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Abstract

It has been known for some time that if a certain non-degeneracy condition
is satisfied then the successive solution estimates x(r) produced by barrier
function techniques lie on a smooth trajectory. Accordingly, extrapolation
methods can be used to calculate x(0). In this paper we analyse the situation
further treating the special case of the log barrier function. If the non-
degeneracy assumption is not satisfied then the approach to x(0) is like r*
rather than like r which would be expected in the non-degenerate case. A
measure of sensitivity is introduced which becomes large when the non-
degeneracy assumption is close to violation, and it is shown that this
sensitivity measure is related to the growth of d'xldr* with respect to i for
fixed r small enough on the solution trajectory. With this information it is
possible to analyse the extrapolation procedure and to predict the number of
stages of extrapolation which are useful.

1. Introduction

In this paper we consider the solution of the mathematical programming problem
(MPP)

min/(x): S = {x;gJx)>0, i = 1,2, ...,m}, (1.1)

where/and the git i = 1,2, ...,m, are appropriately smooth functions on Rn->i?,
by means of the sequential minimization of the barrier function

B(x,r) =/(x)-rS log(gt(x)) (1.2)
i=l

for r taking values rx > r2 > ... > rk > ... where lim^^ rk = 0. Let x(rfc) be the exact
minimum of (1.2) produced by some algorithmic procedure for r = rk. We assume
that this minimum exists and is well defined. It is well known that the limit points
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[2] Barrier function methods 353

of the sequence {x(rk)} are solutions to the MPP under very general conditions [2].
However, to ensure that the solution points lie on a smooth trajectory parameterized
by r we require the problem to have considerably more structure. Proofs of the
following results can be found in [2].

PROPOSITION {first-order necessary conditions). A necessary condition for x*eS
to be a solution of the MMP is that there exist multipliers ut, i = 1,2, ...,/w,
satisfying the Kuhn-Tucker conditions

(a) V/(x*) - S «, Vft(x*) = 0 (1.3)

and

(b) Ui>0, Mi^(x*) = 0, z=l,2, . . . ,m,

and that the constraint set S satisfy a suitable regularity condition at x*.

The Lagrangian function for the MMP is

. (1.4)

PROPOSITION (second-order sufficiency conditions). If the Kuhn-Tucker conditions
are satisfied at x*, and if there exists m>0 such that (for some appropriate vector
norm)

| (1.5)

for all t such that for each ifor which u{>0

Vgi(x*)t = 0

then there exists an open neighbourhood N of x* in S such that if xeN,
then f(x)>f(x*). The second-order sufficiency conditions ensure that x* is an
isolated solution of the MPP.

REMARK 1.1. Clearly there exists M>0 such that

tTV|L(x*>u)t<M||t||2 (1.6)

for all t satisfying the requirements of the second-order sufficiency conditions.
It is convenient for our purposes to classify the constraints into several sets

depending on their behaviour at x*. Let
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If 16/ then the corresponding constraint ^(x) is said to be active at x*. The
complement of/with respect to {1,2, ...,m} is

If ieR then gt(x*)>0. We also write 7 = 71u/2 where

A = {<';ir<(x*) = o,

DEFINITION. The MMP is non-degenerate if /2 = 0.

DEFINITION, X* is a regular local solution of the MPP if
(i) the sequence {x(rk)}->x*,

(ii) Vgi(x*), iel, are linearly independent, and
(iii) the second-order sufficiency conditions hold at x*.

REMARK 1.2. If x* is a regular local solution of the MPP then
(a) the Kuhn-Tucker conditions hold at x* and the multipliers w* are unique,
(b) the sequence of values {rklgi(x(rk))}-*uf for each i, and
(c) x* is an isolated minimum of the MPP.

In what follows it will be convenient to denote rj/g^x^^)) by u^r^, and
Ak(A) for any function A(r).

DEFINITION. The Jacobian of the system

= r, i=

with respect to x, u is given by

V|L(x(r),u(r)) ... -

/(r) = (1.7)

It is called the Jacobian of the MPP.
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THEOREM 1.1. Let x* be a regular local solution of a non-degenerate MPP, then
(i) /(0) is non-singular,

(ii) x(r), u(r) lie on a smooth trajectory uniquely determined for r small enough by
the system of differential equations

dx/dra\/dr l = r o
duldr] [ e

and the initial conditions x(0) = x*, u(0) = u*, where e is the vector of length m
each component of which is 1, and

Theorem 1.1 provides the basic information necessary to use standard extrapo-
lation procedures to obtain an estimate for x*, u* from the results of minimizing
B(x,r) for (say) r = rl5r2, ...,rk. Standard linear extrapolation applied to xt(r) on
the points rltr2, ...,rk is equivalent to first fitting a Lagrange interpolation poly-
nomial of degree k-\ to the data say Pk-idx^r^J = \,...,k); r), and then
evaluating this at r = 0. A standard argument gives that the error in this estimate is

C

where £ is a mean value. The extrapolation is known to be numerically stable
provided r^+Jr^ is small enough for eachy [5].

