaldruck a nwachst ; zweitens e in 
Geschwindigkeitspotenzgese tz, bei dem die ta ngentia le R eibung proportional zu e iner Po tenz der Gleitgesch
windigkeit is t. Die Eisbewegung wird durch sta tiona res, la ngsames Newtonsch es Fliessen angenahert ; di e 
Bettundulation urn e in mittleres Bettprofil h a t eine Maxima lneigung von < <Si I. Die Losungen rOr d as 
Stromungsfeld werden als Storungen der eb enen laminaren Stro mung, bei der kein G leiten auf dem mittle ren 
Bettprofil stattfindet, nach Potenzen von < e ntwi ckel t ; dabei wird angenom mcn, d ass das Eis Obera ll mit d em 
Bet! in BerOhrung bleibt. d.h. keine K avitation stattfindet. FOr den Fa ll , dass sich e ine Normalkomponente 
d er Kraft Ober ei nem T eil des Bettes in Z ugr ichtung ergibt , bra u cht man eine neu e Losung. die Kavita tion 

https://doi.org/10.3189/S0022143000013745 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000013745


JOURNAL OF GLACIOLOGY 

einschliesst , und bei der die Eisuntergrenze uber den Hohlraumen reibungsfrei isl. Da die Hohlraum
abschnitte und das Profil del' freien Eisuntergrenze dann einen Teil der Gesamtliisung bilden. erhalt man 
fur das Fliessen ein verwickeltes vermischtes RandweJ'lproblem und die \'orliegende Untersuchung ist 
unzulanglich. 

Fur ein sinusfiirmiges Bettprofil liefert die Liisung fur vollkommenes Gleiten (ohne tangentiale Reibung) 
uberall im Bett eine Normalkraft in Druckrichtung, vorausgesetzt , die Neigung '" des mittleren Bettprofils 
gegenuber der Waagrechten ist kleiner als ein kritischer Wert (X c (in der Grosse von . ). Fur hohere Werte 
von "', einschliesslich eines Bereiches in der Grosse von •. ist die Normalkraft an einigen Stellen des Bettes 
in Zugrichtung, und man braucht eine Losung mit Kavitation. Wenn die Abschnitte unter Zug verhalt
nismassig klein sind, wird angenommen, dass die entstehende Kavitation die Gesamtlosung nicht entscheidend 
veranderl. Die Losung fur die Coulomb-Reibung hat jedoch fur alle Werte von '" ausgedehnte Zonen unter 
Zug, so dass entspechende ausgedehnte Kavitation auftreten wird. In Gegensatz dazu gilt die Losung mil 
Reibung nach dem Geschwindigkeitspotenzgesetz uberall , wenn '" < "'c = 0 (1), vorausgesetzt, dass die 
Eisdicke nicht zu gross ist, und auch fur machtige Gletscher, wenn '" < "'c = 0 (. ). Des weiteren schwankt 
die vorausgesagte Gleitgeschwindigkeit weit weniger mit der Langenausdehnung der Bettundulation als in 
der Losung des vollkommenen Gleitens und ist niedriger. 

