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Abstract

Objective: Pregnancy and postpartum iron status is of great public health importance,
yet few studies have examined predictors of haemoglobin (Hb) concentration during
this time. We identified predictors of Hb from 24 weeks’ gestation until delivery and
from 4 to 25 weeks postpartum.
Design: Blood was drawn as many as four times during care: at the initial visit, at 24–
29 weeks’ gestation, at delivery and postpartum. A longitudinal, multivariable linear
regression model was used to predict Hb concentration.
Setting: A public health clinic in Raleigh, North Carolina.
Subjects: n ¼ 520 women who participated in the Iron Supplementation Study.
Results: Hb concentration at the previous blood draw, short stature, non-Hispanic
white ethnicity/race, .12 years of education and smoking were positive predictors of
pregnancy and postpartum Hb concentrations. Iron supplement use was a positive
predictor, while inadequate weight gain and severe nausea/vomiting were negative
predictors of gestational Hb. A high infant birth weight and postpartum haemorrhage
were negative predictors of postpartum Hb. Pre-pregnancy body mass index had a
slight positive relationship with gestational Hb, but had a strong negative relationship
with postpartum Hb. The longitudinal model also confirmed the typical pattern of
gestational Hb concentration. As the number of weeks between the initial visit and the
24- to 29-week visit increased, Hb at 24–29 weeks’ gestation decreased. As gestational
age increased from 24 weeks until delivery, Hb concentration increased as well.
Conclusions: The predictors identified here could be used in clinical settings to target
high-risk women for intervention.
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Poor iron status, common among low-income pregnant

and postpartum women in the United States1–3, is

associated with reduced work capacity4, impaired

cognition5,6 and adverse birth outcomes7. Iron status is

the most important biological determinant of haemo-

globin (Hb) concentration among women of childbearing

age in the USA8. Therefore, iron intake, iron stores, iron

requirements and iron losses during and after pregnancy

are likely to predict Hb concentrations. Hb concen-

trations during and after pregnancy are also greatly

influenced by blood volume changes. Hb decreases by

nearly 20 g l21 during the first two trimesters of

pregnancy as a result of normal plasma volume

expansion9 – even with adequate iron supplemen-

tation10. Among supplemented women, Hb concentration

rises from approximately 24 weeks’ gestation to term10.

By 6 weeks postpartum, Hb concentration is expected to

return to first-trimester or pre-pregnancy levels11. Despite

the public health importance of poor iron status and the

vast changes to pregnancy and postpartum haematolo-

gical status, few studies have assessed predictors of Hb

concentration during this time12,13. Understanding

the relative importance of these factors in the prediction

of Hb concentration is important, because changes in

Hb concentration are used to monitor response to iron

interventions on both the individual14 and the

population level15. Our objective in the present study

was to identify predictors of Hb concentration from 24

weeks’ gestation until delivery and from 4 to 25 weeks

postpartum.
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Population and methods

Data came from the Iron Supplementation Study16, a

randomised, double-blinded, placebo-controlled clinical

trial of iron supplementation during pregnancy. The goal

of the study was to determine the effect of selective versus

universal iron supplementation during the first two

trimesters on third-trimester iron status. The study

recruited women initiating care at a public prenatal clinic

in Raleigh, NC that serves women of mostly low socio-

economic background. Women were approached in the

clinic waiting area at their first prenatal visit by a study

recruiter. Eligible women were those who were ,20

weeks’ gestation, carrying singletons, English-speaking,

and had no known blood disorders. Eight hundred and

sixty-seven women gave their informed, written consent.

Blood was drawn at recruitment and analysed for Hb

and serum ferritin (SF) concentrations, which were used to

randomise women into a supplementation group receiv-

ing a daily prenatal vitamin with 0, 30 or 60 mg of iron.

Supplementation began immediately and continued until

24 to 29 weeks’ gestation, when blood was drawn again

and analysed for Hb and SF concentrations. Compliance to

study supplements was measured indirectly through pill

counts, questionnaires and clinic pharmacy records (date

of dispensing and refill, dose of iron in each supplement).

At 24 to 29 weeks’ gestation active participation ended,

and women received the standard clinic protocol,

including prenatal vitamins containing 30 mg iron if not

anaemic and a higher-dose supplement if anaemic.

Women were followed through the rest of pregnancy

and into the early postpartum period, when clinic

pharmacy records were again examined to assess

supplement use during the remainder of pregnancy.

Data from medical records were abstracted to ascertain

information on reproductive history, pregnancy compli-

cations, health habits, Hb concentration before delivery

and at the postpartum visit, and infant feeding method.

The study was approved by the institutional review board.

