Canad. Math. Bull. Vol. 25 (3), 1982

MULTIPLIERS FOR THE MELLIN TRANSFORMATION

BY

P. G. ROONEY⁽¹⁾

Abstract. In this paper we generalize the Mellin multiplier theorem we proved earlier [8] to spaces with quite general weights, satisfying an A_p -type condition. Applications are made to the Hilbert transformation.

In an earlier paper [8], we proved a multiplier theorem for the Mellin transformation on weighted L_p spaces on $(0, \infty)$, where the weights were powers. This was deduced from the Mihlin multiplier theorem for the Fourier transformation, [10; Chapter IV, Theorem 3], though it could equally well have been deduced from the Marcinkiewicz multiplier theorem, [10; Chapter IV, Theorem 6]. Recently Kurtz [4; Theorem 2] has extended the Marcinkiewicz multiplier theorem, for the Marcinkiewicz multiplier theorem to spaces with general weights satisfying the A_p condition of Muckenhoupt [5], and in this paper we shall make the corresponding extension of our Mellin multiplier theorem, which we do in Theorem 1 below.

In [7] we implicitly applied our Mellin multiplier theorem to, among other things, the conjugate Hankel operator and the even and odd Hilbert transformations. In Theorem 2 *et seq.* we shall make similar applications of Theorem 1, including obtaining some information about the boundedness of the Hilbert transformation.

Let w be a non-negative locally integrable function on $(0, \infty)$. If $\mu \in \mathbb{R}$ and $1 \le p < \infty$, we define $\mathscr{L}_{w,\mu,p}$ to consist of those complex-valued functions, measurable on $(0, \infty)$, such that $||f||_{w,\mu,p} < \infty$, where

(1)
$$||f||_{w,\mu,p} = \left\{ \int_0^\infty w(x) |x^{\mu}f(x)|^p dx/x \right\}^{1/p}.$$

If $w \equiv 1$, then we shall denote $\mathscr{L}_{w,\mu,p}$ by $\mathscr{L}_{\mu,p}$ and $||f||_{w,\mu,p}$ by $||f||_{\mu,p}$. For further information about the spaces $\mathscr{L}_{\mu,p}$ see [8; §2], but note that the spaces $L_{\mu,p}$ of that paper are slightly differently defined and make the necessary adjustments.

As shown in [8; \$2, adjusted], the Mellin transformation \mathcal{M} is defined on

https://doi.org/10.4153/CMB-1982-037-7 Published online by Cambridge University Press

Received by the editors October 15, 1980.

AMS Subject Classification: Primary 42A18; Secondary 44A15.

⁽¹⁾ This research was supported by the National Science and Engineering Research Council of Canada, grant no. A4048. Subject classification: Primary 42A18; secondary 44A15. Key words: multipliers, Mellin transformation, Hilbert transformation.

P. G. ROONEY

 $\mathscr{L}_{\mu,p}$, if $1 \le p \le 2$, by (2) $(\mathscr{M}f)(\mu + it) = (\mathscr{C}_{\mu}f)^{\wedge}(t)$, where

(3)
$$(\mathscr{C}_{\mu}f)(t) = e^{\mu t}f(e^{t})$$

and \hat{F} is the Fourier transform of F: that is if $F \in L_1(-\infty, \infty)$,

(4)
$$\hat{F}(t) = \int_{-\infty}^{\infty} e^{itx} F(x) \, dx,$$

and it is shown there that $\mathcal{M} \in [\mathscr{L}_{\mu,p}, L_p, (-\infty, \infty)]$, if $1 \le p \le 2$, where if X and Y are Banach spaces, [X, Y] denotes the bounded linear operators from X to Y, [X, X] being abbreviated to [X], and p' = p/(p-1).

First we need a Lemma. For this, we define C_0 to consist of those continuous functions compactly supported in the topology of $(0, \infty)$.

LEMMA. Suppose that $f \in \mathscr{L}_{w_1,\mu_1,p_1} \cap \mathscr{L}_{w_2,\mu_2,p_2}$. Then, given $\varepsilon > 0$, there is a function $\phi \in C_0$ such that $||f - \phi||_{w_i,\mu_i,p_i} < \varepsilon$, i = 1, 2.

Proof. When $w_1 = w_2 \equiv 1$, the result was proved earlier [8; Lemma 2.3]. The proof for general w_1 and w_2 is a straightforward development of that proof, using the density of the step functions in certain weighted L_p spaces [9; Theorem 1.17], and Lusin's theorem [9; Theorem 6.11].