I. INTRODUCTION 

A thin water layer produced by the melting and re freezing of basal ice in a temperate 
glacier on up- and pown-stream faces of bed protuberances provides lubrication for ~he basal 
sliding which may be a significant part of the overall motion. The shear stress in such a thin 
layer is negligible and so there is no resistive tangential traction to the ice motion over the 
bed. The bed drag is the resultant, along the mean bed line, of the pressure distribution over 
the protuberances. This perfect-slip model is the basis of flow solutions obtained by Nye 
( 1969, 1970), Kamb (1970), and more recently, Morland ( 1976). It is assumed that the 
ice can be approximated as an incompressible Newtonian fluid of high viscosity in slow steady 
flow, and that the bed profile is periodic with small maximum slope € relative to the bed line. 
Solutions are obtained as power series expansions in €, assuming that the ice base remains 
everywhere in contact with the bed. For a given glacier depth h, an inclination Cl( of the 
m~an bed line to the horizontal, and a profile shape, the plane flow solution determines the 
basal-sliding velocity, which is defined as the tangential velocity along the mean bed line. 
A calculation for a sinusoidal bed shows that the basal-sliding velocity is sensitive to the 
length scale of the bed undulation. Furthermore, the normal traction on the bed remains 
compressive everywhere only if Cl( :::;:; Cl(c for some critical angle Cl(c which is of order €, and 
hence the solution predicts tensile tractions on part of the bed for Cl( of the order of one and 
for some range of Cl( of order €. In these situations cavitation must occur, and a valid formula
tion must incorporate cavity sections over which the ice base is traction free, these sections 
and the profile of the ice base being part of the solution . This intricate problem involving, 
as it does, such mixed boundary values, has not yet been attempted. It is: however, expected 
that when the tensile sections are relatively small , the resulting cavitation will not have a 
significant effect on the overall solution. 

The condition of zero tangential traction requires the existence of a continuous water 
layer. Pinching-out of the water layer at the crests of protuberances will cause local failure of 
this condition, but debris protruding from the basal ice makes frictional contact with the bed 
across the large areas over which it is carried (Boulton, 1974, p. 41; 1975, p. 7). The inter
action of such debris with the bed is complex, as is its dependence on bed profile (which 
reveals how it is transported and deposited) . Data obtained by G. S. Boulton, A. Armstrong 
and E. M. Morris from field work carried out on the Glacier d'Argentiere in 197J and 1975 
are being analysed in an attempt to construct "simple" friction laws exhibiting the main 
features observed in different situations. To ensure a manageable analysis one must assume 
that the mean effect of the individual debris contacts can be described by friction laws which 
apply continuously over the bed surface. I t is with such an analysis in mind that any possible 
qualitative effects of bed friction on basal sliding are explored here, by solving the plane How 
problem for two conventional friction laws. 
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First , the Coulomb law 

where Is and I n are the tangen t ial. and normal tractions on the ice base, wi th s d efining a 
tangential coordinate in the direction of flow and n a normal coordinate directed into the ice, 
v is the friction coeffi cient assumed to be of order unity. The limiting friction form of Equation 
( I) presupposes that sliding occurs everywhere. I t is reasonable to assume that any non-slip 
zones will be of limited extent and should not influence significantly the overall basal sliding. 

Secondly, a velocity power law 

Is = EVsl/m, (2) 

where Vs is the tangential velocity of the base ice, and E and m are constants. The form of 
Equation (2) has been used by Nye (1959) in a different context, and is also inferred by 
W eertman (1957 , 1964) as a global relation between mean drag and basal-sliding velocity 
in his regelation theory which takes a non-linear viscous law for the ice. Weertma n suggested 
that m is approximately 2 or a little larger , but gave no explicit value for E. In the present 
analysis, however, Equation (2) is considered as a possible qualitative relation arising from 
d ebris friction, in contrast with Equation (I), and also in an exploration of its effects on basal
sliding velocity and cavitation. A value of m = 2 is used in the calculations, and a range of 
values for E compatible with steady flow down the inclined bed is considered. 

If part of the work done by the basal fri ction is released as a surface heat flux , and not 
used solely for surface crushing or other mechanical effects, it cnntributes to the thermal 
balance in the regelation mechanism and a non-linear thel'mn-mechanical coupling is 
introduced into the boundary conditions. When only a sma 11 pa rt is released as heat this 
coupling may be neglected, and it is also shown here that , unucr modera te restrictions on the 
glacier depth and bed profile slope, the entire work contribution is small compared with the 
latent-heat terms. The solutions are therefore d eri ved neglecting any friction contribution to 
the thermal balance, so that the surface distribution of hra t sources at the ice base per unit area, 
is LVn (Nye, 1969), where L = 2.8 X 108 J m - J is th! la tent heat and V" is the normal velocity 
of the basal ice. Thus, at the bed 

where T and S denote temperature in the ice and bedrock respectively, and ki and kb are the 
thermal conductivities of ice and bedrock respectively. ki = 2.1 J m - I S- I K - I and kb = rki 
where r ranges from I to 2 for typical bed rocks; the value r = 1.6 (appropriate to granite) is 
used in later calculations. In the regelatinn model the basal ice is everywhere at its melting 
point, and if (Po, T o) is a pressure-m elting point on the bed-line , then at the bed 

