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MULTIPLIERS FOR THE MELLIN TRANSFORMATION

BY
P. G. ROONEY®

Abstract. In this paper we generalize the Mellin multiplier
theorem we proved earlier [8] to spaces with quite general weights,
satisfying an A, -type condition. Applications are made to the
Hilbert transformation.

In an earlier paper [8], we proved a multiplier theorem for the Mellin
transformation on weighted L, spaces on (0,), where the weights were
powers. This was deduced from the Mihlin multiplier theorem for the Fourier
transformation, [10; Chapter IV, Theorem 3], though it could equally well
have been deduced from the Marcinkiewicz multiplier theorem, [10; Chapter
IV, Theorem 6]. Recently Kurtz [4; Theorem 2] has extended the Marcin-
kiewiez multiplier theorem to spaces with general weights satisfying the A,
condition of Muckenhoupt [5], and in this paper we shall make the correspond-
ing extension of our Mellin multiplier theorem, which we do in Theorem 1
below.

In [7] we implicitly applied our Mellin multiplier theorem to, among other
things, the conjugate Hankel operator and the even and odd Hilbert transfor-
mations. In Theorem 2 et seq. we shall make similar applications of Theorem 1,
including obtaining some information about the boundedness of the Hilbert
transformation.

- Let w be a non-negative locally integrable function on (0, ). If u €R and
1=p<w, we define £,,, to consist of those complex-valued functions,
measurable on (0, ), such that ||f|,,,.., <o, where

(1) e = {j:woc) ol dofx]

If w=1, then we shall denote £,,,,, by £, , and ||fll.,., by l|fl.,- For further

information about the spaces £, , see [8; §2], but note that the spaces L, , of

that paper are slightly differently defined and make the necessary adjustments.
As shown in [8; §2, adjusted], the Mellin transformation # is defined on
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L, if 1=p=2, by

(2) (Mf) (e +it) = (€,1)"(1),
where
(3) (€,.f)(t)=e"f(e")

and F is the Fourier transform of F: that is if Fe L,(—o, ),
(4) F(1)= J e"™F(x) dx,

and it is shown there that M e[£,, ,, L,, (-, )], if 1=p=2, where if X and Y
are Banach spaces, [X, Y] denotes the bounded linear operators from X to
Y, [X, X] being abbreviated to [X], and p'=p/(p—1).

First we need a Lemma. For this, we define C, to consist of those continuous
functions compactly supported in the topology of (0, ).

LemMA. Suppose that fe £, . o NLy p. Then, given £>0, there is a
function ¢ € C, such that ||f = Pl pp <& i =1, 2.

Proof. When w; = w,=1, the result was proved earlier [8; Lemma 2.3]. The
proof for general w; and w, is a straightforward development of that proof,
using the density of the step functions in certain weighted L, spaces [9;
Theorem 1.17], and Lusin’s theorem [9; Theorem 6.11].

Before stating our theorem we need two definitions.

DEFINITION 1. We say m € o if there are extended real numbers a(m) and
B(m), with a(m)<B(m), so that

(a) m(s) is holomorphic in the strip a(m)<Re s <B(m),

(b) in every closed substrip, o;,=Res=cg,, where a(m)<o,=0,<
B(m), m(s) is bounded, and

(c) for a(m)<a<B(m), |m'(o+it)|=O(t|™") as |t| - .

DEeFINITION 2. Suppose w is a non-negative locally integrable function on
(0, ) with w(x)>0 a.e., and suppose 1<<p <o. Then we say we U if there is
a constant K so that for all numbers a and b, with 0<a <b <o,

(5) {wa(x) dx/x} . {'[lb(w(x))*”("” dx/x}pi1 =K (log b/a)".

It should be noted that if w(x)=1, we,.