For the 867 women randomised, Hb data were available

for as many as four blood draws (initial visit, 24–29 weeks’

gestation, before delivery and postpartum). We were

interested in predicting Hb concentrations at the latter

three visits for women who delivered a live birth. Of the

867 women randomised, 719 were known to deliver a live

infant, while the remainder had a known spontaneous

abortion, therapeutic abortion or foetal death (n ¼ 64), or

were lost to follow-up (n ¼ 84). Of the 719 known to

deliver a live birth, 520 (72%) had complete data on Hb

concentration and corresponding predictors for at least

one of the three aforementioned visits. About 57% of the

520 women had information at all three visits (n ¼ 296),

while almost all remaining women had data at one of the

three visits (42%; n ¼ 218). Missing data occurred because

in this transient, low-income population, many women

missed appointments, transferred to other clinics, moved,

delivered at other hospitals, or did not return for a

postpartum visit. All 520 women were included in our final

longitudinal model since it was built to accommodate such

missing data (discussed below). The 520 women used in

the analysis were similar to the 867 women randomised

with respect to age, ethnicity/race, education, parity,

marital status, gestational age at prenatal care entry, Hb

concentration at the initial visit, and SF concentration at

initial visit. Furthermore, among the 520 women in the

analysis, there were no meaningful differences with

respect to these maternal characteristics when comparing

the 296 women with data available for all three visits with

those 218 women contributing information from one visit.

Main outcome measures and predictors

Venous blood samples taken by the prenatal clinic staff

were routinely analysed for Hb concentration using a

HemoCue technique. Medical records were used to

ascertain Hb concentration no more than 7 days before

delivery and at the postpartum visit. SF concentration was

analysed using a radioimmunoassay technique by

LabCorp of America (Burlington, NC, USA).

Gestational age (GA) was based on a reliable, self-

reported estimate of last menstrual period (LMP) or an

ultrasound done early in pregnancy if LMP was unknown.

When both estimates were available and were within 14

days of one another, we used the LMP to estimate GA.

When the difference in estimates exceeded 14 days, we

used the ultrasound to estimate GA.

Cumulative dose of iron from supplements was

estimated using a combination of pill-count and pharmacy

data, as described previously17. Briefly, 31% of women

had complete pill-count and pharmacy data, whereas the

remaining 69% had pharmacy data only. Since pill-count

data were considered our ‘gold standard’, we estimated

percentage compliance (0–100%) using pill-count data for

the 31% of women with such data. For the remaining 69%,

clinic pharmacy records were used to estimate pill-count

data. Specifically, we first used linear regression to

quantify the association between pill-count and pharmacy

data among the 31% with both types of data. Then we used

simple regression imputation to impute pill-count data for

the remaining 69%.

For each study supplement or clinic supplement picked

up at the pharmacy, we calculated the therapeutic dose of

iron received as:

Amount of iron ðmg day21Þ in the prescribed

supplement £ number of days between

dispensing and refill £ percentage compliance:

We then summed these doses of iron to estimate the

cumulative dose of iron from the initial visit to the 24- to

29-week blood draw and from the 24- to 29-week blood

draw to delivery. Finally, we categorised cumulative dose
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of iron in each time period into four groups reflecting iron

intake relative to the 30 mg day21 dose that is rec-

ommended for non-anaemic pregnant women15. From the

start of prenatal care until 24–29 weeks’ gestation,

30 mg day21 corresponded to a cumulative dose of 2.0–

3.5 g since most women in our study had the opportunity

for 10–16 weeks of supplementation. Therefore, we

categorised women into one of four groups: 0 g, 0.1–1.9 g

(,prescribed), 2.0–3.5 g (prescribed) and .3.5 g

(.prescribed). For the remainder of pregnancy, most

women had the opportunity for 10–14 weeks of

supplementation, so the categories were 0 g, 0.1–1.9 g

(,prescribed), 2.0–3.0 g (prescribed) and .3.0 g

(.prescribed). Comparable data on postpartum iron

supplement use were unavailable.

Pre-pregnancy body mass index (BMI), calculated as

weight (in kg) divided by the square of height (in m), was

based on measured height and maternal report of pre-

pregnancy weight at the initial visit. Maternal weight was

measured at each prenatal visit. We calculated total weight

gain by subtracting pre-pregnancy weight from weight at

the last prenatal visit. To calculate each woman’s expected

gestational weight gain at 24–29 weeks and before

delivery, we used the Institute of Medicine’s (IOM) pre-

pregnancy BMI-specific weight-gain recommendations9 in

combination with GA at the weight measurement at or

before the blood draw. We used the following equation18:

Expected gestational weight gain

¼ recommended first-trimester total weight gain

þ ½ðGA at weight measurement at or before blood

draw 2 13 weeksÞ £ recommended rate of gain

in second and third trimestersÞ�:

We then divided total weight gain by expected weight gain

and multiplied by 100 to calculate the percentage of

weight-gain recommendations met. Finally, in recognition

that the IOM recommended a range of total gestational

weight gain for each pre-pregnancy BMI group, we

classified the percentage of weight-gain recommendations

met as inadequate, adequate or excessive. For each BMI-

specific range, therefore, we divided the lower and upper

limits of recommended weight-gain range by expected

weight gain at 40 weeks’ gestation and multiplied by 100 to

calculate corresponding ranges of recommended percen-

tage of expected weight gain. We used these ranges as the

basis for categorising weight-gain adequacy: inadequate

(, lower cut-off of recommendations), adequate (within

recommended range) or excessive (.upper cut-off of

recommendations). See Appendix A for an example of this

calculation.