Such a linear relation presupposes that T a nd S remain close to To at the bed, and 
C = 0. 7 X 10- 7 K j( N m - 2) . Following Kamb (19 70) the first-orde r d ependence is on p ressure 
p only with no contribution from deviatoric stress changes. 

Figure I shows the overall plane-flow problem, with coordinates (x,y) respectively along 
and normal to a bed line which is inclined at angle ()( to the horizontal. Us is the surface 
veloci tyaty = h, in the x-direction, and the basal-sliding velocity V b is defined as the leading
order term of the x-velocity in a flow continued onto y = o. The bed profile is 

Yb = f(x), (5) 

whereJ(x) is smooth and extends periodically as x -+ ± 00 . It is assumed that the bed slope 
is everywhere small, thus 

E = 1.f'(x) lmax ~ I. (6) 
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t 
Fig . I. Glacier flow over a wavy bed. 

The bed conditions (Equations ( I) or (2» and Equations (3) and (4) are applied on y = Yb(X). 
On the upper free surface the stress a satisfies 

y = h: (Iyy = - pa, Ux y = 0 , (7) 

where pa is atmospheric pressure, and where it is anticipated that the normal velocity Vy on 
y = h is zero to the r equired order in E. The exponential decay of Vy with height demons
trated in the solutions justifies the surface prescription y 0= h under a very weak restriction 
on h. A geothermal heat flux Q normal to the bed line, with a typical value of 4 X 10- 2 

J m - 2 S - l (Paterson, 1969) is included, requiring 

Q 
T:::::: - k? asy --+ 00, asy --+ - 00, (8) 

in the half-plane solutions determined for T and S. 

2. FLOW EQUATIONS 

The construction of velocity and temperature fields, in terms of complex potentials, and 
the development of boundary-condition expansions in powers of E, have been described by 
Morland (1976) . Equations from this earlier paper are prefixed by the letter "M", only the 
main steps are repeated here. 

A length scale of the bed undulation A is defined by 

A = fm /E, wherefm = If(x) Imax, (9) 

and dimension less coordinates (X, r ) are defined by 

x = AX, y = A r, ( 10) 
in which the bed profile becomes 

rb=f( AX)/ A = EF(X); } 

IF (X) I ~ I, IF' (X) I ~ l. 

( 1 I) 
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The following velocity, pressure and temperature decompositions are formulated: 

ilQ 2p-UsC-
T = To-y; r+-

il
- T, 

where fL is the ice viscosity and 

pg sin ex hz 
K= 

2fLUs 

v y 
-=v 
V s ' 

Po = pa + pg cos a: h, 

A value for fL of 3 X 10lZ N m - Z s is used in the calculations. For given values of ex and h, 
Equation ( I S) determines Vs once K is known. The velocities u and v are dimensionless with 
a scale unit Us, P is a dimensionless pressure with unit 2fLVsI iI ( ~ will denote a dimension less 
stress tensor with the same unit), T and S are dimensionless temperatures with unit 2fLUsC/iI. 
The free surface conditions of Equation (7) and the flux conditions of Equation (8) are 
satisfied exactly if 

r = hlil , u = v = P = 0; } 'f --')- 0 as r --')- 00, oS ~ 0 as r ~ - 00. 

