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M U L T I P L I E R S F O R T H E M E L L I N T R A N S F O R M A T I O N 

BY 

P. G. R O O N E Y ( 1 ) 

Abstract. In this paper we generalize the Mellin multiplier 
theorem we proved earlier [8] to spaces with quite general weights, 
satisfying an Ap-type condition. Applications are made to the 
Hilbert transformation. 

In an earlier paper [8], we proved a multiplier theorem for the Mellin 
transformation on weighted Lp spaces on (0, oo)5 where the weights were 
powers. This was deduced from the Mihlin multiplier theorem for the Fourier 
transformation, [10; Chapter IV, Theorem 3], though it could equally well 
have been deduced from the Marcinkiewicz multiplier theorem, [10; Chapter 
IV, Theorem 6]. Recently Kurtz [4; Theorem 2] has extended the Marcin-
kiewiez multiplier theorem to spaces with general weights satisfying the Ap 

condition of Muckenhoupt [5], and in this paper we shall make the correspond
ing extension of our Mellin multiplier theorem, which we do in Theorem 1 
below. 

In [7] we implicitly applied our Mellin multiplier theorem to, among other 
things, the conjugate Hankel operator and the even and odd Hilbert transfor
mations. In Theorem 2 et seq. we shall make similar applications of Theorem 1, 
including obtaining some information about the boundedness of the Hilbert 
transformation. 

Let w be a non-negative locally integrable function on (0,oo). If ^eU and 
l < p < o o ? we define i£w,»x,p to consist of those complex-valued functions, 
measurable on (0, oo), such that H/L,pL,p<00, where 

c r°° ÏI/P 

(1) l l / IU , P - {J o W(x) |x - / (x )Nx/x } . 

If w = 1, then we shall denote #W>IMI by SEM and ||/||WtlM, by H/H p̂. For further 
information about the spaces X^v see [8; §2], but note that the spaces L^p of 
that paper are slightly differently defined and make the necessary adjustments. 

As shown in [8; §2, adjusted], the Mellin transformation M is defined on 
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^ , P , if 1 ^ P ^ 2 , by 

(2) (Mf)(n + it) = (cejr(t), 
where 

(3) {<€J)(t) = e»'f(e') 

and F is the Fourier transform of F : that is if Fe L^-oo, oo)? 

(4) F{t)=\ eitxF(x)dx, 

and it is shown there that Me[£^p, Lp, (-oo, oo)]5 if l < p < 2 , where if X and Y 
are Banach spaces, [X, Y] denotes the bounded linear operators from X to 
Y, [X, X] being abbreviated to [X], and p' = p/(p -1). 

First we need a Lemma. For this, we define C0 to consist of those continuous 
functions compactly supported in the topology of (0, oo). 

LEMMA. Suppose that f e J£Wi ^>Pi Pi J£W2 ^P2. Then, given £ > 0 , there is a 
function </> G C0 such thaf ||/— c^lL-^p. < e, i = 1, 2. 

Proof. When wx = w2 = 1, the result was proved earlier [8; Lemma 2.3]. The 
proof for general w1 and w2 is a straightforward development of that proof, 
using the density of the step functions in certain weighted Lp spaces [9; 
Theorem 1.17], and Lusin's theorem [9; Theorem 6.11]. 

Before stating our theorem we need two definitions. 

DEFINITION 1. We say me se if there are extended real numbers a(m) and 
|3(m), with a(m)<|8(m), so that 

(a) m(s) is holomorphic in the strip a ( m ) < R e s<|3(m), 
(b) in every closed substrip, at < Re s < a2, where a (m) < o-! < cr2 < 

|8(m), m(s) is bounded, and 
(c) for a(m)<<r<j3(m), |m'(cr + it)| = 0( | t |_ 1) as |f|->°°. 

DEFINITION 2. Suppose w is a non-negative locally integrable function on 
(0, oo) with w(x)>0 a.e., and suppose K p <oo. Then we say w G31P if there is 
a constant K so that for all numbers a and 5, with 0 < a < b < oo, 

(5) { J w(x) dx/xj • {J (w(x))-1/(p-1} dx/xY < K (log b/a)p. 

It should be noted that if w(x) = l, we?l p . 