The numerical performance of extrapolation when used to improve the basic
barrier function algorithm has been considered by several authors (for example,
[2,4,6]). Although the resulting algorithms tend to be very robust, the improvement
in efficiency is not always satisfactory. Our intention here is to examine the impli-
cation of the non-degeneracy assumption I2 = 0, and in the next section we show
that the trajectory analysis summarized in Theorem 1.1 must be modified if this
condition is relaxed. It proves to be possible to introduce a "measure of non-
degeneracy" and this is done in Section 3 where it is also shown that this measure
is an important parameter in determining the growth of dix/dri, diu/dri as i
increases at a point on the solution trajectory. In Section 4 a possible strategy for
estimating the worth of successive extrapolation steps is suggested and illustrated
by numerical results.

It is not claimed that the results presented here provide a basis for re-examining
the value of the basic sequential minimization plus extrapolation procedures.
However, we believe that they do improve our understanding of the problems
caused by degeneracy, and this in itself should be useful because degeneracy is a
source of problems in many mathematical programming algorithms. For example,
the class of modified Lagrangian algorithms considered in Fletcher [3] have the
property that the Hessian matrix is discontinuous at x* if the MPP is degenerate.
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2. On the nature of the trajectory in the degenerate case

The results quoted in the previous Section rely heavily on the non-degeneracy
assumption. However, the situation when this does not hold has not attracted a
great deal of attention. In [2, p. 81] an example is given in which the non-degeneracy
condition is not satisfied and in which || Afc(x)|| = O(rf{). In Mifflin [7] it is shown
that if the non-degeneracy condition is relaxed in Theorem 1.1, then provided
the MPP is strictly convex we have || Aft(x) || < O(r|). Here we improve this result by
relaxing the convexity assumptions and show that jjA^x)]] = G(r^) whenever x*
is a regular local solution of a degenerate MPP, and in the Appendix we provide
further information on the nature of the convergence of x(rk) to x* by displaying
the asymptotic form of the differential equations governing the trajectory as
r->0 in the degenerate case.

It is instructive to consider the differences between the degenerate and non-
degenerate cases in more detail. First recall that if x* is a regular local solution
and Theorem 1.1 holds then

and

where we have written xk for x(rk). Hence

^Aff) (2.1)
Now assume that J 2 ^ 0 . We have limfc_>00(rA./£i(xfc)) = 0, iel2, so that, as

rk = o(ygi(xk)Ak(x)+o(\\ Aft(x)||)), iel2.

Thus, making use of the Cauchy-Schwarz inequality, we obtain

x)\\). (2.2)
It follows that

|Vg(xfe)Afe(x)|
( 2-3 )

and hence that 0t = \rt. Thus the sequence {x̂ } approaches x* along a trajectory
that is tangential to the constraint surfaces &(x) = 0, ielx. It follows that if Aft(x)
is decomposed into ||A&(x)||(sfc+tj), where sA is a linear combination of the
Vgi(x*), iellt and tk lies in the orthogonal complement of this set, then ||tfc||-» 1
and ||sfc||->0. It is convenient to formalize this result in the following Lemma.
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LEMMA 2.1. Let x* be a regular local solution, / 2 # 0 , and

where sk is a linear combination of the Vg^x*), iellt and tk is in the orthogonal
complement of this set, then
(i) there exists a>0 such that 1 ^||tfc | |>a/or k large enough,

We are now in a position to prove the main result of this Section.

THEOREM 2.1. Let x* be a regular local solution and / 2 ^ 0 , then we have the
asymptotic inequalities

+«& (2-4)

with m, M, a. given by equations (1.5), (1.6) and Lemma 2.1.

PROOF. The necessary condition for a minimum of (1.2) at xk gives

m

V/(xfc)- £«,(/*) Vft(Xfc) = 0.