The condition of momentum balance is satisfied for slow viscous flow if 

VZP = 0 , 

( 17) 
and 

ap 
or = t\1 zv, 

so that P, u and v are the pressure and velocity fields for viscosity o.S in the absence of any 
body force (Langlois, 1964) . \1Z is the two-dimensional Laplacian in (X, Y) coordinates. 
Steady heat conduction in the ice and bed respectively requires that 

\12T = 0 and VzS = 0 , ( 18) 

if we neglect the motion of the ice (Kamb, 1970) . Solutions of the biharmonic relations 
(Equation (17)) and the harmonic relations (Equations (18)) can be expressed in terms of 
analytic functions of a complex variable z = X+ir (equations (M43) to (1\147)). Let the 
values of u, v, T and Son r = 0 (continued analytically where r = 0 lies outside the domain) 
be denoted by 

u(X,o) = U(X), } 
v(X,o) = V(X) , 

T (X, o) = 0(X), 
S(X,o) = Q(X) , 

and also assume that V, T', 0 and n vanish or behave sinusoidally as X --')- ± 00. Then, 
assuming that the complex potentials vanish at infinity in a way consistent with Equation (16), 
the potentials may be represented as Cauchy integrals of V, V, 0 and n (equations (Mso)
(MS3))· 
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The boundary values at r = rb (X ), which arise in the bed conditions (Equations ( I )- (4)), 
can be approximated by a truncated Taylor series in r about r = o. The series appears as a 
power expansion in E by virtue of Equation (11 ) . Evaluation of the various quantities and 
derivatives on r = 0 is made from equations (M5o)- (l\-I53), these involve Hilbert transforms 
(ErdeIyi, 1954). If W (t ) is continuous and vanishes or behaves sinusoidally at infinity, then 
its Hilbert transform is 

CL 

1 f W (t) H[W](X) = - - dt , 
1T t-X 

- Cf. 

where f denotes the Cauchy principal value. Also 

and 

dH[W] = H[W'] } 
dX 

H[H[W]] = - W , 

the latter being the inversion theorem. The useful results when F(x ) is a truncated Fourier 
sen es are 

H[I] = 0, "1 
H [sin kt] = cos kX, ~ 
H [cos kt] = -sin kX ; j 

the constant func tion does not sa tisfy the inversion theorem. 
Now the bed conditions represented by Equations (3) and (4) are given by equations 

(M65) , (M63) and (M62 ), respectively. Neglecting te rms of order E2 ( U, V, 0 , D) , these are 

- H[0 ' + rQ'] + E{F ( 0 " - rD") + F '( 0' - rD')} = '2w2{V-E ( 1 - K) F' - E(FU)'}, ('23 ) 

0 + EFH[0'] = U' + H[V'] + EF{B + H[U"] - V"}, ('24 ) 

0 - D + EFH[0' + Q'] = EDF. ('25 ) 

The argument X is omitted for brevity. A natural length ,\. , and later a length A. , occur, 
these are defined by 

,\. = 2 (JJ.iCY = 0 .077 m, } 

A. = (_I _;-_ry'\. = 0.088 m , 

with previous values , and the ratios 

w = ,\ / ,\. , W = A/ A. , 

are introduced for convenience. The constants Band D in Equations (24) and ('25 ) are 
given by 

B = si~ ~ ( cos ~+ pgkiC)(~Y, } 
r- 1 K Q (A)2 

D = -r- sin ~ pgkiC h . 
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The bed conditions given by Equations ( I ) and (2 ) IT«uire expansions for the dilllt'lISioll
less tractions Ls and :L n, and the dimensionl t'ss tangent ial velocity Vs/ U" To t1H' sallll' 
approximation as Equations (23)- (25 ) . these expansions arC': 

Ls = K~{I -~EF- 2E 2 (F ')2} + H[U" I - E{FH[V"]+2 (F U')'}' ( 2~) ) 

-:Ln = ,8K~{I - .\I~EF} - H[V ' ] + 2K~EF'{I -~EF}+ 
+ E{FH[ U"J+ 2F'HL U' J} , (30) 

where 

co t ex 
f3 = M ' 

I t is supposed that 

so that Equation ( 16) is satisfied to any order in E with the exponential d ecay or u. v and P 
in r. Also 

f3 = 0 ( 1) if ex = 0 ( 1) . 