Maternal race/ethnicity was self-reported. We classified

women as having severe nausea and vomiting since the

previous blood draw if it was documented in the medical

record or cited as a reason for hospitalisation. Smoking

status was self-reported at the first prenatal visit and at the

postpartum return visit. We classified route of delivery as

vaginal or abdominal. High birth weight was defined as

birth weight .4000 g. Postpartum haemorrhage was

based on the physician’s subjective opinion documented

in the medical record. Breast-feeding initiation was

classified as ever initiated or never initiated. Breast-

feeding status at the postpartum visit was defined as

exclusively breast-feeding, exclusively formula feeding or

combination feeding.

Statistical analysis

Initially, we screened a large set of variables with potential

relevance to Hb concentration using bivariate linear

regression analysis. Variables with a moderately low

P-value (P , 0.25) were considered further in multi-

variable analysis. Some of these potential predictors of Hb

concentration applied to all time periods (time-indepen-

dent), while others were exclusive to pregnancy or

postpartum. Time-independent factors that met the

aforementioned criterion were ethnicity/race, marital

status, education, parity, height and pre-pregnancy BMI.

Pregnancy factors that met this criterion were GA at

current blood draw, Hb concentration at the previous

blood draw, number of weeks since previous Hb

measurement, SF concentration at the previous blood

draw, smoking status, iron supplement use, pre-eclamp-

sia, severe nausea and vomiting, and adequacy of

gestational weight gain. Postpartum factors that met the

aforementioned criterion were number of weeks post-

partum at current blood draw, Hb concentration at the

previous blood draw, route of delivery, high birth weight,

postpartum haemorrhage, breast-feeding initiation, and

breast-feeding status at the postpartum visit.

To examine the longitudinal pattern of Hb concen-

tration, we plotted pregnancy Hb concentrations by GA

and plotted postpartum Hb concentrations by the number

of weeks since delivery. After testing several transform-

ations of GA in the model, we found the best fit with a

continuous variable. Postpartum Hb concentration

decreased from Week 4 to Week 6.5, and then appeared

to level off. Thus, we used a linear spline with a knot at

6.5 weeks to capture this non-linear relationship.

We fit a longitudinal, multivariable fixed-effects model

predicting Hb concentration from 24 weeks’ gestation

until delivery and from 4 to 25 weeks postpartum. We

chose a fixed-effects regression model because we were

interested in population averages rather than subject-

specific parameters. All aforementioned predictors that

met our a priori criteria were included in the full model.

To build the longitudinal model, we used both PROC

GENMOD and PROC MIXED in SAS software (SAS

Institute, Cary, NC, USA). GENMOD uses generalised

estimating equations, which account for intra-individual

correlation of Hb measurements19. Because results from

both procedures were similar, we used GENMOD to fit the

final model. The longitudinal model accommodated
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women without complete data at all three visits. Akaike’s

Information Criterion20 was used to test several different

covariance structures. We observed the best fit with the

exchangeable covariance structure, so we used it for all

models. The full model was reduced using backward

deletion (P # 0.15). Our final model is shown in Appendix

B. The parameterisation we used allows us to predict Hb

concentration during two different time periods, 24 weeks’

gestation to delivery and 4 to 25 weeks postpartum, with

the constraint that the intercept and the estimates for the

time-independent parameters are the same for both time

periods. This constraint was important because it allows

the effect of the Hb measurements during pregnancy and

postpartum periods to be estimated relative to the same

pre-pregnancy Hb level. Hence, results from our model

will be more easily implemented from a clinician’s

perspective. For clarity we present the modelling results

in two tables (pregnancy and postpartum predictors) even

though they were ultimately derived from the same model.

The distribution of residuals for delivery and post-

partum visits was not normal. After excluding five outliers,

however, normality at all visits was demonstrated. As this

exclusion had minimal influence on the final parameter

estimates (,10% change), we included the outliers in the

results presented here.

We explored non-linear relationships with splines and

other transformations of the predictor variables. For

categorical variables, adjacent categories were grouped if

parameter estimates were similar. We also considered

interactions with time by comparing parameter estimates

in cross-sectional bivariate regressions. Interaction terms

were maintained in the multivariable model if they had

meaningfully different point estimates across strata of

time.

SAS software was used for all data analysis.

Results

Maternal characteristics, including sociodemographic

factors, health habits, pregnancy and delivery compli-

cations, and mean Hb concentrations, are shown in Table 1

for all women in the final analysis. Some totals do not

equal 520 in Table 1 since women only needed to have

complete data for at least one of the three visits to

contribute information to the longitudinal model. Most of

the sample was 20 to 30 years of age, non-Hispanic black,

multiparous and had ,12 years of education.

The final predictive model (Appendix B) was developed

using 520 women who contributed 1112 measurements of

Hb (460 from the third trimester, 299 at delivery, 353 at the

postpartum visit). As stated above, data in Tables 2 and 3

were derived from the same final model but are presented

separately for clarity. Timing of previous Hb measurement

predicted Hb concentrations at 24 to 29 weeks’ gestation

(Table 2). When holding previous Hb concentration

constant, the number of weeks since the previous

measurement was inversely associated with Hb concen-

tration at 24 to 29 weeks. We observed an approximately

linear relationship between Hb concentration and GA

from 24 weeks until delivery, resulting in an increase of

0.26 g l21 in Hb concentration with each increasing week.