Before stating our theorem we need two definitions.

DEFINITION 1. We say $m \in \mathcal{A}$ if there are extended real numbers $\alpha(m)$ and $\beta(m)$, with $\alpha(m) < \beta(m)$, so that

(a) m(s) is holomorphic in the strip $\alpha(m) < \operatorname{Re} s < \beta(m)$,

(b) in every closed substrip, $\sigma_1 \le \text{Re } s \le \sigma_2$, where $\alpha(m) < \sigma_1 \le \sigma_2 < \beta(m), m(s)$ is bounded, and

(c) for $\alpha(m) < \sigma < \beta(m)$, $|m'(\sigma + it)| = O(|t|^{-1})$ as $|t| \to \infty$.

DEFINITION 2. Suppose w is a non-negative locally integrable function on $(0, \infty)$ with w(x) > 0 a.e., and suppose $1 . Then we say <math>w \in \mathfrak{A}_p$ if there is a constant K so that for all numbers a and b, with $0 < a < b < \infty$,

(5)
$$\left\{ \int_{a}^{b} w(x) \, dx/x \right\} \cdot \left\{ \int_{a}^{b} (w(x))^{-1/(p-1)} \, dx/x \right\}^{p-1} \leq K \, (\log b/a)^{p}.$$

It should be noted that if $w(x) \equiv 1, w \in \mathfrak{A}_p$.

THEOREM 1. Suppose $m \in \mathcal{A}$. Then there is a transformation $H_m \in [\mathcal{L}_{w,\mu,p}]$ for $1 , <math>\alpha(m) < \mu < \beta(m)$, $w \in \mathfrak{A}_p$, so that if $f \in \mathcal{L}_{\mu,p}$, where $1 \le p \le 2$, $\alpha(m) < \mu < \beta(m)$,

(6)
$$(\mathcal{M}H_m f)(s) = m(s)(\mathcal{M}f)(s), \quad \text{Re } s = \mu.$$

[September

 H_m is one-to-one on $\mathscr{L}_{\mu,p}$ if $1 , <math>\alpha(m) < \mu < \beta(m)$ except when $m \equiv 0$. If $1/m \in \mathscr{A}$, then for $1 , <math>\max(\alpha(m), \alpha(1/m)) < \mu < \min(\beta(m), \beta(1/m))$, $w \in \mathfrak{A}_p$, H_m maps $\mathscr{L}_{w,\mu,p}$ one-to-one onto itself and

(7)
$$(H_m)^{-1} = H_{1/m}$$

Proof. For $w \equiv 1$, the result has been proved in [8; Theorem 1]. Suppose $\alpha < \mu < \beta$ and define m_{μ} by $m_{\mu}(t) = m(\mu + it)$. Then from (b) of Definition 1, m_{μ} is bounded. Also from (c) of Definition 1, there are positive constants R and M_1 so that if $|t| \ge R$, $|m'_{\mu}(t)| = |m'(\mu + it)| \le M_1/|t|$. Further, since from (a) of Definition 1, m(s) is holomorphic in $\alpha < \text{Re } s < \beta$, $|t| |m'_{\mu}(t)|$ is continuous in [-R, R], and hence is bounded there, say by M_2 , and hence if $M = \max(M_1, M_2)$, for $t \in \mathbb{R}$, $|m'_{\mu}(t)| \le M/|t|$. Hence if I is any dyadic interval in \mathbb{R} ,

$$\int_{I} |dm_{\mu}(t)| = \int_{I} |m'_{\mu}(t)| dt \le M \int_{I} dt / |t| = M \log 2.$$

Thus m_{μ} satisfies the hypotheses of "m" of [4; Theorem 2], with $B = \max(M \log 2, \|m_{\mu}\|_{\infty})$ and hence there is a transformation T_{μ} such that if $W \in A_{\nu}$, where 1 , then

(8)
$$\int_{-\infty}^{\infty} W(x) |(T_{\mu}f)(x)| \, dx \leq N \int_{-\infty}^{\infty} W(x) \, |F(x)|^p \, dx,$$

for every measurable function F for which the right hand side of (8) is finite, N being a constant independent of F, and if $F \in L_2(-\infty, \infty)$,