In orde r to balance the boundary conditions in powel"s of E , let 

U= Uo+ U,E + U2E' + .. " } 

V = Vo+ V,E + V,E' + '" , 
K(A/h) = yo + y,E + y,E' + .. , . 

A d e te rmination of the coeffi cients Yr gives K in terms o f A/h and , in tum , Us and ('h . It is 
expec ted that K ~ 0 ( I ) so Yo = 0, bu t this will fo llow from the balance of the boundary 
conditions. 

Finally, if a proportion j of the work d one agai nst basal fri ction is re leased as hea t, then 
in Equation (3) l"n. is replaced by l·n + jis l"./L. For th e Coulomb law (Equation ( I ) ) is is 
of order pgh (and possibly also for the velocity power law (Equation (2)) when ex is of order I ) 
and generally ( Vn/ Vs) is of order E, so neglect of the coupling term requires 

jh /E ~ 3 X 104 • (38) 
This is satisfied for small j , or j approximately one, provided h is moderate. I n fact, for Eq ua
tion (2) the condition for no cavitation when ex is of order one also requires that h be not too 
large. When ex is of order E, is ~ O(pghex), and non-coupling only requiresjh ~ 3 X 10 4 • 

3. COULOMB LAW 

The bed conditions are given by Equations (23) to (25) together with Equation ( I) written 
in the form 

:Ls = - VL n , 

where :Ls and Ln are given by Equations (29) and (30). First, consider 

ex = O(E) , f3 = f3, /E, f3, = 0 (1), 
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and suppose w is of order 1 in the series balance. Values of w which are smaller or larger 
may be treated directly, or obtained as limits to the present solution. 

The term in c' gives immediately from Equation (39) 

Yo = 0, 

and the EO terms give 

which imply that 
H[Vo'] = v(,B,y, -H[Vo']), } 

y, = 0, 

Vo = -vVo, 
and 

setting constant terms to zero in order to obtain the required behaviour at infinity. Now 
the EO terms of Equations (23) to (25) give 

0 0 = no = H[Vo']-vVo' , -( I + r) H[8 0 '] = 2w 2 VO, (43) 

leading to 

ro" - w2 Vo+ vH[Vo"] = o. 

A scarch for a periodic solution without constant term, 
er.: 

T'o = .L (an cos gll X + b" sin gn X), 
n = I 

and the use of the results of Equation (22) shows that both a" and bn are zero, so 

Vo = 0, ( 6) 
Vo = 0, } 

0 0 = 0, 4 
no = o. 

Similarly, the E terms of Equations (39) show that 

and 

and Equations (24) and (25) show that 

n, = f::1, - DF, 

y, = 0, } 

[1, - vV" 

8, = BF+ H[V/J - vV/. 

Using these results in the E palance of Equation (23) gives 

V,"-w2V, + vH[V,"] = - W' ( I - K){F' - AH[F']}, 

where 

(50) 

I t was shown in Morland (1976) that A has a maximum value of 0.05 for extreme values of 
the glacier parameters, so contributions to the geothermal heat flux which arise solely from 
this coefficient are small. The bounded complementary solution of Equation (49) is zero, 
analogous to Equation (44). The determination of a particular periodic integral needs F 
to be specified. As an illustration of this consider a sinusoidal bed whose shape is described 
by the equation 

F(X) = sin X. 
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The solution of Equation (49) is now 

VI = a cos X+b sin X, 

As v tends to zero, U, tends also to ' zero, and 

(I-K) cij2 
a~ 

thus we recover the solution for perfect slip (Morland, 1976). 

