A PROPERTY OF BERNSTEIN-SCHOENBERG SPLINE OPERATORS

by T. N. T. GOODMAN AND A. SHARMA

(Received 8th October 1984)

1. Introduction

Let $B_{n}(f ; x)$ denote the Bernstein polynomial of degree n on $[0,1]$ for a function $f(x)$ defined on this interval. Among the many properties of Bernstein polynomials, we recall in particular that if $f(x)$ is convex in [0,1] then (i) $B_{n}(f ; x)$ is convex in [0,1] and (ii) $B_{n}(f ; x) \geqq B_{n+1}(f ; x),(n=1,2, \ldots)$. Recently these properties have been the subject of study for Bernstein polynomials over triangles [1].

Our object here is to consider these properties in relation to the BernsteinSchoenberg spline operator first introduced by Schoenberg [6]. We shall denote by $V_{n}^{T}(f ; x)$ the B-S spline of degree n with reference to a knot sequence T (not necessarily distinct) in the interval $(0,1)$. The operator $V_{n}^{T}(f ; \cdot)$ shares many properties with Bernstein polynomials. Besides its convergence properties, it also has the variationdiminishing property which yields the fact that if $f(x)$ is convex, then so is $V_{n}^{T}(f ; x)$.

We shall give here an analogue of property (ii) for B-S operators. We also find conditions for equality to be attained and derive, as a special case, a result of Freedman and Passow [3] for $B_{n}(f ; x)$. In Section 2 we give the preliminaries and a statement of results, which are contained in Theorem 1 and 2. The first Theorem is proved in Section 3 and the second in Section 4.

2. Preliminaries

For given integers $n \geqq 1, k \geqq 0$, take a sequence of knots $\left\{t_{i}\right\}_{-n}^{k+n+1}$ in [0, 1] satisfying

$$
\begin{aligned}
& 0=t_{-n}=\cdots=t_{0}<t_{1} \leqq t_{2} \leqq \cdots \leqq t_{k}<t_{k+1}=\cdots=t_{k+n+1}=1 \\
& t_{i-n}<t_{i+1} \quad(i=0,1, \ldots, k+n) .
\end{aligned}
$$

For $i=0,1, \ldots, k+n$ let $N_{n, i}(x)=N\left(x \mid t_{i-n}, \ldots, t_{i+1}\right)$ denote the B-spline of degree n with knots t_{i-n}, \ldots, t_{i+1} normalized so that $\sum_{i=0}^{k+n} N_{n, i}(x)=1$. Following Schoenberg [6], for any function f on $[0,1]$, we set

$$
\begin{equation*}
V_{n}^{T}(f ; x)=\sum_{i=0}^{k+n} f\left(\xi_{i}\right) N_{n, i}(x) \tag{2.1}
\end{equation*}
$$

where $\xi_{i}=(1 / n)\left(t_{i-n+1}+\cdots+t_{i}\right)$ and $T=\left\{t_{i}, \ldots, t_{k}\right\}$ denotes the set of knots with multiplicities in the open interval $(0,1)$. The operator V_{n}^{T} reproduces linear functions and reduces to Bernstein polynomials of degree n when $k=0$.

We note that if f is convex, then $V_{n}^{T}(f ; x) \geqq f(x)$ with equality if and only if f is linear. This is so since for $x \in[0,1]$,

$$
V_{n}^{T}(f ; x)=\sum_{i=0}^{k+n} f\left(\xi_{i}\right) N_{n, i}(x) \geqq f\left(\sum_{i=0}^{k+n} \xi_{i} N_{n, i}(x)\right)=f(x) .
$$

In this paper we consider two operators $V_{n}^{T}(f ; x)$ and $V_{m}^{S}(f ; x)$ such that the B-splines $\left\{N_{n, i}(x)\right\}$ for V_{n}^{T} lie in the linear span of the B-splines $\left\{N_{m, i}(x)\right\}$ for V_{m}^{S} and show that then $V_{n}^{T}(f ; x) \geqq V_{m}^{S}(f ; x)$ when $f(x)$ is convex in [0,1]. It is clearly sufficient to prove the result for the following two cases:
(A) Firstly suppose $m=n$ and that S comprises T together with one extra knot, i.e. $S=\left\{s_{1}, \ldots, s_{k+1}\right\} \quad T=\left\{t_{1}, \ldots, t_{k}\right\} \quad$ and $\quad s_{i}=t_{i} \quad(i=1, \ldots, l), \quad t_{l} \leqq s_{l+1}<t_{l+1}$ and $s_{i}=t_{i-1}(i=l+2, \ldots, k+1)$. In this case we shall prove

Theorem 1. Suppose $f(x)$ is convex in $[0,1]$ and S and T are as given in (A). Then

$$
\begin{equation*}
V_{n}^{T}(f ; x) \geqq V_{n}^{S}(f ; x) \tag{2.2}
\end{equation*}
$$

and equality occurs only if f is linear on $\left[\xi_{i-1}, \xi_{i}\right]$ for $i=l+1, \ldots, p+n$ where $p=\max \left\{i: t_{i}<s_{l+1}\right\}$. Moreover if f is any function (not necessarily convex) which is linear on $\left[\xi_{i-1}, \xi_{i}\right]$ for $i=l+1, \ldots, p+n$, then equality holds in (2.2).