Cumulative iron intake through the previous Hb

measurement was positively predictive of current Hb

concentration; whereas, from the previous measurement

to the current measurement, only women who took the

prescribed amount of iron had higher concentrations than

women who took no iron. Severe nausea and vomiting

and inadequate gestational weight gain were negative

predictors of Hb concentration from 24 weeks’ gestation

until delivery.

Hb concentration decreased by 4.08 g l21 per week from

4 to 6.5 weeks postpartum but decreased only slightly with

each week after 6.5 weeks (Table 3). Postpartum

haemorrhage and high infant birth weight were indepen-

dent predictors of reduced Hb concentrations. Eliminating

BMI from the final model had the effect of making the

coefficients for high birth weight (26.52; 95% confidence

interval (CI) 211.6, 21.43; P ¼ 0.01) and postpartum

haemorrhage (26.89; 95% CI 214.3, 0.32; P ¼ 0.06)

stronger and more negative. When abdominal delivery

was included in this model without BMI, it was negatively

associated with postpartum Hb (23.03; 95% CI 26.68,

0.63; P ¼ 0.10).

The effect of BMI on Hb concentration varied by the

time period of interest. During pregnancy, BMI had a slight

positive relationship with Hb concentration, whereas

during the postpartum period, there was a strong inverse

relationship between BMI and Hb concentration (Tables 2

and 3). Regardless of the time of Hb measurement, Hb

concentration at the previous blood draw had a strong,

positive, linear relationship with current Hb concentration,

such that each increase of 1 g l21 in prior Hb resulted in an

increase of 0.59 g l21 in current Hb. Maternal height was a

negative predictor of Hb values. Non-Hispanic white

ethnicity/race, smoking and .12 years of education were

positive predictors of Hb.

Table 4 shows predicted Hb concentrations at 28 weeks

of gestation according to initial Hb, nausea/vomiting

status, adequacy of weight gain and supplement use.

Compared with women with Hb ¼ 125 g l21 at enrolment,

borderline anaemic women (Hb ¼ 110 g l21) at enrolment

had a substantially reduced Hb concentration at 28 weeks’

gestation. Severe nausea and vomiting, inadequate weight

gain and no iron supplement use since enrolment were

predictive of Hb decreases similar in magnitude. Hb

concentrations at 28 weeks were on average 15 g l21

lower in borderline anaemic women who did not use iron

and had both inadequate weight gain and severe

nausea/vomiting, compared with women who used

roughly 30 mg iron per day, had Hb of 125 g l21 at the

initial visit, adequate weight gain and no severe

nausea/vomiting.
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Table 1 Characteristics of the 520 women who contributed data to the longitudinal model*

Characteristic n % or mean (SD)

Age
, 20 years 150 29.0
20–30 years 307 59.4
. 30 years 60 11.6

Ethnicity/race
Non-Hispanic white 160 31.0
Non-Hispanic black 320 61.9
Other 40 7.1

Parity
Nulliparous 247 47.8
Multiparous 270 52.2

Education
# 12 years 416 79.9
. 12 years 104 20.1

Marital status
Unmarried 423 81.8
Married 94 18.2

Pre-pregnancy BMI
, 19.8 kg m22 (underweight) 86 16.5
19.8 to 25.9 kg m22 (normal weight) 228 43.9
26.0 to 29.0 kg m22 (overweight) 61 11.7
. 29.0 kg m22 (obese) 145 27.9

GA at prenatal care initiation (weeks) 520 12.0 (3.4)
Hb concentration at initial visit (g l21) 520 123 (8.8)
SF concentration at initial visit (mg l21) 520 52.3 (44.8)
Smoking status at the initial visit

Smoker 160 31.0
Non-smoker 357 69.0

Severe nausea and vomiting prior to the 24- to 29-week blood draw
Yes 101 21.4
No 370 78.6

Hb concentration at 24–29 weeks’ gestation (g l21) 506 113 (9.2)
GA at 24- to 29-week blood draw (weeks) 506 28.6 (2.0)
SF concentration at 24–29 weeks’ gestation (mg l21) 368 15.5 (13.6)
Severe nausea and vomiting between 24- to 29-week blood draw and delivery

Yes 62 13.2
No 409 86.8

Inadequate gestational weight gain before delivery
Yes 145 28.1
No 372 71.9

Estimated cumulative iron intake from supplements from 24 to 29 weeks of gestation until delivery
0 g 76 15.2
0.1–1.9 g 196 39.1
2.0–3.0 g 155 30.9
. 3.0 g 74 14.8

Diagnosed with pre-eclampsia
Yes 28 5.4
No 491 94.6

Hb concentration before delivery (g l21) 461 117 (10.4)
GA at delivery Hb measurement (weeks) 461 39.4 (2.3)
Route of delivery

Vaginal 432 86.4
Abdominal 68 13.6

Infant birth weight
# 4000 g 477 92.8
. 4000 g 37 7.2

Presence of postpartum haemorrhage
Yes 18 3.5
No 496 96.5

Smoking status at the postpartum visit to the clinic
Smoker 130 25.2
Non-smoker 387 74.9

Hb concentration at the postpartum visit to the clinic (g l21) 399 130 (13.1)
Number of weeks after delivery of postpartum Hb measurement 399 7.1 (2.2)
Ever initiated breast-feeding