471 

The leading velocity terms U, and V, are now determined but, in contrast with the 
perfect slip solution, Yz = 0 and so K , US and Ub are still unknown. From the EZ terms of 
Equation (39) 

H[Uz']-FH[VI "]-2 (FU,')' = v{,8'YJ- H [Vz']+FH[U,"] + 2F'H[U,']} . (55) 

Thus, the second-order velocity coefficient Uz is given by the balance of periodic terms 
whereas ,8,y.l is equal to the constant term of 

-{FH[U/'] +2F'H[U,'] +v- 'FH[V,"]}. (56) 

For the profile represented by Equation (SI) 

for vA < I + cijz, 

which , since K and ,8, are positive, implies that Us is less than zero. This contradictory result 
stems from the application of Equation (39) to the regions of negative pressure (En > 0) 
given in this solution , when the friction (Es < 0) is directed up-glacier. From Equation (30) 
the leading normal pressure term is 

- En"""'" - EH[V,'] 
= E(a cos X + b sin X), (58) 

which oscillates equally between positive and negative values. Thus there is no balance 
without cavitation for Equations (39) and (40). 

Now, QC is of order one as are both ,8 and ~o. If we assume that v,8o is not equal to one, 
then the EO terms of Equation (39) give 

and Yo = 0, } (59) 

Uo = -vVo, 

and so Equations (23) to (25) lead to Equations (43) to (46) again. Similarly, the E terms give 

y, = 0, } (60) 

U, = -vV" 

and also Equations (48) to (54), while the EZ terms of Equation (39) give Equation (56) for a 
left-hand side of Yz (,8o-v-'). Thus 

a( I+ vZ) 
Yz = 2( I-v,8o) , (6 I) 

which tends to ( I - K) cijZ!( 2( I+cijZ)) as v tends to zero; we recover the perfect slip solution 
in this case also. Provided v is less than I!,8 then we are able to predict a positive surface 
velocity Us. But, again, Equation (58) determines the leading normal pressure term, showing 
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that there is no balance without cavitation. The case where v{3o is equal to one allows a 
balance only if Vs is zero . 

In conclusion, the solutions constructed for the Coulomb law, assuming no cavitation, 
are invalid for all ranges of bed-line incl ination Cl . 

-to V ELOCITY POWER LA\\" 

The law represented by Equation (2) can be rewritten as 

L = E- V 1' lmH --.!. A (V)'lm 
s 2/L s V s ' 

but we lack data for the physical constant E. H owever , if we suppose that Is is less than or 
equal to pgh sin Cl (a condition compatible ",·ith the gravity driving force) then 

~s :;::;; O(d jh) 
:;::;; O( A/h), 

since K is of the order of one fo r L ob greater tha n zero. T his is satisfi ed by the equation 

~ = e (~) K' - I' lml(5)' lm (63) 
S h Vs' 

where e is less than or equa l to the order of one provided that K is of order oneo If any solution 
with e of order one pred ic ts a smaller K , and hence a Vs of the order of V b and V s, then 
larger values of Is occur, presumably with compensating bed tensions as with the Coulomb 
law, so tha t cavitation occurs. However , the form of Equa tion (63) includes all possible 
valid situations. By construc tion , the equation 

e = E /{(2/L )'lm(pgsin Cl)l-I , / m1h, - 12/ml }, (64 ) 

is independent of the solution variable Vs, but d epends explic itl y on Cl and on h if m is not 
equal to 2 . T he perfect slip law L s = 0 is given by the limit as e tends to zero. 

Now ro" is of order Vb, and if 

~ 0 , 

then Equation (62 ) approaches the perfec t slip 
foll ow Morland (1976), so we a ssume that 

law . These conditions do not , in general , 

Vb 
(65) 

a nd hence from Equat ion (33) 

(!:!) 'II/t 
Vs 

(66) 

With the res tric tion of Equation (34) the E O term s of Equation (63) give 

Yo = 0, Un = 0 , (67) 

and then , the E O terms of Equations (23) to (25) are identical w ith the perfect slip balance 
implying that 

(68) 

Next , the E terms of Equation (63) give 

V, = 0: 
{ (

I -K)'lm} y, K I - e -K- = O . (69) 
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One solution to thest' equations is 

(~) ' 11/ = e, I 7() ! 

thus determining K , U b, and Vs independent of F (X ). Again , the " balancr or Equatiolls 
(23) to (2S) is identical with the perfect slip solution, so 

r," - wlJ', = -1 1- K) w2 {F - AH[F'1}' 171 ) 

and, for the sinusoidal bed (Equation (SI )) , 

( I - K) W' 
/", = _ (cos X + ,-1 sin X ). 