Subtracting (1.3) from this system we obtain

Multiplying this equation by AA.(x)T gives

so that

From this equation and Lemma 2.1 it follows that

x)||2(tT V|£(x*, u)tfc+o(l)) = rk{\k\ + o(Vj), (2.5)

where we have used that ^(xj.) = O(rj) and Afc(wf)->0, I'e/j, and that gi(xk)>0
and A,.^) = <9(|| Afc(x)||) for ieR. Thus (2.4) follows by two easy estimates using
the second-order sufficiency conditions, Remark 1.1, and Lemma 2.1.
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REMARK 2.1. Lemma 2.1 shows that a degenerate constraint affects considerably
the performance of the barrier function algorithms by forcing the solution trajectory
against the other active constraints with the resulting reduction in the rate of
convergence shown in Theorem 2.1. However, the degenerate constraint is in an
important sense redundant as the first-order necessary conditions for a solution
of the MPP is unchanged if it is just ignored, and as degeneracy does not affect the
second-order conditions. However, it is an indication that the property of member-
ship of the active constraint is extremely sensitive to perturbation of the problem
data. Thus numerical algorithms which are not capable of discriminating between
the members of the active constrained set could encounter trouble because of this
fact. We have illustrated this point for the barrier function method, and believe
that it is rightly regarded as a shortcoming. A possible remedy for this particular
case has been suggested in [8], and we hope to discuss it further in a companion
paper.

3. A measure of degeneracy

In this section our aim is to introduce a measure of non-degeneracy of a MPP.
Since for a non-degenerate problem uf >0, Vie I, a possible first guess at an
appropriate measure is max^wf /uf, ijel. However, this can be changed arbitrarily
by multiplying the constraints by suitably chosen positive numbers. A more
suitable choice which is independent of this kind of rescaling of the constraints is

" * » V g ' ( X * ) | 1 (3 1
«?iiVir(x*)ir (3-1

Clearly y 5* 1 and y is unbounded as the MPP becomes degenerate. Also the results
of the previous section show that in the degenerate case the derivatives dx/dr, du/dr
are unbounded as r->-0, because of the dependence on /•*. Thus it is natural to
ask if there is a link between these two behaviours. The main result of this section
confirms such a link and shows that the growth of dl x/dr*, di u/dr* as i increases
for fixed r small enough is simply related to y. To obtain this result, it is convenient
first to rescale the problem as follows.

Let
)!), (3.2)

and consider

£(x,p) = F(x)-pS log G4(x), (3.3)

where
P = r/]8,
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and

Clearly,
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<?<(*) = g{x ||, / = 1,2, ...,m.

so that B has the same stationary values as B and the rescaled MPP has the same
value of y. We denote the Lagrange multipliers for the rescaled problems by u{,
i=\,...,m, and the Lagrangian by Z(x,fi). We have

y = max —. (3.4)

Before constructing the trajectory for the transformed problem it is convenient
to prove a preliminary Lemma.

LEMMA 3.1. Let x* be a regular local minimum of the {rescaled) MPP and let the
matrix K be given by

[VGt(x*),ieI]

0

Then K is non-singular.

0

0

(3.5)

PROOF. Assume K is singular. Then there exists a non-trivial vector
that

such

K

0

= 0.

This implies the equations

VGi(x*)a = 0, iel.

Pre-multiplying by {aT, bT, 0} now gives

aTV|X,(x*,u)a = 0

so that the assumption that x* is a regular local solution implies that a = 0.
But then the linear independence of the set [VGf(x*)T, iel] gives that b = 0 which
establishes a contradiction.

We note that this result does not require 72 = 0.
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REMARK 3.1. The significance of Lemma 3.1 follows from the fact that in the
non-degenerate case we can factor J(0) (where J(p) is the Jacobian of the rescaled
MPP) into the form

[diagu,,/e/] K=QK, (3.6)

where In and IR are the n x n and | R \ x \ R | identity matrices, respectively. Consider
a family of perturbations of the MPP which increases y without bound but preserves
the regular local solution property of the minimum. It is clear that the approach
to degeneracy is captured by the diagonal matrix Q, and that K remains non-
singular provided the parameter m in the second-order sufficiency conditions is
bounded away from zero (as it must be if the minimum remains a regular local
solution). Thus we expect an estimate of || «/(0)—1|[ of the form

|| = ^ , (3.7)

where K is an (order 1) constant.