(9)
$$(T_{\mu}F)^{\wedge}(t) = m_{\mu}(t)\hat{F}(t) = m(\mu + it)\hat{F}(t).$$

We define

(10)
$$H_m = \mathscr{C}_{\mu}^{-1} T_{\mu} \mathscr{C}_{\mu}.$$

Note that if $w \in \mathfrak{A}_p$ and $W(t) = w(e^t)$, then $W \in A_p$. For if $-\infty < \alpha < \beta < \infty$, then from (5),

$$\begin{split} &\left\{\frac{1}{\beta-\alpha}\int_{\alpha}^{\beta}W(t)\,dt\right\}\left\{\frac{1}{\beta-\alpha}\int_{\alpha}^{\beta}(W(t))^{-1/(p-1)}\,dt\right\}^{p-1}\\ &=\left\{\frac{1}{\beta-\alpha}\int_{\alpha}^{\beta}w(e^{t})\,dt\right\}\left\{\frac{1}{\beta-\alpha}\int_{\alpha}^{\beta}(w(e^{t}))^{-1/(p-1)}\,dt\right\}^{p-1}\\ &=(\beta-\alpha)^{-p}\left\{\int_{e^{\alpha}}^{e^{\beta}}w(x)\,dx/x\right\}\left\{\int_{e^{\alpha}}^{e^{\beta}}(w(x))^{-1/(p-1)}\,dx/x\right\}^{p-1}\\ &\leq (\beta-\alpha)^{-p}\cdot K(\log(e^{\beta}/e^{\alpha}))^{p}=K. \end{split}$$

Hence if $f \in \mathscr{L}_{w,u,p}$, where $1 , and if <math>w \in \mathfrak{A}_p$, then from (10) and (5),

$$\begin{split} \|H_m f\|_{w,\mu,p} &= \left\{ \int_0^\infty w(x) \, |x^{\mu} (H_m f)(x)|^p \, dx/x \right\}^{1/p} \\ &= \left\{ \int_{-\infty}^\infty \, w(e^t) \, |(\mathscr{C}_{\mu} H_m f)(t)|^p \, dt \right\}^{1/p} \\ &= \left\{ \int_{-\infty}^\infty \, W(t) \, |(T_{\mu} \mathscr{C}_{\mu} f)(t)|^p \, dt \right\}^{1/p} \leq N^{1/p} \left\{ \int_{-\infty}^\infty \, W(t) \, |(\mathscr{C}_{\mu} f)(t)|^p \, dt \right\}^{1/p} \\ &= N^{1/p} \, \|f\|_{w,\mu,p}, \end{split}$$

so that $H_m \in [\mathscr{L}_{w,\mu,p}]$.

 H_m , as defined by (10), seems to depend on μ . But, as proved in [8; Lemma 3.2], on C_0 , H_m is independent of μ for $\alpha(m) < \mu < \beta(m)$, and then using our lemma, the fact that it is independent of μ on $\mathcal{L}_{w,\mu,p}$ follows as in the proof of [8; Lemma 3.2], while the remainder of the theorem now follows as in the case for $w \equiv 1$ in [8; Theorem 1].

In [7; Theorems 6.1 and 7.1] we studied operators $(I_{\nu,\alpha,\xi})^{-1}J_{\nu,\beta,\eta}$ and $(J_{\nu,\beta,\eta})^{-1}I_{\nu,\alpha,\xi}$ where $I_{\nu,\alpha,\xi}$ and $J_{\nu,\beta,\eta}$ are defined by [7; (1.2) and (1.3)]. The operators were studied using implicitly [8; Theorem 1], that is Theorem 1 above for $w(x) \equiv 1$. Using Theorem 1 for general $w \in \mathfrak{A}_p$, it is immediate that all the results of [7; Theorems 6.7 and 7.1] extend to $\mathscr{L}_{w,\mu,p}$ for $w \in \mathfrak{A}_p$, except the unitariness statements, provided the following theorem is proved.

THEOREM 2. Suppose $1 , and <math>w \in \mathfrak{A}_p$. Then: (i) if $\mu < \nu \operatorname{Re} \xi$ and $\operatorname{Re} \alpha > 0$, $I_{\nu,\alpha,\xi} \in [\mathscr{L}_{w,\mu,p}]$; (ii) if $\mu > -\nu \operatorname{Re} \eta$ and $\operatorname{Re} \beta > 0$, $J_{\nu,\beta,\eta} \in [\mathscr{L}_{w,\mu,p}]$.