I + W z 

In the limit as e tends to zero, Equation (69) implies that y, = 0 as ill the perfect slip solutioll. 
The alternative solution of Equation (69) is simply 

y, = 0, (73 ) 

and the perfect-slip results (Equations (71 ) and (72 ) ) again follO\\·. :\Tow, the ,,' balance ill 
Equation (63) requires that 

y, + H[ £"/ 1 FHP ',"! ~ ey~ C ~Krlll . 74 ) 

The product FHP ',"] is in general the sum ofa constant r and a pel'iodic term 11' X ) , as in 
the perfect slip solution , so 

V,' = - H[lq , 

{ (
I - K)'IIn} rh,,' 

K I - e -K- = -,\- , 

where a non-zero r implies that y z is no t equal to zero . As 

y, -7 0 (11,, ), 
h,,2 
K'\ ---7 0 (,, ), 

(which is equivalent to y, being non-zero), Equation (7S ) approaches the result I Equation 
(70)) . Thus, the first solution is given by taking small values for h,,2 in Equation 17Sb) . For 
the sinusoidal bed (by equation (M88) ) 

and V z and 1"2 are given by the perfect slip solutions (equations (M90) and (M94)) . Thus 
the velocity perturbation is changed only by the scale factor Us, which changes with K 

(Equation (S)). Now Equation (7Sb) becomes 

K (K )' -I' /mJ h,,2w I_K- e I - K - 2,).. ( I + W2) = o. ( 77 ) 

When e = 0, Equation (77) reduces to the perfect slip -result (equation (MS9)) . 
The basal-sliding velocity is given by 

I - K pg sin IX h2 
[Tb = -- , 

K 2p.. 

and , for fixed values of hand w, as e increases KI( I - K) increases and so Cb dec reases. As 
expected, fri ction d ecreases the sliding velocity. Calculations have been made fOI' rn = 2. 
Figures 2 and 3 show the variation of LOb with w for values for h,,' of o. I , 0-4- I, and 4 , for 
e = o.S (Fig, 2) and e = I (Fig. 3), compared with Cb of the perfec t-slip solution (e = 0) . 
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In the perfec t-slip case the ratio U bE' /h is independent of hE'. For E ;:::: 0. 1, this range of hE' 
covers values of h running from 10- 400 m. If e, E and ware fixed , we see that U b decreases 
as h decreases. Also, for fixed e, the variation of U b with w (the length scale of the undulation) 
d ecreases as h decreases, and , in particular, U b is very insensitive to changes in w provided 
h is small. (As the graph ordinates are proportional to Ub /h (Figs 2 and 3), so these effects 
are more significant than the Figures appear to suggest. Figure 4 shows the variation of the 
ratio Ub /Us with w for the values of hE' used in the previous Figures. This ratio decreases 
with increase of e for each value of hE' and w, including the case where e = 0 (figure 3, 
M orland (1976)). At fixed e, U b/ Us becomes less sensitive to a change in w as hE' d ecreases. 
At both fixed e and w, the ratio increases as hE' d ecreases . 

Finally, the relation for normal bed pressure (Equation (30) ) has leading temlS (recall 
Equation (40)) 

ex = O(E) : - ~n ...., ,B ,y, + E ( ,B'Yz~H[V , , ] ) , } 

- 1:." ...., E(,Boy, - H[ V, ]) . ex = 0 ( 1) : 

Now if ).. /h is of o rder E, Equation (77) reduces to Equation (70 ) \\ itl, y, of. 0, K = 0 ( 1) , and, 
for such relative ly thin glaciers, Equation (79) shows that tht 'IT is 11 0 cavitation if IX is of order 
E , or if ex is of orde r one and 

,BoY, ~ (Hp ·,' ] )max. 

