

Now Picker offers a complete ¹⁴C Dating Laboratory for less than \$17,000.

Picker has combined a benzene synthesizer and a liquid scintillation counter to achieve a sensitive system for low-level ¹⁴C and ³H counting. The benzene synthesizer converts a ¹⁴C or ³H sample to benzene which is then counted by the liquid scintillation counter. This system is suitable for a variety of applications including ground water studies, reactor monitoring, accelerator experiments, air and ground water pollution studies, and for the measurement of very low activity biological samples. As a ¹⁴C dating laboratory, it can achieve 50,000 years.

Picker's Benzene Synthesizer

This integrated sample conversion system is unusual because the overall conversion efficiency is so high: yields are typically greater than 90%. The secret is a new highefficiency, non-explosive vanadium-alumina catalyst that can be reused if thermally reactivated prior to use, and, most importantly, produces no observable fractionation. The synthesizer has both wet and dry combustion trains.

The organization of the benzene synthesizer makes it relatively simple to operate (and to live with) since stand-

ard laboratory glassware predominates and all the connections are easily accessible and can be modified or repaired by the investigator. It requires no special facilities for installation (but does require 220V. AC).

Picker's Liquimat® 220 Liquid Scintillation Counter

This is a seasoned counter ideally suited to this application. It offers a combination of moderate cost, high analytical performance, and user utility unmatched by any other liquid scintillation counter. The Liquimat 220 is a four-channel, 100 sample, ambient temperature system with independent operation of each analysis channel, logarithmic energy response, and exceptional quench correction versatility. This counter is a high-performance version of the Liquimat 220 with a guaranteed E²/B of 450 or better for ¹⁴C and 150 or better for ³H. Phototubes are specially selected for extremely low noise.

Can we now send you detailed information? Please write to Picker Nuclear, 1275 Mamaroneck Avenue, White Plains, N.Y. 10605, Please request file 237S.

CONTENTS

ANU	H. A. Polach, J. Chappell, and J. F. Lovering ANU Radiocarbon Date List III	245
Birm	F. W. Shotton, D. J. Blundell, and R. E. G. Williams Birmingham University Radiocarbon Dates III	263
Bln	G. Kehl and H. Müller Berlin Radiocarbon Measurements III	271
ВМ	Harold Barker, Richard Burleigh, and Nigel Meeks British Museum Natural Radiocarbon Measurements VI	278
GaK	K. Kigoshi, H. Aizawa, and N. Suzuki Gakushuin Natural Radiocarbon Measurements VII	295
Gif	G. Delibrics, M. T. Guillier, and J. Labeyrie Gif Natural Radiovaribon Measurements III	327
Gif	G. Delibrias, S. M. Nakhla, and J. Labeyrie Gif Natural Radiocarbon Measurements IV	345
GrN	J. C. Yogel and J. C. Lerman Groningen Radiocarbon Dates VIII	351
GSC	J. A. Lowdon Isotopic Fractionation in Corn	391
ISGS	Stephen M. Kim and R. R. Ruch Illinois State Geological Survey Radiocarbon Dates I	394
IVIC	M. A. Tamers Instituto Venezolano de Investiguciones Cientificas Natural Radiocarbon Measurements IV	396
KI	H. Willkomm and H. Erlenkeuser University of Kiel Radiocarbon Measurements IV	423
Lu	Sören Hakansson University of Lund Radiocarbon Dates II	430
N	Fumio Yamasaki, Tatsuji Hamada, and Chikako Hamada RIKEN Natural Radiocarbon Measurements V	451
Ny	B. Hassko, B. Guillet, and R. Coppens Nancy Natural Radiocarbon Measurements II	463
P	Elizabeth K. Ralph and Henry N. Michael University of Pennsylvania Radioc rbon Dates XII	469
R	M. Alessio, F. Bella, C. Cortesi, and B. Turi University of Rome Carbon-14 Dates VII	482
TB	A. A. Burchuladze, L. D. Gedevanishvili, G. M. Mirianashvili, and G. I. Togonidze Tbilisi Radiocarbon Dates II	499
TF	D. P. Agrawal, S. K. Gupta, and Sheela Kusumgar Tata Institute Radiocarbon Date List VII	502
TK	Jun Sato, Tomoko Sato, Yasuko Otomori, and Hisashi Suzuki University of Tokyo Radiocarbon Measurements II	509
U	Ingrid U. Olsson, Shawky El Gammal, and Yeter Göksu Uppsala Natural Radiocarbon Measurements IX	515
Y	Minze Stuiver Yale Natural Radiocarbon Measurements IX	545
List of Laboratories		659
Index to Volume 11		668