THEOREM 1. Suppose m € . Then there is a transformation H,, €[£,,,.,] for
1<p<ow, a(m)<u<B(m), wed,, sothatif fe £, ,, where 1=p=2, a(m)<
p<pB(m),

(6) (MH,.f)(s)=m(s)(Mf)(s), Re s = .

w,p>
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H,, is one-to-one on £, , if 1<p=2, a(m)<u<B(m) except when m=0. If
1/me o, then for 1<p <o, max(a(m), a(1/m))<u <min(B(m), B(1/m)), we
A, H,, maps £,,,., one-to-one onto itself and

(7) (H,) '=Hy,,.

Proof. For w=1, the result has been proved in [8; Theorem 1]. Suppose
a<p<pB and define m, by m,(t)=m(u+it). Then from (b) of Definition 1,
m,, is bounded. Also from (c) of Definition 1, there are positive constants R
and M, so that if [t|= R, |m ()| = |m’(w + it)| = My /|t|. Further, since from (a) of
Definition 1, m(s) is holomorphic in a <Re s <8, |t||m.(t)| is continuous in
[-R,R], and hence is bounded there, say by M,, and hence if M=
max(M,;, M,), for teR, |m/(t)|=M]|t|. Hence if I is any dyadic interval in R,

[ tam, 1= [ im0l dr=M| dili=Mog2.
I 1 1

Thus m, satisfies the hypotheses of “m” of [4; Theorem 2], with B =
max(M log 2,|m,|..) and hence there is a transformation T, such that if
We A, where 1<p <, then

(8) r W(x) (T, f)(x)| dstr W(x) |[F(x)P dx,

for every measurable function F for which the right hand side of (8) is finite, N
being a constant independent of F, and if Fe L,(—%, ),

(9) (TF)t)=m, ()F(t) = m(u+ it F(1).
We define
(10) H,=%,'T,%,.

Note that if we U, and W(1)=w(e’), then We A,. For if —e<a<p <o,
then from (5),

{B%a fwm dt}{ ; - f(W(t))‘”("‘“ dt}p

_ {B%a fw(e') dt}{-Bi—a J;B(w(e'))_”("_” dt}p_l

=(B- a)“’{EBW(x) dx/x}{ieB(W(x))"’<”" dx/x}p—l

@

-1

=(B—a)" - K(log(ef/e*))’ =K.
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Hence if fe & where 1<p <o, and if we,, then from (10) and (5),

W, 1,02

(oo

1/p
ol ={ [ w60 e (P00 aie]

“0

{[ e noral”

= {:o; W) (T, 8.1 dt}”p SNllp{Lz L OICHI O dt}llp

=Nl fler

so that H,, e[£,, ., ]

H,,, as defined by (10), seems to depend on w. But, as proved in [8; Lemma
3.2], on C,, H,, is independent of w for a(m)<u <B(m), and then using our
lemma, the fact that it is independent of u on &%, , follows as in the proof of [8;
Lemma 3.2], while the remainder of the theorem now follows as in the case for
w=1 in [8; Theorem 1].

In [7; Theorems 6.1 and 7.1] we studied operators (I,,.) 'J,p, and
(Jygm) 'Loe where I, and J, gz, are defined by [7; (1.2) and (1.3)]. The
operators were studied using implicitly [8; Theorem 1], that is Theorem 1
above for w(x)=1. Using Theorem 1 for general we,, it is immediate that
all the results of [7; Theorems 6.7 and 7.1] extend to £,,,,, for w e, except
the unitariness statements, provided the following theorem is proved.

THEOREM 2. Suppose 1<p<o, and we, Then: (i) if p<vReé& and
Rea>0, I, e[%,,.,]; (i) if u>—vRen and Re >0, J, 5. €[L ]