REMARK 3.2. A convenient way to construct such a family of problems is to
start with a degenerate MPP having a regular local solution at x* and then to
modify the objective function by adding a function w(x, X) given by

The effect of w(x,X) is such that the multiplier uf is unchanged for i$I2, and
uf = Aj for i e/2. Clearly the Â  can be chosen such that y takes any value ^ 1
while the contributions of V|w(x,X) and Si€/sAfV

2gi(x) are such that V|L
remains unchanged. Also the second-order conditions continue to hold with the
same value of m as the set of allowable vectors t in (1.5) is further constrained if
any Aj>0. From this family we can choose a sequence of problems having the
property that y becomes unbounded while the regular local solution properties
holds uniformly.

THEOREM 3.1. Consider a family of MPP''s indexed by a parameter a. having the
following properties.

(i) For each <x, x* is a regular local solution,
(ii) there exists a constant m>0 such that (1.5) holds for this m and each a, and
(iii)
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then for fixed p small enough we have the asymptotic estimates

(a)»+i)f || D** fla || = O(y(«?tt+1) (3.8)

where D=d/dp, andxa(p), Qa(p) are defined by minimizing (3.3) for thea.th member
of the family of MPP's.

PROOF. It is convenient to drop the subscript a and to write z = L I • From

equation (1.8) it follows that

JDZ = QKDz = \°] (3.9)

so that, as K is non-singular by assumption,

and this establishes the result in the special case q = 0. In fact the estimate holds
also for DA{z) where A is any smooth enough function of z for by the chain rule

where

dA(z) \dA 8A
dz

The proof now follows by induction. We assume that

(3.10)

and show that this implies that ||Z)8+1z|| = O(y2a+1). Differentiating (3.9) gives
q

(9\ j (3.11)- 2 (

To estimate the order of each term on the right-hand side we apply the induction
hypothesis (3.10). This gives an order of

(2l-\) + (2q+2-2l-\) = 2q

for each /. The estimate for DQ+1z follows as an extra order in y must be counted
for the inversion of / i n (3.11). To complete the induction it is necessary to show
that (3.10) holds with q = q+\ as a consequence of the estimate established for
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Z)«+1z. We have

1=0 dz

For J = 0 the corresponding term is the scalar product of 8A(z)/dz and Dq+1z
so that it necessarily has order 2g+i in y. For />0 the order estimate is a conse-
quence of (3.10) which gives

This is of smaller order than the term for / = 0 so that

Thus the induction hypothesis is verified and the Theorem follows.

REMARK 3.3. An appropriate formalism for developing expressions of the form
(3.11) into their component parts has been developed by Butcher in a number of
papers (for example [1]) for his work on Runge-Kutta methods. One deduction
from this work is that the numerical coefficients hidden in the order estimates (3.8)
are likely to grow like q\ while (3.7), (3.9) suggests that a term (l/m)a+1 is also
likely to be present. It is convenient to assume a dependence of this form for the
numerical coefficient. However, it is not critical to the development of our
arguments.

4. The numerical performance of extrapolation

If we combine the results of the previous Section with the formula (1.9) for
the error in a linear extrapolation procedure, then it follows that the error in an
extrapolation based on the points p =Pk-s+v •••>Pk is proportional to

«** = ( ft Wly28"1. (4.1)
where we have omitted any explicit dependence of a coefficient on s as a result of
Remark 3.3, and any dependence on m as a "second best" compromise because its
estimation is relatively more difficult. The numerical situation we consider is one
in which we have successive minima x(/?1), ...,x(pk), and where we have carried
out an extrapolation on the points/? =/?&_s+1, ...,pk. We ask is it worth-while to
include data from the point p = pk_s in the extrapolation, and as a basis for this
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decision we have tested the heuristic

Hopefully, if the strategy is successful and if the terms in ekiS actually are the most
significant, then the new extrapolation would produce at least one more decimal
place of accuracy. The performance in practice has been surprisingly successful,
giving accurate predictions for a range of test problems including the "easy"
Rosen-Suzuki problem and a range of the Colville test problems including the
"Shell dual" (Colville II) which is generally regarded as quite difficult and which
proves to have a large value of y.

The basic numerical data for the tabulated results is summarized in Table 4.1.
The sequence of minimizations is designed to reproduce the results of Fletcher and
McCann [4]. In Tables 4.2 and 4.3 we give m a x ^ l ^ x ) ! for x resulting from the
extrapolation procedure. The minimizations have been carried out using a severe
error tolerance to ensure that extraneous errors should not unduly perturb the
results. It would seem that we have achieved results accurate to at least 12 decimal
places in both cases.

