POLYNOMIAL APPROXIMATIONS ON A POLYDISC ${ }^{1}$

CHARLES K. CHUI

(Received 15 January, revised 30 March 1971)
Communicated by J. B. Miller

1. Introduction and Results

Throughout this paper, we will use the terminologies and notations as in [4]. Thus, U^{N} denotes the open unit polydisc in the space \mathbb{C}^{N} of N complex variables, T^{N} the distinguished boundary of U^{N} and

$$
V^{N}=\left\{\left(z_{1}, \cdots, z_{N}\right) \in \mathbb{C}^{N}:\left|z_{j}\right|>1 \text { for } j=1, \cdots, N\right\} .
$$

We say that $\boldsymbol{n}=\left(n_{1}, \cdots, n_{N}\right)$ tends to infinity if $n_{j} \rightarrow \infty$ for each $j=1, \cdots, N$. A polynomial P of N complex variables $\left(z_{1}, \cdots, z_{N}\right)$ is said to be of order n $=\left(n_{1}, \cdots, n_{N}\right)$ if for each $j, 1 \leqq j \leqq N,\left(\partial^{k} / \partial z_{j}^{k}\right) P\left(z_{1}, \cdots, z_{N}\right)$ is not identically zero for $k=n_{j}$ but is the zero function for each $k>n_{j}$. Let P be a polynomial in \mathbb{C}^{N}. If the only zeros of P in $\bar{U}^{N} \cup \bar{V}^{N}$ lie on T^{N}, then P will be called a T^{N} polynomial. Hence, for $N=1, T=T^{1}$, a T-polynomial is a polynomial such that all its zeros lie on the unit circle T. In the case of one complex variable, different kinds of T-polynomial approximation theorems were obtained in [1,2, and 3]. In this note, we establish these theorems for any $N \geqq 1$.

Theorem 1. If f is holomorphic and does not vanish in U^{N}, there exist T^{N}-polynomials $Q_{\boldsymbol{m}}$ which converge to funiformly on every compact subset of U^{N}.

Theorem 2. If $f \in H^{p}=H^{p}\left(U^{N}\right)$, where $1 \leqq p \leqq \infty$, and does not vanish in U^{N}, there exist T^{N}-polynomials Q_{m} which converge to f uniformly on every compact subset of U^{N} and satisfy $\left\|Q_{m}\right\|_{p} \leqq 2\|f\|_{p}$ for all \boldsymbol{m}.

Here, uniform convergence on compact subsets of U^{N} cannot be replaced by convergence in H^{p}. For $p=\infty$, it is clear, and for $1 \leqq p<\infty$, it is proved for $N=1$ in [2].

Let $\mathscr{H}^{p}=\mathscr{H}^{p}\left(U^{N}\right)(1 \leqq p<\infty)$ be the class of all holomorphic functions f in U^{N} such that

[^0]$$
\|f\|_{p}=\left\{1 / \pi^{N} \int_{U^{N}}|f|^{p}\right\}^{1 / p}<\infty .
$$

It is clear that each \mathscr{H}^{p} with the norm $\mathbf{I n}_{p}$ is a Banach space. For the spaces $\mathscr{H}^{\text {p }}$, we have a stronger result.

Theorem 3. If $f \in \mathscr{H}^{p}(1 \leqq p<\infty)$ and does not vanish in U^{N}, there exist T^{N}-polynomials Q_{m} such that

$$
Q_{m}-f \|_{p} \rightarrow 0
$$

The author wishes to thank the referee for his helpful suggestions.

2. Proofs of the above theorems

For $z=\left(z_{1}, \cdots, z_{N}\right)$ where $z_{j} \neq 0, j=1, \cdots, N$, we use the notation $1 / z$ $=\left(1 / z_{1}, \cdots, 1 / z_{N}\right)$. Let P be a polynomial in \mathbb{C}^{N} with no zero in \bar{U}^{N} and let $M(z)=z_{1}^{n_{1}}, \cdots, z_{N}^{n_{1}}$ be a monomial of sufficiently large order so that

$$
\begin{equation*}
Q(z)=P(z)+M(z) \widetilde{P}(1 / z) \tag{1}
\end{equation*}
$$

is a polynomial. Here, \tilde{P} is the polynomial whose coefficients are the complex conjugates of the coefficients of P [cf. 4]. Then $\overline{P(w)}=\widetilde{P}(1 / w)$ for all $w \in T^{\mathrm{V}}$. Hence,

$$
\begin{equation*}
|M(z) \widetilde{P}(1 / z) / P(z)|=1 \tag{2}
\end{equation*}
$$

for each z on T^{N}. Since P has no zero in \bar{U}^{N}, by the maximum principle, we conclude from (1) and (2) that Q has no zero in \bar{U}^{N}, except possibly on T^{N}. Now, since $M(z) \tilde{M}(1 / z)=1$, we have

$$
\begin{equation*}
M(z) \widetilde{Q}(1 / z)=Q(z) \tag{3}
\end{equation*}
$$

Hence, $\widetilde{Q}(1 / z)$ does not vanish in \bar{U}^{N}, except possibly on T^{N}. That is, $\tilde{Q}(z)$, and hence $Q(z)$, has no zero in \bar{V}^{N}, except possibly on T^{N}. Therefore, Q is a T^{N}. polynomial.