For the sinusoidal b("d the lall er condition becomes 

ex = 0 (1) : ).. ( 1 + w' ) em ( Pa ) 
ta n IX ,;:;;; 1 + h . hEw 2 pg ('os ex 

(80) 

2-0 
4-0 

' -0 

04 ' ·0 

...... . . 

0-' 

-la o ' -0 

Fig. 2. Variation of basal sliding velocity Vb with lI"dulation leTlgth A (SI-units) for e - 0.5. The peifect-slip solution 
(e = 0) is shown by the dol/ed line. 
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2·0 

1·0 

-1·0 o 

109 Ub E2 

h sin 0( 

40 

lO 

0,4 

0·1 

lO 
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Fig. 3. Variation of baml sliding velocity Vb with undulation length A (SI-units ) for e = 1.0. The perfect-slip solution 
(e = 0) is shown by the dotted line. 

1·0 

0·1 -_ 
~~~ ~ ..... ...... ...... _ ...... 

O-L. ................... __ __..-
-----

lO 0·5 

4·0 

-1·0 o 1·0 

0·1 

0·4 

1·0 

4·0 

Fig. 4. Variation of the ratio of basal-sliding velocity to suiface velocity with undulation length Afor different values of h.2 (SI
units ). These values are shown against the curves. The dashed lines are for e = 0 .5, the full lines are for e = 1.0. 
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For Alh of order £1 , YI zero and Y2 non-zero, Equation (79) shows that ~n oscillates about zero 
to the order of € when IX is of the order of one , so cavitation always occurs then. But for IX of the 
order of f. cavitation does not occur if f3IYl is greater than or equal to (H[V/ ])max. For the 
sinusoidal hed . neglecting the small coeffi cient ,J , the condition becomes 

£A ( I + W2
) ( Pa) K 

tan IX ~ I + -- . 
h£2W2 pgh cos IX I - K 

As with the perfec t-slip result of Morland (1976) (equation (MI02 )), there is a critical limit 
a(., of the order £ which increased with the friction coefficient e through the factor KI ( I - K). 

Thus, the law represented by Equation (2) allows non-cavitation solutions for " thin 
glaciers" for all a less than or equal to IXc (of order one) , and for " thi ck glaciers" for IX less 
than or equal to ac (of order £). 

5. CONCLUDING REMARKS 

The How solutions which have been established for both fri c tion laws exhibit features 
which differ from each other and from the perfec t-slip solution. With the Coulomb law 
I Eq uation ( I)), the normal bed trac tion becomes a tensil e stress ove r finit e sections of the pro
file however small the inclination a ; this implies the onset of cavitation and the failul'e of the 
~()llIti()n \\'hich assumes contac t eve rywhere. In the perfect-slip solution the bed pressure 
rcmains positive everywhere provided that IX is less than or equal to a c where IX c is of the order 
of €. SintT the m ean tangential traction must be less than the m ean down-plane gravity 
forcc . and by Eq uation ( I) Is is of the same order a s the normal pressure - In in the mat he
J!lat icai s()i lit ion , J'egions of large nOl'mal pressure are coun terbalanced by regions of n egative 
pressure alT()nlpanied by negative values of Is ( the traction driving the glacier) . Thus, the 
Coul()lId) la\\' is possibk only if a significant amount of cavitation takes place. In contrast, 
the po\\Tr-\Tlocity law IEquation (2)) gives a bed pressure which is everywhere positive if 
a is lrss thall or equal to IXI ' (of order one), provided the glacie r d epth h is not too large, 
and if IX is \toss than or equal to IX , . I a,. of order €) for d eep glaciers. Furthermore, the predicted 
basal-sliding veloc ity for a sinusoidal bed is smaller and varies much less with the length 
scale of the undulation than it does in the perfec t-slip solution , both the magnitude and 
variation decreasing as h dec reases. These broad features of the different fri ction laws may 
be helpful in the construction of fri c tion models from empirical data . 
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