MULTIPLIERS FOR THE MELLIN TRANSFORMATION

BY
P. G. ROONEY ${ }^{(1)}$

Abstract

In this paper we generalize the Mellin multiplier theorem we proved earlier [8] to spaces with quite general weights, satisfying an A_{p}-type condition. Applications are made to the Hilbert transformation.

In an earlier paper [8], we proved a multiplier theorem for the Mellin transformation on weighted L_{p} spaces on $(0, \infty)$, where the weights were powers. This was deduced from the Mihlin multiplier theorem for the Fourier transformation, [10; Chapter IV, Theorem 3], though it could equally well have been deduced from the Marcinkiewicz multiplier theorem, [10; Chapter IV, Theorem 6]. Recently Kurtz [4; Theorem 2] has extended the Marcinkiewiez multiplier theorem to spaces with general weights satisfying the A_{p} condition of Muckenhoupt [5], and in this paper we shall make the corresponding extension of our Mellin multiplier theorem, which we do in Theorem 1 below.

In [7] we implicitly applied our Mellin multiplier theorem to, among other things, the conjugate Hankel operator and the even and odd Hilbert transformations. In Theorem 2 et seq. we shall make similar applications of Theorem 1, including obtaining some information about the boundedness of the Hilbert transformation.

Let w be a non-negative locally integrable function on ($0, \infty$). If $\mu \in \mathbb{R}$ and $1 \leq p<\infty$, we define $\mathscr{L}_{w, \mu, p}$ to consist of those complex-valued functions, measurable on $(0, \infty)$, such that $\|f\|_{w, \mu, p}<\infty$, where

$$
\begin{equation*}
\|f\|_{w, \mu, p}=\left\{\int_{0}^{\infty} w(x)\left|x^{\mu} f(x)\right|^{p} d x / x\right\}^{1 / p} . \tag{1}
\end{equation*}
$$

If $w \equiv 1$, then we shall denote $\mathscr{L}_{w, \mu, p}$ by $\mathscr{L}_{\mu, p}$ and $\|f\|_{w, \mu, p}$ by $\|f\|_{\mu, p}$. For further information about the spaces $\mathscr{L}_{\mu, p}$ see [8; §2], but note that the spaces $L_{\mu, p}$ of that paper are slightly differently defined and make the necessary adjustments.

As shown in [8; $\S 2$, adjusted], the Mellin transformation \mathcal{M} is defined on

[^0]$\mathscr{L}_{\mu, p}$, if $1 \leq p \leq 2$, by
\[

$$
\begin{equation*}
(\mathcal{M} f)(\mu+i t)=\left(\mathscr{C}_{\mu} f\right)^{\wedge}(t) \tag{2}
\end{equation*}
$$

\]

where

$$
\begin{equation*}
\left(\mathscr{C}_{\mu} f\right)(t)=e^{\mu t} f\left(e^{t}\right) \tag{3}
\end{equation*}
$$

and \hat{F} is the Fourier transform of F : that is if $F \in L_{1}(-\infty, \infty)$,

$$
\begin{equation*}
\hat{F}(t)=\int_{-\infty}^{\infty} e^{i t x} F(x) d x \tag{4}
\end{equation*}
$$

and it is shown there that $\mathcal{M} \in\left[\mathscr{L}_{\mu, p}, L_{p},(-\infty, \infty)\right]$, if $1 \leq p \leq 2$, where if X and Y are Banach spaces, $[X, Y]$ denotes the bounded linear operators from X to $Y,[X, X]$ being abbreviated to $[X]$, and $p^{\prime}=p /(p-1)$.

First we need a Lemma. For this, we define C_{0} to consist of those continuous functions compactly supported in the topology of $(0, \infty)$.

Lemma. Suppose that $f \in \mathscr{L}_{w_{1}, \mu_{1}, p_{1}} \cap \mathscr{L}_{w_{2}, \mu_{2}, p_{2}}$. Then, given $\varepsilon>0$, there is a function $\phi \in C_{0}$ such that $\|f-\phi\|_{w_{i}, \mu_{i}, p_{i}}<\varepsilon, i=1,2$.