THEOREM 1. Suppose me su. Then there is a transformation H m e [ i £ w ^ p ] /or 
K p < o o ? a(m)<jUL<|3(m), we2lp , so that if fe££^v, where l < p < 2 , a ( m ) < 
/x<|3(m), 

(6) (MHmf)(s) = m(s)(Mf)(s), Re s = JUL 
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Hm is one-to-one on !£^v if K p < 2 , a{m)<ju,<0(m) except when m = 0. If 
1 / m e i , then for K p < œ max(a(m), a ( l /m) )< jLL<min(|3(m), |3(l/m)), w e 
Sip, Hm maps S£WtiLtP one-to-one onto itself and 

(7) (Hm)-X = H 1/m* 

Proof. For w = l, the result has been proved in [8; Theorem 1]. Suppose 
a < jit < /3 and define m^ by m^Cf) = m(jut + if). Then from (b) of Definition 1, 
m^ is bounded. Also from (c) of Definition 1, there are positive constants R 
and Mi so that if | t |>R,\m^(t)\ = |m'(fx + it)\<MJ\t\. Further, since from (a) of 
Definition 1, m(s) is holomorphic in a < R e s <|3, \t\ |m^(f)| is continuous in 
[—R, K], and hence is bounded there, say by M2, and hence if M = 
max(M1?M2), for teU, |m^(0|^M/|t | . Hence if I is any dyadic interval in R, 

| \dm^t)\=\ |m^(t)|dt<AfJ df/| f| = M log2. 

Thus m^ satisfies the hypotheses of " m " of [4; Theorem 2], with B = 
max(M log 2, HmJU) and hence there is a transformation T^ such that if 
W e Ap, where 1 < p < oo5 then 

(8) } W(x) \(TJ)(x)\ dx < N | W(X) |F(X)|P dx, 

for every measurable function F for which the right hand side of (8) is finite, N 
being a constant independent of F, and if FeL 2 ( - °° , °°), 

(9) (T^nt) = m^t)F(t) = m(|UL + it)F(t). 

We define 

(10) Hm = « " % « * • 

Note that if we2l p and W(f)=w(V), then WeAp. For if -oo< a < 0 <oo5 

then from (5), 

{^!>w*){^l>(rtr""",,',f' 

= ( p - a ) - p [ f Ê w(x) dx/x}[ j * (w(x))-1/<p-" dx/xj" ' 

< ( 0 - a ) - p - K ( l o g ( e < V ) ) p = K 
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Hence if fe^£w^p, where l < p < o o 5 and if we?lp , then from (10) and (5), 

a ï i / p 
w(x)|x-(Hm /)(x) |pdx/x] 

= {J w(e') \(^Hmf)(tt dtJ/P 

= {J W(t)|(TfX^/)(0Nt]1/P<N1/p[| W(t)\(<€J)(t)\pdtJ,P 

= N^\\f\\w,M9 

so that Hme[£eWtlLtPl 
Hm, as defined by (10), seems to depend on fx. But, as proved in [8; Lemma 

3.2], on C0, Hm is independent of /LL for a ( m ) < fx< 0(m), and then using our 
lemma, the fact that it is independent of JLL on 5£w^p follows as in the proof of [8; 
Lemma 3.2], while the remainder of the theorem now follows as in the case for 
w = l in [8; Theorem 1]. 

In [7; Theorems 6.1 and 7.1] we studied operators (I^a^)'1 JVt&^ and 
Uv,3,T,)_1iv,a,€ where I v ^ and JV,35T] are defined by [7; (1.2) and (1.3)]. The 
operators were studied using implicitly [8; Theorem 1], that is Theorem 1 
above for w(x) = l. Using Theorem 1 for general we5lp , it is immediate that 
all the results of [7; Theorems 6.7 and 7.1] extend to &w^,p for w E21P , except 
the unitariness statements, provided the following theorem is proved. 

THEOREM 2. Suppose K p < o ° , and we2lp . Then: (i) // | m O R e £ and 

Re a > 0, Iv^è e [#w,M.,p]; © */ ̂  > ~ v R e V and Re |3 > 0, Jv3^ e [^w,^,p]. 