Yes 233 47.8
No 254 52.2

Infant feeding method at the postpartum visit to the clinic
Exclusively breast-feeding 64 16.5
Exclusively formula feeding 253 65.2
Combination feeding 71 18.3

SD – standard deviation; BMI – body mass index; GA – gestational age; Hb – haemoglobin; SF – serum ferritin.
* Some totals will not equal 520 due to missing data on some variables.
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Table 5 shows predicted Hb concentrations at 8 weeks

postpartum by race, haemorrhage, infant birth weight and

pre-pregnancy BMI. High birth weight, postpartum

haemorrhage and a BMI increase of 15 kg m22 had

negative impacts on postpartum Hb concentration similar

in magnitude, whereas ethnicity/race had a relatively small

influence on Hb values. A pre-pregnancy BMI of

36 kg m22 predicted a Hb concentration that indicated

anaemia or borderline anaemia at 8 weeks postpartum

when the delivery was complicated by either high infant

Table 2 Predictors of Hb concentration (g l21) from 24 weeks of gestation until delivery based on the final linear regression model*†

Variable
Coefficient
(95% CI) P-value

Pregnancy variables
Number of weeks since previous Hb measurement‡ 20.38 (20.52, 20.24) ,0.001
GA (weeks) 0.26 (0.05, 0.47) 0.01
Estimated cumulative iron intake from supplements to the previous Hb measurement§

. 0 g, ,prescribed{ (vs. 0 g) 1.78 (20.67, 4.22) 0.21
Prescribed (vs. 0 g) 2.90 (0.29, 5.50) 0.05
. Prescribed (vs. 0 g) 3.59 (0.01, 7.16) 0.07

Estimated cumulative iron intake from supplements from the previous Hb measurement to the current Hb measurement
. 0 g, ,prescribed{ (vs. 0 g) 0.02 (21.70, 1.74) 0.98
Prescribed (vs. 0 g) 1.94 (0.26, 3.62) 0.05
. Prescribed (vs. 0 g) 0.46 (21.93, 2.84) 0.72

Severe nausea and vomiting from the previous Hb measurement to the
current Hb measurement (vs. none)

21.80 (23.31, 20.30) 0.01

Inadequate gestational weight gain to the current Hb measurement (vs. other) 22.02 (23.28, 20.76) 0.002

Constrained time-independent variablesk
Pre-pregnancy BMI (kg m22) 0.07 (20.01, 0.15) 0.08
Hb concentration (g l21) at the previous blood draw 0.59 (0.52, 0.67) ,0.001
Maternal height (cm) 20.05 (20.11, 0.01) 0.09
Non-Hispanic white (vs.other) 1.12 (20.03, 2.28) 0.05
.12 years of education (vs. #12 years) 1.18 (20.07, 2.43) 0.06
Smoker (vs. non-smoker) 1.38 (0.18, 2.57) 0.02
Intercept 45.5 (30.5, 60.3) ,0.001

Hb – haemoglobin; CI – confidence interval; GA – gestational age; BMI – body mass index.
* Based on a fixed-effects longitudinal model (Appendix B).
† Unless otherwise indicated, each coefficient represents the change in Hb concentration (g l21) for a one-unit increase in the x variable.
‡ Only applicable to second blood draw at 24 to 29 weeks’ gestation.
§ Only applicable to the delivery blood draw.
{From the start of prenatal care until 24–29 weeks’ gestation: 0.1–1.9 g (,prescribed), 2.0–3.5 g (prescribed), .3.5 g (.prescribed). From 24–29 weeks’
gestation until delivery: 0.1–1.9 g (,prescribed), 2.0–3.0 g (prescribed), .3.0 g (.prescribed).
kTime-independent parameters are constrained to be the same estimates for both pregnancy and postpartum time periods by the longitudinal model
(Appendix B).

Table 3 Predictors of Hb concentration (g l21) from 4 to 25 weeks postpartum based on the final linear
regression model*†

Variable
Coefficient
(95% CI) P-value

Postpartum variables
4 to 25 weeks postpartum‡ (vs. pregnant) 60.0 (35.8, 84.1) ,0.001
Number of weeks since delivery, if #6.5 weeks 24.08 (27.67, 20.48) 0.02
Number of weeks since delivery, if .6.5 weeks 20.43 (20.90, 0.38) 0.07
Postpartum haemorrhage (vs. no haemorrhage) 26.40 (213.3, 0.47) 0.06
Infant birth weight .4000 g (vs. #4000 g) 25.17 (210.1, 20.28) 0.03
Interaction: [Pre-pregnancy BMI (kg m22)] £ (4–25 weeks postpartum‡) 20.45 (20.65, 20.26) ,0.001

Constrained time-independent variables§
Pre-pregnancy BMI (kg m22) 0.07 (20.01, 0.15) 0.08
Hb concentration (g l21) at the previous blood draw 0.59 (0.52, 0.67) ,0.001
Maternal height (cm) 20.05 (20.11, 0.01) 0.09
Non-Hispanic white (vs. other) 1.12 (20.03, 2.28) 0.05
.12 years of education (vs. #12 years) 1.18 (20.07, 2.43) 0.06
Smoker (vs. non-smoker) 1.38 (0.18, 2.57) 0.02
Intercept 45.5 (30.5, 60.3) ,0.001

Hb – haemoglobin; CI – confidence interval; BMI – body mass index.
* Based on a fixed-effects longitudinal model (Appendix B).
† Unless otherwise indicated, each coefficient represents the change in Hb concentration (g l21) for a one-unit increase in the x

variable.
‡ Coded as yes or no.
§ Time-independent parameters are constrained to be the same estimates for both pregnancy and postpartum time periods by
the longitudinal model (Appendix B).
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birth weight or haemorrhage. Similarly, Hb concentrations

indicating anaemia were predicted when both high infant

birth weight and postpartum haemorrhage occurred in a

woman with a BMI of 28 kg m22, regardless of race.