Proof. When $w_{1}=w_{2} \equiv 1$, the result was proved earlier [8; Lemma 2.3]. The proof for general w_{1} and w_{2} is a straightforward development of that proof, using the density of the step functions in certain weighted L_{p} spaces [9; Theorem 1.17], and Lusin's theorem [9; Theorem 6.11].

Before stating our theorem we need two definitions.
Definition 1 . We say $m \in \mathscr{A}$ if there are extended real numbers $\alpha(m)$ and $\beta(m)$, with $\alpha(m)<\beta(m)$, so that
(a) $m(s)$ is holomorphic in the strip $\alpha(m)<\operatorname{Re} s<\beta(m)$,
(b) in every closed substrip, $\sigma_{1} \leq \operatorname{Re} s \leq \sigma_{2}$, where $\alpha(m)<\sigma_{1} \leq \sigma_{2}<$ $\beta(m), m(s)$ is bounded, and
(c) for $\alpha(m)<\sigma<\beta(m),\left|m^{\prime}(\sigma+i t)\right|=O\left(|t|^{-1}\right)$ as $|t| \rightarrow \infty$.

Defintion 2. Suppose w is a non-negative locally integrable function on $(0, \infty)$ with $w(x)>0$ a.e., and suppose $1<p<\infty$. Then we say $w \in \mathfrak{A}_{p}$ if there is a constant K so that for all numbers a and b, with $0<a<b<\infty$,

$$
\begin{equation*}
\left\{\int_{a}^{b} w(x) d x / x\right\} \cdot\left\{\int_{a}^{b}(w(x))^{-1 /(p-1)} d x / x\right\}^{p-1} \leq K(\log b / a)^{p} . \tag{5}
\end{equation*}
$$

It should be noted that if $w(x) \equiv 1, w \in \mathfrak{H}_{p}$.
Theorem 1. Suppose $m \in \mathscr{A}$. Then there is a transformation $H_{m} \in\left[\mathscr{L}_{w, \mu, p}\right]$ for $1<p<\infty, \alpha(m)<\mu<\beta(m), w \in \mathfrak{A}_{p}$, so that if $f \in \mathscr{L}_{\mu, p}$, where $1 \leq p \leq 2, \alpha(m)<$ $\mu<\beta(m)$,

$$
\begin{equation*}
\left(\mathcal{M} H_{m} f\right)(s)=m(s)(\mathcal{M} f)(s), \quad \operatorname{Re} s=\mu \tag{6}
\end{equation*}
$$

H_{m} is one-to-one on $\mathscr{L}_{\mu, p}$ if $1<p \leq 2, \alpha(m)<\mu<\beta(m)$ except when $m \equiv 0$. If $1 / m \in \mathscr{A}$, then for $1<p<\infty, \max (\alpha(m), \alpha(1 / m))<\mu<\min (\beta(m), \beta(1 / m)), w \in$ $\mathfrak{U}_{\mathrm{p}}, H_{m}$ maps $\mathscr{L}_{w, \mu, p}$ one-to-one onto itself and

$$
\begin{equation*}
\left(H_{m}\right)^{-1}=H_{1 / m} . \tag{7}
\end{equation*}
$$

Proof. For $w \equiv 1$, the result has been proved in [8; Theorem 1]. Suppose $\alpha<\mu<\beta$ and define m_{μ} by $m_{\mu}(t)=m(\mu+i t)$. Then from (b) of Definition 1, m_{μ} is bounded. Also from (c) of Definition 1, there are positive constants R and M_{1} so that if $|t| \geq R,\left|m_{\mu}^{\prime}(t)\right|=\left|m^{\prime}(\mu+i t)\right| \leq M_{1} /|t|$. Further, since from (a) of Definition 1, $m(s)$ is holomorphic in $\alpha<\operatorname{Re} s<\beta,|t|\left|m_{\mu}^{\prime}(t)\right|$ is continuous in $[-R, R]$, and hence is bounded there, say by M_{2}, and hence if $M=$ $\max \left(M_{1}, M_{2}\right)$, for $t \in \mathbb{R},\left|m_{\mu}^{\prime}(t)\right| \leq M /|t|$. Hence if I is any dyadic interval in \mathbb{R},

$$
\int_{I}\left|d m_{\mu}(t)\right|=\int_{I}\left|m_{\mu}^{\prime}(t)\right| d t \leq M \int_{I} d t /|t|=M \log 2
$$