Proof. It is shown in [7; Corollary 4.1] that if $f \in [\mathscr{L}_{\mu,p}]$, $1 \le p \le 2, \mu < \nu \operatorname{Re} \xi$, then $(\mathcal{M}I_{\nu,\alpha,\xi}f)(s) = m(s)(\mathcal{M}f)(s)$, $\operatorname{Re} s = \mu$, where $m(s) = \Gamma(\xi - (s/\nu))/\Gamma(\xi + \alpha - (s/\nu))$. Now $m \in \mathscr{A}$, with $\alpha(m) = -\infty, \beta(m) = \nu \operatorname{Re} \xi$; for clearly m(s) is holomorphic in the strip $-\infty < \operatorname{Re} s < \nu \operatorname{Re} \xi$; also, since from [2; 1.18(6)], $\Gamma(x + iy) \sim \sqrt{2\pi} |y|^{x-1/2} e^{-\pi |y|/2}$ as $|y| \to \infty$, uniformly in x for x in any bounded interval, then as $|t| \to \infty, m(\sigma + it) \sim |t/\nu|^{-\operatorname{Re}\alpha}$ uniformly in σ for σ in any bounded interval, and thus if $\alpha < \sigma_1 \le \sigma_2 < \beta, m(s)$ is bounded in the strip $\sigma_1 \le \operatorname{Re} s \le \sigma_2$; further, from [2; 1.18(7)], if $\Psi(z) = \Gamma'(z)/\Gamma(z)$, then $\Psi(z) = \log z - 1/2z + O(|z|^{-2})$ as $|z| \to \infty$ in $|\arg z| \le \pi - \delta$, where $0 < \delta \le \pi$, and thus $m'(\sigma + it) = m(\sigma + it) \{\log(\xi + \alpha - (\sigma + it)/\nu) - 1/(2(\xi + \alpha - (\sigma + it)/\nu)) - \log(\xi - (\sigma + it/\nu) + 1/(2(\xi - (\sigma + it)/\nu)) + O(|t|^{-2}) = m(\sigma + it) \{(i\nu\alpha)/t + O(|t|^{-2})\} = O(|t|^{-1})$ as $|t| \to \infty$, and thus $m \in \mathscr{A}$. Hence from Theorem 1, $I_{\nu,\alpha,\xi} \in [\mathscr{L}_{w,\mu,p}]$ if $1 Re <math>\xi$, and Re $\alpha > 0$. The results for $J_{\nu,\beta,\eta}$ follows similarly.

The results about $(I_{\nu,\alpha,\xi})^{-1}J_{\nu,\beta,\eta}$ and $(J_{\nu,\beta,\eta})^{-1}I_{\nu,\alpha,\xi}$ in [7] were applied in [7; Theorem 8.1] to an operator $H_{\rho,\lambda,\gamma}$, which is the product of two Hankel

transformations, and it now follows that all the results of [7; Theorem 8.1] extend to $\mathscr{L}_{w,\mu,p}$, for $w \in \mathfrak{A}_p$, except again the unitariness results. In particular, since $H_{\lambda+1/2,\lambda-1/2,1}$ is Muckenhoupt and Stein's Hankel conjugate operator \mathscr{H}_{λ} [6; §16], it follows that if $1 and <math>w \in \mathfrak{A}_p$, then $\mathscr{H}_{\lambda} \in [\mathscr{L}_{w,\mu,p}]$ for $-1 < \mu < 2\lambda + 1$.

A direct application of Theorem 1 to \mathcal{H}_{λ} yields slightly more. For, it is easy to see from [7, §8] that if $f \in \mathcal{L}_{\mu,p}$, where 1 , $<math>(\mathcal{MH}_{\lambda}f)(s) = m_{\lambda}(s)(\mathcal{M}f)(s)$, where $m_{\lambda}(s) = (\Gamma(\frac{1}{2}(1+s))\Gamma(\frac{1}{2}(2\lambda+1-s)))/(\Gamma(\frac{1}{2}s)\Gamma(\frac{1}{2}(2\lambda+2-s)))$, and it follows from the asymptotic behaviour of $\Gamma(z)$ and $\Psi(z)$, in much the same way as in the proof of Theorem 2, that if $\lambda > -1, m_{\lambda} \in \mathcal{A}$, with $\alpha(m_{\lambda}) = -1, \beta(m_{\lambda}) = 2\lambda + 1$, and that $1/m_{\lambda} \in \mathcal{A}$ with either $\alpha(1/m_{\lambda}) = 0, \beta(1/m_{\lambda}) = 2\lambda + 2$ or $\alpha(1/m_{\lambda}) = -1, \beta(1/m_{\lambda}) = 0$. Thus except for $\mu = 0, \mathcal{H}_{\lambda}(\mathcal{L}_{w,\mu,p}) = \mathcal{L}_{w,\mu,p}$.