Discussion

Among women of childbearing age in the USA, iron status

is recognised as the most important biological determinant

of Hb concentration8. Poor iron status is associated with

adverse functional consequences, so understanding the

predictors of iron status is of great public health

importance. Despite the plethora of publications on

haemoglobin concentration, a Medline search using the

key words ‘hemoglobin’ and ‘pregnancy’ or ‘puerperium’

suggests that this may be the first multivariable analysis of

a wide selection of clinically relevant predictors of Hb

concentration during and after pregnancy conducted in a

non-malarial region.

We observed an inverse relationship between Hb

concentration and both severe nausea and vomiting and

inadequate weight gain – two conditions associated with

inadequate intake of many nutrients, including iron.

Interestingly, these factors’ relationships with Hb concen-

tration or other iron status measures have not been studied

previously.

Postpartum haemorrhage and high infant birth weight

(macrosomia) were strong, negative predictors of post-

partum Hb concentration. Women who have a clinically

recognised haemorrhage may lose up to 1000 ml of

blood21 (the equivalent of 400 mg of iron22), which may

impede the recovery of Hb concentration in the

postpartum period. We lacked estimates of total blood

loss, thus we could not evaluate how well blood loss, per

se, predicts postpartum Hb concentration. Macrosomia can

cause significant blood loss via a number of adverse

maternal outcomes: abdominal delivery23, operative

vaginal delivery24,25 and perineal rupture and haemor-

rhage26. Macrosomia also lengthens duration of lochia, the

vaginal discharge of blood following childbirth27, which

may adversely affect postpartum iron status28. Pre-

pregnancy overweight is a risk factor for macrosomia29,

but in our data macrosomia predicted Hb concentrations

independent of BMI.

Pre-pregnancy BMI was a modest positive predictor of

pregnancy Hb concentration, but was a strong negative

Table 4 Predicted Hb concentration* at 28 weeks of gestation by Hb concentration at the initial visit, adequacy of gestational weight gain
to 28 weeks’ gestation, nausea and vomiting status, and supplement use†‡

Hb at initial
visit (g l21)

Weight gain to
28 weeks’ gestation

Severe nausea
and vomiting

0 g cumulative supplement
use from the initial visit
to 28 weeks’ gestation

2.0–3.0 g cumulative supplement
use from the initial visit
to 28 weeks’ gestation

125 Adequate No 114 (112, 116) 116 (114, 118)
Yes 112 (110, 115) 114 (112, 116)

Inadequate No 112 (110, 114) 114 (112, 116)
Yes 110 (108, 113) 112 (110, 115)

110 Adequate No 105 (103, 107) 107 (105, 109)
Yes 103 (101, 106) 105 (103, 108)

Inadequate No 103 (101, 106) 105 (103, 107)
Yes 101 (99, 104) 103 (101, 106)

Hb – haemoglobin; BMI – body mass index; CI – confidence interval.
* Values are expressed as Hb concentration in g l21 (95% CI).
† Other variables held constant: initial visit at 12 weeks’ gestation, non-Hispanic white ethnicity/race, 12 years of education or less, non-smoker,
height ¼ 163 cm (64 in), and pre-pregnancy BMI ¼ 24 kg m22.
‡ Predicted values are based on the final model shown in Table 2 and Appendix B.

Table 5 Predicted Hb concentration* at 8 weeks’ postpartum by race, infant birth weight, postpartum
haemorrhage, and pre-pregnancy BMI†‡

Race
Infant birth

weight . 4000 g
Postpartum

haemorrhage BMI ¼ 21 kg m22 BMI ¼ 28 kg m22 BMI ¼ 36 kg m22

White No No 131 (130, 133) 129 (127, 130) 126 (123, 128)
Yes 125 (120, 129) 122 (118, 127) 119 (115, 124)

Yes No 126 (122, 130) 123 (119, 127) 120 (116, 124)
Yes 120 (114, 125) 117 (111, 123) 114 (108, 120)

Non-white No No 130 (129, 132) 127 (126, 129) 124 (123, 126)
Yes 124 (119, 128) 121 (117, 125) 118 (114, 123)

Yes No 125 (121, 129) 122 (118, 126) 119 (115, 123)
Yes 119 (113, 124) 116 (110, 121) 112 (107, 118)

Hb – haemoglobin; BMI – body mass index; CI – confidence interval.
* Values are expressed as Hb concentration in g l21 (95% CI).
† Other variables held constant: 117 g l21 Hb concentration before delivery, 12 years of education or less, non-smoker,
and height ¼ 163 cm (64 in).
‡ Predicted values are based on the final model shown in Table 3 and Appendix B.
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predictor of postpartum Hb; a 15 kg m22 increase in BMI

was associated with a 5.7 g l21 decrease in postpartum Hb.