Thus m_{μ} satisfies the hypotheses of " m " of [4; Theorem 2], with $B=$ $\max \left(M \log 2,\left\|m_{\mu}\right\|_{\infty}\right)$ and hence there is a transformation T_{μ} such that if $W \in A_{p}$, where $1<p<\infty$, then

$$
\begin{equation*}
\int_{-\infty}^{\infty} W(x)\left|\left(T_{\mu} f\right)(x)\right| d x \leq N \int_{-\infty}^{\infty} W(x)|F(x)|^{\mathrm{p}} d x \tag{8}
\end{equation*}
$$

for every measurable function F for which the right hand side of (8) is finite, N being a constant independent of F, and if $F \in L_{2}(-\infty, \infty)$,

$$
\begin{equation*}
\left(T_{\mu} F\right)^{\wedge}(t)=m_{\mu}(t) \hat{F}(t)=m(\mu+i t) \hat{F}(t) \tag{9}
\end{equation*}
$$

We define

$$
\begin{equation*}
H_{m}=\mathscr{C}_{\mu}^{-1} T_{\mu} \mathscr{C}_{\mu} \tag{10}
\end{equation*}
$$

Note that if $w \in \mathfrak{U}_{p}$ and $W(t)=w\left(e^{t}\right)$, then $W \in A_{p}$. For if $-\infty<\alpha<\beta<\infty$, then from (5),

$$
\begin{aligned}
& \left\{\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} W(t) d t\right\}\left\{\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta}(W(t))^{-1 /(p-1)} d t\right\}^{p-1} \\
& \quad=\left\{\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} w\left(e^{t}\right) d t\right\}\left\{\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta}\left(w\left(e^{t}\right)\right)^{-1 /(p-1)} d t\right\}^{p-1} \\
& \quad=(\beta-\alpha)^{-p}\left\{\int_{e^{\alpha}}^{e^{\beta}} w(x) d x / x\right\}\left\{\int_{e^{\alpha}}^{e^{\beta}}(w(x))^{-1 /(p-1)} d x / x\right\}^{p-1} \\
& \quad \leq(\beta-\alpha)^{-p} \cdot K\left(\log \left(e^{\beta} / e^{\alpha}\right)\right)^{p}=K .
\end{aligned}
$$

Hence if $f \in \mathscr{L}_{w, \mu, p}$, where $1<p<\infty$, and if $w \in \mathfrak{U}_{p}$, then from (10) and (5),

$$
\begin{aligned}
\left\|H_{m} f\right\|_{w, \mu, \mathrm{p}} & =\left\{\int_{0}^{\infty} w(x)\left|x^{\mu}\left(H_{m} f\right)(x)\right|^{p} d x / x\right\}^{1 / p} \\
& =\left\{\int_{-\infty}^{\infty} w\left(e^{t}\right)\left|\left(\mathscr{C}_{\mu} H_{m} f\right)(t)\right|^{p} d t\right\}^{1 / p} \\
& =\left\{\int_{-\infty}^{\infty} W(t)\left|\left(T_{\mu} \mathscr{C}_{\mu} f\right)(t)\right|^{p} d t\right\}^{1 / p} \leq N^{1 / p}\left\{\int_{-\infty}^{\infty} W(t)\left|\left(\mathscr{C}_{\mu} f\right)(t)\right|^{p} d t\right\}^{1 / p} \\
& =N^{1 / p}\|f\|_{w, \mu, p},
\end{aligned}
$$

so that $H_{m} \in\left[\mathscr{L}_{w, \mu, p}\right]$.
H_{m}, as defined by (10), seems to depend on μ. But, as proved in [8; Lemma 3.2], on C_{0}, H_{m} is independent of μ for $\alpha(m)<\mu<\beta(m)$, and then using our lemma, the fact that it is independent of μ on $\mathscr{L}_{w, \mu, p}$ follows as in the proof of [8; Lemma 3.2], while the remainder of the theorem now follows as in the case for $w \equiv 1$ in [8; Theorem 1].