Proof. It is shown in [7; Corollary 4.1] that if fe[¥,, ], 1=p=2,u<
vRe ¢ then (ML, f)(s)=m(s)(Mf)(s),Res=pn, where m(s)=T(&~(s/v))/
I'(é+a—(s/v)). Now m € o, with a(m)=—on, B(m)= v Re &; for clearly m(s) is
holomorphic in the strip —o<Re s <v Re &; also, since from [2; 1.18(6)],
[(x +iy)~v2m |y|*"2e™™"V2 a5 |y| — o, uniformly in x for x in any bounded
interval, then as [|t|— o, m(oc+it)~ |¢/v| B uniformly in o for o
in any bounded interval, and thus if o <o;=0,<p, m(s) is bounded in the
strip o, =< Re s =0,; further, from [2; 1.18(7)], if ¥(z)=I"(z)/I'(z), then
W(z)=logz—1/2z+0O(z|™?) as |z] > in |argz|=mw—8, where 0<&=<m,
and thus m'(o+it) = m(o+ it){log(é+a— (o +it)/v)—1/Q2(é+ a— (o +it)/v))—
log(¢é — (o +it/v) + 1/2(£ = (o + it)/v)) + O(|t| ) = m(o + it){(iva)/t + O(|t] )} =
O(t]™") as |t| — =, and thus m € . Hence from Theorem 1, I, €[, . ] if
I1<p<o,wed, pn<vReg and Re a >0. The results for J, ., follows simi-
larly.

The results about (L, .) 'V, g, and (J,5,) 'L, in [7] were applied in [7;
Theorem 8.1] to an operator H,,.,, which is the product of two Hankel
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transformations, and it now follows that all the results of [7; Theorem 8.1]
extend to £, ,, for we U, except again the unitariness results. In particular,
since H, ,12,,—1/2.1 i Muckenhoupt and Stein’s Hankel conjugate operator 9,
[6; §16], it follows that if 1<p <c and we U, then ¥, €[&,, . ]1for —1<p <
2A+1.

A direct application of Theorem 1 to ¥, yields slightly more. For, it is easy
to see from [7, §8] that if fe%,, where 1<p=2,-1<p<2A+1,
(MHLF)(s) = my (s)(MS)(s), where my (s) = (DG +s)TGRA +1-5)))/
(T(3s)T'(3(2A +2—5))), and it follows from the asymptotic behaviour of I'(z) and
W¥(z), in much the same way as in the proof of Theorem 2, that if A >—1, m, €
oA, with a(m,)=—1, B(m,)=2A+1, and that 1/m, € of with either a(1/m,)=
0,B8(1/my)=2A+2 or a(l/m)=-1,B(1/m,)=0. Thus except for w=
0’ %A (xw,u,p) = °‘cew,u«p'

Since the even Hilbert transformation, H,, is #,, it follows that if 1<p <
o, wel, H.e[£,,,] for —1<pu<1, and except when pn=0, H, (¥, ,,)=
&£ wp- Similar analysis for the odd Hilbert transformation H_ yields that if
1<p<o,weU,H €[¥#,,.,] for 0<u<2, and except for p=
1,H(%.,,)=%..,, These results should be contrasted with those of
Andersen [1] who gave necessary and sufficient conditions on a weight W that
H. be bounded on the L,(0, ) space with weight W. Applying Andersen’s
conditions on W to the weight x” 'w(x) that we are using here, it follows that
if we,, then for 0<v<2p,0<a<b,

p-1

b b
{j x*w(x) dx/x}{[ (x"72Pw(x)) YD dx/x] = K(b*- a?P.

The Hilbert transform H of a function f can be constructed from the even
Hilbert transform of the even part of f and the odd Hilbert transform of the odd
part of f. Putting things together in this way yields that for 0 <<p <1,

[ wieh et Epeor de =K wile e 0ol de
for all f measurable on R for which the right hand side is finite. Necessary and
sufficient conditions that the Hilbert transformation be bounded on a weighted
L,(—%,») with weight W have been given by Hunt, Muckenhoupt and
Wheeden [3], and applying these here, it follows that if we®,, then for
0<v<p,0=a<b,

{J;bx"w(x) dx/x}{Lb(x”“’w(x))_”("_l) dx/x}p

!
=K(b—a)".
In particular, with » =1, if we U, w(|x|) € A,.

Thus Theorem 1 produces significant results about well known classes of
functions, and about important operators.
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