BMI is most likely a marker of blood loss at delivery.

Obesity is a well-documented risk factor for postpartum

haemorrhage30 and abdominal delivery31. In our model,

pre-pregnancy BMI and haemorrhage were independent

predictors of postpartum Hb concentration. Therefore, in

our model BMI may account for the residual effect of

blood loss on Hb concentration that is not specifically

captured by haemorrhage, a dichotomous variable.

Estimated cumulative supplemental iron intake through

the previous blood draw positively predicted Hb

concentrations. However, only estimated intakes roughly

equivalent to the prescribed amount from the previous

blood draw to the current measurement were predictive of

higher Hb levels than receiving no supplemental iron. Our

methods of estimating iron supplement use were

imperfect, however, because our study was not originally

designed to collect such data after 24 weeks’ gestation.

We observed a longitudinal pattern of Hb concentration

during pregnancy that has been well documented. The

number of weeks since the initial prenatal visit had a

strong inverse relationship with Hb concentration at the

24- to 29-week blood draw, reflecting a decreasing Hb

concentration through roughly the first two trimesters that

results from plasma volume expansion and haemodilu-

tion9. Hb concentration increased from 24 weeks to

delivery, marking the increased rate of red cell mass

expansion9,10.

From 4 to 25 weeks postpartum, our data showed a

downward trend in Hb concentration that was most

pronounced from 4 to 6.5 weeks postpartum and was

evident even after controlling for several factors suspected

to influence Hb values. Randomised controlled trials that

followed women after delivery have shown Hb levels to

increase sharply from 1 week to 8 weeks postpartum, then

either remain constant or increase to 25 weeks post-

partum32–35. Our contrary findings are probably due to

differences in menstruation status, which we did not

measure. Prevalence of amenorrhoea decreases as time

postpartum increases36. Themajority of our samplewas not

lactating, and at 6 and 12 weeks postpartum, 40 and 65%,

respectively, of non-lactating women return to menses36.

Menstruation increases iron needs by 0.5 mg day21 if

averaged over the course of the month37, so Hb

concentration may be depressed when menses resume if

requirements are not being met by intake or iron stores.

The limitations of this study deserve attention. Missing

data were a problem, but the loss to follow-up we

experienced is not unlike real-life circumstances of

women receiving care in public health clinics. In our

low-income population, women missed appointments,

transferred to other clinics, delivered at alternative

hospitals, and/or did not return for postpartum care.

None the less, the characteristics of the women contribut-

ing complete information to the longitudinal model for all

three visits were similar to those contributing data for one

visit. Additionally, the 520 women used for this analysis

were similar to the 867 women randomised. This suggests

that the results may have good generalisability to the

cohort.

Furthermore, we obtained similar parameter estimates

when our model was run using two SAS procedures with

different assumptions about missing data. The assumption

underlying the results obtained from PROC GENMOD is

that the outcome data are a random sub-sample of the

target population (the data are missing completely at

random), whereas results from PROC MIXED assume that

the observed data explain the missing outcome data (the

data are missing at random)38. The fact that results were

similar when the model was run using both procedures

supports the missing completely at random assumption for

our data. These findings suggest that selection bias was

unlikely to be a major concern in this analysis.

The Iron Supplementation Study was not designed with

these analyses in mind. Therefore, misclassification may

have been a problem in our analysis, specifically for iron

exposure during pregnancy, which was found to be only a

moderate predictor of Hb concentration. We estimated

iron intake based on the relationship between pill counts

from enrolment to 24–29 weeks and pharmacy data from

enrolment to 24–29 weeks in a small sample of women

who returned pill bottles, who may not be a representative

group. Furthermore, pill-count data were based on pills

containing up to 60 g of iron from the start of care to 24–29

weeks, whereas beyond 24–29 weeks, women in some

cases were prescribed substantially higher doses. Our

analysis assumed that the association between pill-count

and pharmacy data was the same regardless of dose,

which may not be the case. These factors probably

underestimated the true magnitude with which iron

exposure predicts Hb concentration.

In addition, since the Iron Supplementation Study was

not designed to follow women into the postpartum

period, we were missing several postpartum variables,

including dietary intake, iron supplement use and blood

loss. Other studies should collect such data to determine

whether the postpartum predictors we have identified

remain important throughout the postpartum period, once

these other variables are accounted for.

Our study had adequate power to detect relatively small

differences in Hb concentration for each predictor

variable. Specifically, we had 80% power to detect a

1.5 g l21 difference in Hb concentration, assuming

a ¼ 0.05 and standard deviation of 13 g l21. This sample

size, however, was not large enough to develop the

predictive model in one half and test its validity in the

other half. Therefore, we encourage others to apply our

predictive model to other populations to confirm or refute

our results.

Our analysis demonstrated that, apart from the blood

volume changes that accompany normal pregnancy, a
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number of other factors predict gestational and post-

partum Hb concentrations in our population. While these

factors appear to be consistent with scientific knowledge,

the current recommendations for preventing iron

deficiency in pregnant and postpartum women do not

make mention of many of the factors we have identified as

putting women at high risk of adverse iron status14.