TABLE 4.1

Basic data for the numerical

Test problem

Rosen-Suzuki
Colville II

y

1.6
83

P
8

57

results

Pi

1.2x10-'
0.16x10"'

For the Rosen-Suzuki problem the heuristic is satisfied provided k—
suggesting that repeated extrapolation is justified on the set of points/? = Pz,...,pk,
and this is borne out very well by Table 4.2. For Colville II the heuristic is satisfied
provided the extrapolation is based on the points/; = />4, ...,pk, and the results in
Table 4.3 again support this strategy.

REMARK 4.1. Tables 4.2 and 4.3 both show that there is a tendency for the
extrapolation to improve accuracy until a threshold is reached and, from this
point on, this threshold is essentially preserved. This confirms that extrapolation
with this choice of parameters is a very stable process. Going down the table, the
threshold produced is a function of the accuracy of the successive minimizations
and depends quite strongly on the accuracy of the final maximization.
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REMARK 4.2. The success of the heuristic for the Colville II problem suggests
that near degeneracy might well be the source of the numerical problems reported,
and this raises the possibility that the difficulties could be the result of algorithmic
shortcomings rather than a consequence of any particular difficulty inherent in
the problem.
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Appendix

Let x* be a regular local solution for the MPP, and / 2 ^ 0 . For rk small enough
it follows from the second-order sufficiency condition that V|J5(xj.,rfc) is positive
definite. Therefore there exists S > 0 such that, by the implicit function theorem,
the system of equations VxB(x,r) = 0 defines a smooth trajectory x = x(r) on the
open interval 0<r<S, and, by assumption, lim^0x(r) = x*.

LEMMA A.I. Let the possible partitions ofl2 into two disjoint sets be ordered with
respect to an index i such that

PiUQi = h, i =1,2, . . . ,a. (A.1)

Then

i (A.2)

where

Ai(r) =

1

\
\

-
[i

b

det(/(r))=^O]

^det

V£ L(x, u) [ - Vgj(x)T,j e I,]

tiVgj(x)JeR] 0
[V^(x),yePi] 0

FT ^(x(r))

0

i),jeR]

0

0

0

0

(A.3)

fi« = ± 1 and A^O) is non-zero, i= 1,2,....
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PROOF. Let kel2. Then, by suitably interchanging rows and columns, we can
write

where 6 = ±\. The result (A.2) now follows by repeated applications of this
device. That Affl) is non-zero follows by the argument used to establish Lemma 3.1.

COROLLARY. J(r) is non-singular for r>0, small enough.

The trajectory x = x(r) must satisfy the system of differential equations

dx/drr dx/dr i r o j

'Uu/rfrJ [ e j
(A.4)

It follows from (A.2) that this system becomes singular as r->0 when I^®, and
our main concern here is to show how this singular behaviour may be isolated.
Equation (A.4) can be written in explicit form

da/di

] _ adjoint (/) [ 0 1 =
ir\~ det(/) [ e det(/)

m

a=l
(A.5)

where | Jo/J| is the minor obtained by eliminating the row associated with constraint
a and the column associated with constraint jS. By considering the form of expan-
sion leading to (A.2) it will be seen that the dominant terms for small r will be
associated with ae/2 , and we concentrate on the equations corresponding to
j8e/2. To evaluate \Jafi\ we note that there are two cases:

(i) a = j8. Let If = I2—{fi}, and order all possible partitions of Ifi into disjoint
sets P^,Q(,

such that
= Ifi, with Note that for each i there exists
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and this identification permits us to express | J^\ in the form

(A.7)

(ii) a=£fi. Let Iafi = I2—{a,j8} and order all possible partitions of 7a/? into disjoint
sets PfP, Qff, Pffiu Q%fi = Ia/S, with 1 < / < O - 2 . IQ this case the expansion

procedure gives

* , B , (A.8)

where A^ has the form

0,det 0

0

0

0

igjJeR]

0

0

0

0

0

0

0

0

0

0
(A.9)

and 6t = ± 1. In this case it is not true that A^(0)^0 necessarily.

THEOREM A.l. Ifujr) = car^+o(r% ae/2 , as r->0, then necessarily q = \.

PROOF. Note that ujr) = r/ga(x(r))-*-0, r-»-0 implies that q< 1. Substituting for
ua, a e / 2 in the equation for du^/dr and using (A.2, A.5, A.7, A.8) gives

—j^ = ~+smaller terms in r, /Je/2,

where c is a non-zero constant, and the result follows from this.

REMARK A.I. This result complements Theorem 2.1 in which it was shown
that||AA(x)|| = 0(/£).
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