In [7; Theorems 6.1 and 7.1] we studied operators $\left(I_{\nu, \alpha, \xi}\right)^{-1} J_{\nu, \beta, \eta}$ and $\left(J_{\nu, \beta, \eta}\right)^{-1} I_{\nu, \alpha, \xi}$ where $I_{\nu, \alpha, \xi}$ and $J_{\nu, \beta, \eta}$ are defined by [7; (1.2) and (1.3)]. The operators were studied using implicitly [8; Theorem 1], that is Theorem 1 above for $w(x) \equiv 1$. Using Theorem 1 for general $w \in \mathfrak{A}_{p}$, it is immediate that all the results of [7; Theorems 6.7 and 7.1] extend to $\mathscr{L}_{w, \mu, p}$ for $w \in \mathfrak{A}_{p}$, except the unitariness statements, provided the following theorem is proved.

Theorem 2. Suppose $1<p<\infty$, and $w \in \mathfrak{H}_{p}$. Then: (i) if $\mu<\nu \operatorname{Re} \xi$ and $\operatorname{Re} \alpha>0, I_{\nu, \alpha, \xi} \in\left[\mathscr{L}_{w, \mu, p}\right]$; (ii) if $\mu>-\nu \operatorname{Re} \eta$ and $\operatorname{Re} \beta>0, J_{\nu, \beta, \eta} \in\left[\mathscr{L}_{w, \mu, p}\right]$.

Proof. It is shown in [7; Corollary 4.1] that if $f \in\left[\mathscr{L}_{\mu, p}\right], 1 \leq p \leq 2, \mu<$ $\nu \operatorname{Re} \xi$, then $\left(\mu_{\nu, \alpha, \xi} f\right)(s)=m(s)(\mu f)(s), \operatorname{Re} s=\mu$, where $m(s)=\Gamma(\xi-(s / \nu)) /$ $\Gamma(\xi+\alpha-(s / \nu))$. Now $m \in \mathscr{A}$, with $\alpha(m)=-\infty, \beta(m)=\nu \operatorname{Re} \xi$; for clearly $m(s)$ is holomorphic in the strip $-\infty<\operatorname{Re} s<\nu \operatorname{Re} \xi$; also, since from [2; 1.18(6)], $\Gamma(x+i y) \sim \sqrt{ } 2 \pi|y|^{x-1 / 2} e^{-\pi|y| / 2}$ as $|y| \rightarrow \infty$, uniformly in x for x in any bounded interval, then as $|t| \rightarrow \infty,\left.m(\sigma+i t) \sim|t| \nu\right|^{-\mathrm{Re} \alpha}$ uniformly in σ for σ in any bounded interval, and thus if $\alpha<\sigma_{1} \leq \sigma_{2}<\beta, m(s)$ is bounded in the strip $\sigma_{1} \leq \operatorname{Re} s \leq \sigma_{2}$; further, from [2; 1.18(7)], if $\Psi(z)=\Gamma^{\prime}(z) / \Gamma(z)$, then $\Psi(z)=\log z-1 / 2 z+O\left(|z|^{-2}\right)$ as $|z| \rightarrow \infty$ in $|\arg z| \leq \pi-\delta$, where $0<\delta \leq \pi$, and thus $m^{\prime}(\sigma+i t)=m(\sigma+i t)\{\log (\xi+\alpha-(\sigma+i t) / \nu)-1 /(2(\xi+\alpha-(\sigma+i t) / \nu))-$ $\log \left(\xi-(\sigma+i t / \nu)+1 /(2(\xi-(\sigma+i t) / \nu))+O\left(|t|^{-2}\right)=m(\sigma+i t)\left\{(i \nu \alpha) / t+O\left(|t|^{-2}\right)\right\}=\right.$ $O\left(|t|^{-1}\right)$ as $|t| \rightarrow \infty$, and thus $m \in \mathscr{A}$. Hence from Theorem $1, I_{\nu, \alpha, \xi} \in\left[\mathscr{L}_{w, \mu, p}\right]$ if $1<p<\infty, w \in \mathfrak{A}_{p}, \mu<\nu \operatorname{Re} \xi$, and $\operatorname{Re} \alpha>0$. The results for $J_{\nu, \beta, \eta}$ follows similarly.