Proof. It is shown in [7; Corollary 4.1] that if fe[_££^p\ l < p < 2 , /ut < 
ẑ  Re ̂  then (MIv^èf)(s) = m(s)(^/)(s) , Re s = JUL, where m(s) = T(£-(slv))l 
r ( | + a —(s/v)). Now me se, with a(m) = -oo, 0 ( m ) = ^ R e £; for clearly m(s) is 
holomorphic in the strip - o o < R e s < i / R e ^ ; also, since from [2; 1.18(6)], 
r(x + iy)~V27r jy^-1/2^-^!^!/2

 a s |y|_^co? uniformly in x for x in any bounded 
interval, then as |f|-»°°, m(cr + it)~ \t/v\~ReoL uniformly in a for a 
in any bounded interval, and thus if a < <JX < a2 < |3, m(s) is bounded in the 
strip a - i ^Res^o -2 ; further, from [2; 1.18(7)], if W(z) = r(z)/T(z), then 
^ ( z ) = logz - l / 2z4 -0 ( | z |~ 2 ) as |z|-*o° in |arg z | < T T - S , where 0 < S < T T , 

and thus m'(a +it)=m(a+ îf){log(£ + a - (a + it)/v) - l/(2(f + a - (a + it)/v)) -
log(£- (a + #i/) + 1/(2(| - (o- + if)M) + 0(|f|"2) - m(a + fc){(ira)/f + 0(|f|"2)} = 
0(|f |_1) as |r|—>oo? and thus me se. Hence from Theorem 1, IVOLÎ G[«^W,M.,P] if 
1 < p < oo5 w G 2lp, jui < x/ Re £, and Re a > 0. The results for Jv p>T1 follows simi
larly. 

The results about Uv,^) - 1 /*, ,^ and C/,,,^ )"%,«,£ in [7] were applied in [7; 
Theorem 8.1] to an operator HPyKy, which is the product of two Hankel 
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transformations, and it now follows that all the results of [7; Theorem 8.1] 
extend to $w^p, for we9lp , except again the unitariness results. In particular, 
since Hx+1/2,x-i/2,i *s Muckenhoupt and Stein's Hankel conjugate operator Wx 

[6; §16], it follows that if K p < o o and w e l p , then WK e[£w^p] for - 1 < J L L < 

2À + 1. 
A direct application of Theorem 1 to $?x yields slightly more. For, it is easy 

to see from [7, §8] that if feSe^,' where K p < 2 , - 1 < J L L < 2 A + 1, 

(MWkf)(s) = mK(s)(Mf)(s), where ' mk(s) = ( r & l + s))T(k(2k + 1 - s)))l 
(r(|s)r(|(2A + 2-s ) ) ) , and it follows from the asymptotic behaviour of T(z) and 
^ (z ) , in much the same way as in the proof of Theorem 2, that if À > - 1 , mx e 
si, with a(mx) = —1, ]8(mÀ) = 2À + 1 , and that l/mx e si with either a(l/mA) = 
0, 0(l /mx) = 2A+2 or a( l /m x ) = - l , j3(l/mx) = 0. Thus except for fx = 

Since the even Hilbert transformation, H+, is 2£0, it follows that if 1 < p < 
oo, weSlp, H + G [ < ^ W ^ P ] for - 1 < J U L < 1 , and except when jx = 0, H+(££„ ^p) = 
^W,M.,P- Similar analysis for the odd Hilbert transformation H_ yields that if 
1 < p < oo? w G Slp, H_ e [^w,,x,p ] for 0 < JUL < 2, and except for jit = 
l ,H_(i£ w ^ p ) = J£W)xp. These results should be contrasted with those of 
Andersen [1] who gave necessary and sufficient conditions on a weight W that 
H ± be bounded on the Lp(0, oo) space with weight W. Applying Andersen's 
conditions on W to the weight x^^wCx) that we are using here, it follows that 
if WG31P , then for 0 < v<2p , 0 < a < b , 

| | xvw(x)dx/x]{[ (x v - 2 Mx))~ 1 / ( p ~ 1 ) ^ /*} P l^K(b2-a2Y. 

The Hilbert transform H of a function / can be constructed from the even 
Hilbert transform of the even part of / and the odd Hilbert transform of the odd 
part of /. Putting things together in this way yields that for 0 < J L L < 1 , 

[ w(|x|) l*^- 1 ! (H/)(x)|p dx < K [ W(|X|) I X I ^ " 1 | / (X) |P dx 

for all / measurable on M for which the right hand side is finite. Necessary and 
sufficient conditions that the Hilbert transformation be bounded on a weighted 
Lp(-oo, oo) with weight W have been given by Hunt, Muckenhoupt and 
Wheeden [3], and applying these here, it follows that if we5Ip, then for 
0 < v < p , 0 < a < b , 

( J x vw(x)dx/x]j j (xv-pw(x)r1 / ( p-1 } dx/xj X<K(b-a)p. 

In particular, with v = l, if we§tp , w(|x|)e Ap. 
Thus Theorem 1 produces significant results about well known classes of 

functions, and about important operators. 
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