Since the even Hilbert transformation, H_+ , is \mathcal{H}_0 , it follows that if $1 , <math>w \in \mathfrak{A}_p$, $H_+ \in [\mathscr{L}_{w,\mu,p}]$ for $-1 < \mu < 1$, and except when $\mu = 0$, $H_+(\mathscr{L}_{w,\mu,p}) = \mathscr{L}_{w,\mu,p}$. Similar analysis for the odd Hilbert transformation H_- yields that if $1 , <math>w \in \mathfrak{A}_p$, $H_- \in [\mathscr{L}_{w,\mu,p}]$ for $0 < \mu < 2$, and except for $\mu = 1$, $H_-(\mathscr{L}_{w,\mu,p}) = \mathscr{L}_{w,\mu,p}$. These results should be contrasted with those of Andersen [1] who gave necessary and sufficient conditions on a weight W that H_{\pm} be bounded on the $L_p(0, \infty)$ space with weight W. Applying Andersen's conditions on W to the weight $x^{p\mu-1}w(x)$ that we are using here, it follows that if $w \in \mathfrak{A}_p$, then for $0 < \nu < 2p$, 0 < a < b,

$$\left\{\int_a^b x^{\nu} w(x) \, dx/x\right\} \left\{\int_a^b (x^{\nu-2p} w(x))^{-1/(p-1)} \, dx/x\right\}^{p-1} \leq K(b^2 - a^2)^p.$$

The Hilbert transform H of a function f can be constructed from the even Hilbert transform of the even part of f and the odd Hilbert transform of the odd part of f. Putting things together in this way yields that for $0 < \mu < 1$,

$$\int_{-\infty}^{\infty} w(|x|) |x|^{p\mu-1} |(Hf)(x)|^p dx \le K \int_{-\infty}^{\infty} w(|x|) |x|^{p\mu-1} |f(x)|^p dx$$

for all f measurable on \mathbb{R} for which the right hand side is finite. Necessary and sufficient conditions that the Hilbert transformation be bounded on a weighted $L_p(-\infty, \infty)$ with weight W have been given by Hunt, Muckenhoupt and Wheeden [3], and applying these here, it follows that if $w \in \mathfrak{A}_p$, then for $0 < \nu < p, 0 \le a < b$,

$$\left\{\int_{a}^{b} x^{\nu} w(x) \, dx/x\right\} \left\{\int_{a}^{b} (x^{\nu-p} w(x))^{-1/(p-1)} \, dx/x\right\}^{p-1} \leq K(b-a)^{p}.$$

In particular, with $\nu = 1$, if $w \in \mathfrak{A}_p$, $w(|x|) \in A_p$.

Thus Theorem 1 produces significant results about well known classes of functions, and about important operators.

1982]

P. G. ROONEY

REFERENCES

1. K. F. Andersen, Weighted norm inequalities for Hilbert transforms and conjugate functions of even and odd functions, Proc. Amer. Math. Soc. 56 (1976), 99-107.

2. A. Erdélyi et al., Higher transcendental functions I, New York (McGraw-Hill), 1953.

3. R. Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. **176** (1973), 227–251.

4. D. S. Kurtz, Littlewood-Paley and multiplier theorems on weighted L^p spaces, Trans. Amer. Math. Soc. **259** (1980), 235–254.

5. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.

6. B. Muckenhoupt and E. M. Stein, *Classical expansions and their relations to conjugate harmonic functions*, Trans. Amer. Math. Soc. **118** (1965), 17–92.

7. P. G. Rooney, On the ranges of certain fractional integrals, Can. J. Math. 24 (1972), 1198–1216.

8. P. G. Rooney, A technique for studying the boundedness and extendability of certain types of operators, Can. J. Math. 25 (1973), 1090–1112.

9. W. Rudin, Real and complex analysis, 2nd ed., New York (McGraw-Hill), 1974.

10. E. M. Stein, Singular integrals, Princeton, 1970.

UNIVERSITY OF TORONTO,

TORONTO, ONTARIO.