Now, let f be holomorphic in U^{N} and $f(z) \neq 0$ for all z in U^{N}. Then for each $r, 0<r<1$, the function f_{r} defined by $f_{r}(z)=f(r z)$, where $r z=\left(r z_{1}, \cdots, r z_{N}\right)$, is holomorphic and does not vanish in $(1 / r) U^{N}$, and can then be uniformly approximated on \bar{U}^{N} by polynomials which do not vanish in \bar{U}^{N}. But $f_{r} \rightarrow f$ uniformly on each compact subset of U^{N} as $r \uparrow 1$. Hence, f can be approximated uniformly on each compact subset of U^{N} by polynomials P_{n} which do not vanish on \bar{U}^{N}. Let

$$
\begin{equation*}
Q_{m, \boldsymbol{n}}(z)=P_{\boldsymbol{n}}(z)+M_{\boldsymbol{m}}(z) \widetilde{P}_{\boldsymbol{n}}(1 / z) \tag{4}
\end{equation*}
$$

where M_{m} are monomials of sufficiently large order \boldsymbol{m}. By (2) and the maximum principle, we see that

$$
\begin{equation*}
\left|M_{m}(z) \widetilde{P}_{n}(1 / z)\right| \leqq\left|P_{n}(z)\right| \tag{5}
\end{equation*}
$$

in \bar{U}^{N} for all sufficiently large m. Since $P_{n} \rightarrow f$ uniformly on compact subsets of $U^{N}, M_{m}(z) \widetilde{P}_{n}(1 / z) \rightarrow 0$ on compact subsets of U^{N} as \boldsymbol{n} and suitable $\boldsymbol{m}=\boldsymbol{m}(\boldsymbol{n})$ tend to infinity. That is, a sequence of T^{N}-polynomials can be chosen from $Q_{m, u}$ to approximate f uniformly on every compact subset of U^{N}. This proves the first theorem. If, in addition, f is in $H^{p}(1 \leqq p \leqq \infty)$, we can choose the P_{n} so that $\left\|P_{n}\right\|_{p} \leqq\|f\|_{p}$ for all n. Hence, using (4) and (5), we have $\left\|Q_{m, n}\right\|_{p} \leqq 2\|f\|_{p}$ for all n and all sufficiently large m, proving Theorem 2 . Now, suppose that $f \in \mathscr{H}^{p}(1 \leqq p<\infty)$ and does not vanish in U^{N}. We can choose the P_{n}, which do not vanish in \bar{U}^{N}, such that $\boldsymbol{P} P_{n}-f \rrbracket_{p} \rightarrow 0$. For each $r, 0<r<1$, let $K_{r}=r \bar{U}_{N}$ and let D_{r} be the complement of K_{r} with respect to U^{N}. Since $f \in \mathscr{H}^{p}$ and the ($2 N$-dimensional) Lebesgue measure of D_{r} tends to zero as $r \uparrow 1$, we have

$$
\lim _{r \uparrow 1} \int_{D_{r}}|f|^{p}=0
$$

Hence, for each $\varepsilon>0$, we can choose $1-r>0$ so small that

$$
\int_{D_{i}}\left|P_{n}\right|^{p}<\varepsilon
$$

for all large \boldsymbol{n}. Now, for all sufficiently large \boldsymbol{m}, we obtain, using (5),

$$
\llbracket M_{m}(z) \widetilde{P}_{n}(1 / z) \prod_{p} \leqq \max _{K_{r}}\left|M_{m}(z) \widetilde{P}_{n}(1 / z)\right|+\left\{\frac{1}{\pi^{N}} \int_{D_{r}}\left|P_{n}\right|^{p}\right\}^{1 / p}
$$

Again, since $P_{\boldsymbol{n}} \rightarrow f$ uniformly on K_{r}, the $\boldsymbol{m}=\boldsymbol{m}(\boldsymbol{n})$ can be chosen such that $\square M_{m}(z) \widetilde{P}_{\boldsymbol{n}}(1 / z) \boldsymbol{\Pi}_{p} \rightarrow 0$ as \boldsymbol{n} and \boldsymbol{m} tend to infinity. Hence, a sequence of $T_{N^{-}}$ polynomials Q_{m} can be chosen from the $Q_{m, n}$ such that $\ Q_{m}-f \rrbracket_{p} \rightarrow 0$. This completes the proof of the third theorem.

References

[1] C. K. Chui, 'Bounded approximation by polynomials whose zeros lie on a circle', Trans. Amer. Math. Soc. 138 (1969), 171-182.
[2] C. K. Chui, 'C-polynomial approximation of H^{p} and \mathscr{H}^{p} functions', J. Math. Analysis and Appl. To appear.
[3] J. Korevaar, 'Approximation by polynomials whose zeros lie on a circle', Nieuw Arch. Wisk (3) 10 (1962), 11-16.
[4] W. Rudin, Function theory in polydiscs (W. A. Benjamin, New York, 1969).
Texas A\&M University
College Station, Texas 77843, U.S.A.

[^0]: 1 Research supported by NSF Grant GP-12042.