Therefore, poor iron status among pregnant women who

have inadequate weight gain or severe nausea and

vomiting, for instance, may go unnoticed. In addition,

women with a high pre-pregnancy BMI or a high-birth-

weight infant would not be screened in the postpartum

period according to the present policies. These data

suggest that more attention should be paid to maternal

factors and complications of pregnancy and delivery as

risk markers of poor iron status. The results also highlight

the importance of improving existing policies and

developing new policies to ensure adherence to iron

supplements during pregnancy. Iron supplement use in

the postpartum period also deserves more attention, as

our knowledge on this subject is currently limited.

Predictors of iron status that we have identified here

should be tested in other populations. If our findings are

replicated in other settings, the factors we have identified

as predictors could be used in clinics to identify high-risk

women who should be targeted for intervention. Such

interventions would include counselling women with

inadequate gestational weight gain on ways to improve

iron and overall dietary intake. In addition to checking

iron status frequently in these women, iron status among

women with severe nausea and vomiting should also be

carefully monitored, particularly if the nausea and

vomiting inhibit adequate iron intake via diet and

supplements. Iron supplementation after delivery may

be beneficial to overweight women, women with a

macrosomic infant or women who had a haemorrhage.

Furthermore, postpartum anaemia screening for iron

deficiency in these high-risk groups may be warranted.

Such intervention strategies might prove useful in

improving iron status, thereby preventing adverse func-

tional outcomes of iron deficiency among pregnant and

postpartum women.
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Appendix A

Example of the adequacy of weight gain calculation

for normal pre-pregnancy BMI

The Institute of Medicine9 recommends a weight-gain rate

of 2.2 kg in the first trimester and 0.4 kg week21 in the

second and third trimesters. Therefore, expected gesta-

tional weight gain at 40 weeks’ gestation is:

2:2 kgþ ½ð40 weeks 2 13 weeksÞ £ 0:4 kg week21�

¼ 13 kg:

The Institute of Medicine recommends a total weight-gain

range of 11.5–16 kg, which corresponds to 88–123% of

the 13-kg expected weight gain (i.e.

(11.5 kg/13 kg) £ 100 ¼ 88%). We classified inadequate,

adequate and excessive weight gain as ,88%, 88–123%

and .123% of recommendations, respectively.

Example for a normal-weight woman who gained a

total of 18 kg and whose weight was last measured

at 38 weeks’ gestation

Expected gestational weight gain

¼ 2:2 kgþ ½ð38 weeks 2 13 weeksÞ £ 0:4 kg week21�

¼ 12:2 kg:

Percentage of recommendations met

¼ ð18 kg=12:2 kgÞ £ 100 ¼ 148%:

148% is greater than 123%, so this woman is classified as

exhibiting excessive weight gain.

Appendix B

The following equation represents our final predictive

model:

EðHbwtÞ ¼ aþ
X7

i¼1

xiwbi þ
X10

j¼1

yjwtdj þ
X5

k¼1

zkwthk;

with working correlation matrix: exchangeable (com-

pound symmetry)

R ¼

1 a a

a 1 a

a a 1

2
664

3
775:

In the above:

w ¼ subject

t ¼ 1 if 24 # weeks’ gestation # 42
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t ¼ 2 if 4 # week postpartum # 25.

x1w ¼ Hb concentration (g l21) at the previous blood

draw

x2w ¼ maternal height (cm)

x3w ¼ pre-pregnancy BMI (kg m22)

x4w ¼ pre-pregnancy BMI (kg m22) £ (4–25 weeks

postpartum)

x5w ¼ non-Hispanic white (vs. other)

x6w ¼ more than 12 years of education (vs. #12

years)

x7w ¼ smoker (vs. non-smoker).

yjwt ¼ 0 if t ¼ 2; otherwise

y1w ¼ number of weeks since previous Hb

measurement

y2w ¼ gestational age (weeks)

y3w ¼ cumulative iron intake to the previous Hb

measurement: .0 g, ,prescribed (vs. 0 g)

y4w ¼ cumulative iron intake to the previous Hb

measurement: prescribed (vs. 0 g)

y5w ¼ cumulative iron intake to the previous Hb

measurement: .prescribed (vs. 0 g)

y6w ¼ cumulative iron intake from the previous Hb

measurement to the current: .0 g, ,prescribed (vs. 0 g)

y7w ¼ cumulative iron intake from the previous Hb

measurement to the current: prescribed (vs. 0 g)

y8w ¼ cumulative iron intake from the previous Hb

measurement to the current: .prescribed (vs. 0 g)

y9w ¼ severe nausea and vomiting from the previous

Hb measurement to the current (vs. none)

y10w ¼ inadequate gestational weight gain to the

current Hb measurement (vs. other).

zkwt ¼ 0 if t ¼ 1; otherwise

z1w ¼ 4 to 25 weeks postpartum (vs. pregnant)

z2w ¼ number of weeks since delivery

z3w ¼ number of weeks since delivery minus 6.5, if

weeks postpartum .6.5*

z4w ¼ postpartum haemorrhage

z5w ¼ infant birth weight .4000 g.

*In Table 2, the coefficient for ‘Number of weeks since delivery, if

.6.5 weeks’ represents a linear combination of the parameter

estimates of z2w and z3w.
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