The results about $\left(I_{\nu, \alpha, \xi}\right)^{-1} J_{\nu, \beta, \eta}$ and $\left(J_{\nu, \beta, \eta}\right)^{-1} I_{\nu, \alpha, \xi}$ in [7] were applied in [7; Theorem 8.1] to an operator $H_{\rho, \lambda, \gamma}$, which is the product of two Hankel
transformations, and it now follows that all the results of [7; Theorem 8.1] extend to $\mathscr{L}_{w, \mu, p}$, for $w \in \mathfrak{U}_{p}$, except again the unitariness results. In particular, since $H_{\lambda+1 / 2, \lambda-1 / 2,1}$ is Muckenhoupt and Stein's Hankel conjugate operator \mathscr{H}_{λ} [6; §16], it follows that if $1<p<\infty$ and $w \in \mathfrak{A}_{p}$, then $\mathscr{H}_{\lambda} \in\left[\mathscr{L}_{w, \mu, p}\right]$ for $-1<\mu<$ $2 \lambda+1$.

A direct application of Theorem 1 to \mathscr{H}_{λ} yields slightly more. For, it is easy to see from [7, §8] that if $f \in \mathscr{L}_{\mu, p}$, where $1<p \leq 2,-1<\mu<2 \lambda+1$, $\left(\mathscr{H}_{\lambda} f\right)(s)=m_{\lambda}(s)(\mathcal{M} f)(s), \quad$ where $\quad m_{\lambda}(s)=\left(\Gamma\left(\frac{1}{2}(1+s)\right) \Gamma\left(\frac{1}{2}(2 \lambda+1-s)\right)\right) /$ $\left(\Gamma\left(\frac{1}{2} s\right) \Gamma\left(\frac{1}{2}(2 \lambda+2-s)\right)\right.$), and it follows from the asymptotic behaviour of $\Gamma(z)$ and $\Psi(z)$, in much the same way as in the proof of Theorem 2 , that if $\lambda>-1, m_{\lambda} \in$ \mathscr{A}, with $\alpha\left(m_{\lambda}\right)=-1, \beta\left(m_{\lambda}\right)=2 \lambda+1$, and that $1 / m_{\lambda} \in \mathscr{A}$ with either $\alpha\left(1 / m_{\lambda}\right)=$ $0, \beta\left(1 / m_{\lambda}\right)=2 \lambda+2$ or $\alpha\left(1 / m_{\lambda}\right)=-1, \beta\left(1 / m_{\lambda}\right)=0$. Thus except for $\mu=$ $0, \mathscr{H}_{\lambda}\left(\mathscr{L}_{w, \mu, p}\right)=\mathscr{L}_{w, \mu, p}$.

Since the even Hilbert transformation, H_{+}, is \mathscr{H}_{0}, it follows that if $1<p<$ $\infty, w \in \mathfrak{A t}_{p}, H_{+} \in\left[\mathscr{L}_{w, \mu, p}\right]$ for $-1<\mu<1$, and except when $\mu=0, H_{+}\left(\mathscr{L}_{w, \mu, \mathrm{p}}\right)=$ $\mathscr{L}_{w, \mu, \mathrm{p}}$. Similar analysis for the odd Hilbert transformation H_{-}yields that if $1<p<\infty, w \in \mathfrak{U}_{p}, H_{-} \in\left[\mathscr{L}_{w, \mu, p}\right]$ for $0<\mu<2$, and except for $\mu=$ $1, H_{-}\left(\mathscr{L}_{w, \mu, p}\right)=\mathscr{L}_{w, \mu, \mathrm{p}}$. These results should be contrasted with those of Andersen [1] who gave necessary and sufficient conditions on a weight W that $H_{ \pm}$be bounded on the $L_{p}(0, \infty)$ space with weight W. Applying Andersen's conditions on W to the weight $x^{\mathrm{p} \mathrm{\mu-1}} w(x)$ that we are using here, it follows that if $w \in \mathfrak{H}_{p}$, then for $0<\nu<2 p, 0<a<b$,

$$
\left\{\int_{a}^{b} x^{\nu} w(x) d x / x\right\}\left\{\int_{a}^{b}\left(x^{\nu-2 p} w(x)\right)^{-1 /(p-1)} d x / x\right\}^{p-1} \leq K\left(b^{2}-a^{2}\right)^{p}
$$

The Hilbert transform H of a function f can be constructed from the even Hilbert transform of the even part of f and the odd Hilbert transform of the odd part of f. Putting things together in this way yields that for $0<\mu<1$,

$$
\int_{-\infty}^{\infty} w(|x|)|x|^{p \mu-1}|(H f)(x)|^{p} d x \leq K \int_{-\infty}^{\infty} w(|x|)|x|^{p \mu-1}|f(x)|^{p} d x
$$

for all f measurable on \mathbb{R} for which the right hand side is finite. Necessary and sufficient conditions that the Hilbert transformation be bounded on a weighted $L_{\mathrm{p}}(-\infty, \infty)$ with weight W have been given by Hunt, Muckenhoupt and Wheeden [3], and applying these here, it follows that if $w \in \mathfrak{A}_{p}$, then for $0<\nu<p, 0 \leq a<b$,

$$
\left\{\int_{a}^{b} x^{\nu} w(x) d x / x\right\}\left\{\int_{a}^{b}\left(x^{\nu-p} w(x)\right)^{-1 /(p-1)} d x / x\right\}^{p-1} \leq K(b-a)^{p} .
$$

In particular, with $\nu=1$, if $w \in \mathfrak{A}_{p}, w(|x|) \in A_{p}$.
Thus Theorem 1 produces significant results about well known classes of functions, and about important operators.

References

1. K. F. Andersen, Weighted norm inequalities for Hilbert transforms and conjugate functions of even and odd functions, Proc. Amer. Math. Soc. 56 (1976), 99-107.
2. A. Erdélyi et al., Higher transcendental functions I, New York (McGraw-Hill), 1953.
3. R. Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227-251.
4. D. S. Kurtz, Littlewood-Paley and multiplier theorems on weighted L^{p} spaces, Trans. Amer. Math. Soc. 259 (1980), 235-254.
5. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
6. B. Muckenhoupt and E. M. Stein, Classical expansions and their relations to conjugate harmonic functions, Trans. Amer. Math. Soc. 118 (1965), 17-92.
7. P. G. Rooney, On the ranges of certain fractional integrals, Can. J. Math. 24 (1972), 1198-1216.
8. P. G. Rooney, A technique for studying the boundedness and extendability of certain types of operators, Can. J. Math. 25 (1973), 1090-1112.
9. W. Rudin, Real and complex analysis, 2nd ed., New York (McGraw-Hill), 1974.
10. E. M. Stein, Singular integrals, Princeton, 1970.

University of Toronto, Toronto, Ontario.

[^0]: Received by the editors October 15, 1980.
 AMS Subject Classification: Primary 42A18; Secondary 44A15.
 ${ }^{(1)}$ This research was supported by the National Science and Engineering Research Council of Canada, grant no. A4048. Subject classification: Primary 42A18; secondary 44A15. Key words: multipliers, Mellin transformation, Hilbert transformation.