Remark. When $t_{l}<s_{l+1}<t_{l+1}$, then $p=l$. If $s_{l+1}=t_{l}=t_{l-1}=\cdots=t_{l-v}>t_{l-v-1}$, for some v, then $p=l-v-1$.
(B) Secondly we suppose $m=n+1$ and S comprises the same distinct knots as T but with the multiplicity of each element increased by 1 . In this case, we have

Theorem 2. Suppose $f(x)$ is a convex function in $[0,1]$ and S and T satisfy the conditions in (B). Then

$$
\begin{equation*}
V_{n}^{T}(f ; x) \geqq V_{n+1}^{S}(f ; x) \tag{2.3}
\end{equation*}
$$

and equality occurs only if f is piecewise linear with simple knots at those ξ_{i} for which $\left\{t_{i-n+1}, \ldots, t_{i}\right\}$ comprises at most two distinct elements. Moreover if f is any piecewise linear function (not necessarily convex) with knots as above, then equality occurs in (2.3).

By putting $k=0$ we have
Corollary. If $f(x)$ is a convex function on $[0,1]$, then

$$
\begin{equation*}
B_{n}(f ; x) \geqq B_{n+1}(f ; x) \tag{2.4}
\end{equation*}
$$

A PROPERTY OF BERNSTEIN-SCHOENBERG SPLINE OPERATORS

and equality occurs only if f is linear on $[i / n, i+1 / n]$ for $i=0,1, \ldots, n-1$. Moreover if f is any function which is linear on $[i / n, i+1 / n]$ for $i=0,1, \ldots, n-1$ then equality occurs in (2.4).

Remark. Take $n \geqq 1$ and suppose f is linear on $[i / n, i+1 / n]$ for $i=0,1, \ldots, n-1$. Then for any $m \geqq 1, f$ is linear on $[i / m n, i+1 / m n], i=0,1, \ldots, m n-1$, and the corollary tells us that $B_{m n}(f ; x)=B_{m n+1}(f ; x)$. This yields a result of Freedman and Passow [3].

3. Proof of Theorem 1

Take S and T as in Theorem 1. As before we let $N_{n, i}(x)=N\left(x \mid t_{i-n}, \ldots, t_{i+1}\right)$ $(i=0,1, \ldots, k+n)$ and set

$$
\tilde{N}_{n, i}(x)=N\left(x \mid s_{i-n}, \ldots, s_{i+1}\right) \quad(i=0,1, \ldots, k+n+1)
$$

Now for $i=0,1, \ldots, k+n,\left\{t_{i-n}, \ldots, t_{i+1}\right\} \subseteq\left\{s_{i-n}, \ldots, s_{i+2}\right\}$ and so there are numbers α_{i}, β_{i} such that

$$
\begin{equation*}
N_{n, i}(x)=\alpha_{i} \tilde{N}_{n, i}(x)+\beta_{i} \tilde{N}_{n, i+1}(x) \tag{3.1}
\end{equation*}
$$

We claim that $\alpha_{i} \geqq 0, \beta_{i} \geqq 0$. For $i=0,1, \ldots, l-1$, we have $\left\{t_{i-n}, \ldots, t_{i+1}\right\}=\left\{s_{i-n}, \ldots, s_{i+1}\right\}$ and so $\alpha_{i}=1, \beta_{i}=0$. For $i=p+n+1, \ldots, k+n$, we have $t_{i-n} \geqq s_{l+1}$ so that $\left\{t_{i-n}, \ldots, t_{i+1}\right\}=$ $\left\{s_{i-n+1}, \ldots, s_{i+1}\right\}$ and so $\alpha_{i}=0, \beta_{i}=1$. For $i=l, \ldots, p+n$, we have $t_{i-n}<s_{l+1}<t_{i+1}$. Thus the support of $N_{n, i}(x)$ contains $\left\{s_{i-n}, \ldots, s_{i+2}\right\}$ and so $\alpha_{i} \neq 0 \neq \beta_{i}$. Indeed if t_{i-n} has multiplicity μ in $\left\{t_{i-n}, \ldots, t_{i+1}\right\}$, then

$$
N_{n, i}^{(n-\mu+1)}\left(t_{i-n}^{+}\right)>0, \tilde{N}_{n, i}^{(n-\mu+1)}\left(t_{i-n}^{+}\right)>0
$$

while $\tilde{N}_{n, i+1}^{(n-\mu+1)}\left(t_{i-n}^{+}\right)=0$. So (3.1) gives $\alpha_{i}>0$. Similarly considerations near t_{i+1} give $\beta_{i}>0$, which proves the assertion. Now letting $\tau_{i}=1 / n\left(s_{i-n+1}+\cdots+s_{i}\right)$, we have

$$
\begin{equation*}
V_{n}^{S}(f ; x)=\sum_{i=0}^{k+n+1} f\left(\tau_{i}\right) \tilde{N}_{n, i}(x) \tag{3.2}
\end{equation*}
$$

Also from (3.1), we see that

$$
\begin{align*}
V_{n}^{T}(f ; x) & =\sum_{i=0}^{k+n} f\left(\xi_{i}\right) N_{n, i}(x) \\
& =\sum_{i=0}^{k+n+1}\left\{\alpha_{i} f\left(\xi_{i}\right)+\beta_{i-1} f\left(\xi_{i-1}\right)\right\} \tilde{N}_{n, i}(x) \tag{3.3}
\end{align*}
$$

where we have set $\alpha_{k+n+1}=0=\beta_{-1}$. Comparing (3.2) and (3.3) and putting $f(x)=1$ gives

$$
\begin{equation*}
\alpha_{i}+\beta_{i-1}=1 \quad(i=0,1, \ldots, k+n+1) \tag{3.4}
\end{equation*}
$$

Similarly, putting $f(x)=x$ gives

$$
\begin{equation*}
\alpha_{i} \xi_{i}+\beta_{i-1} \xi_{i-1}=\tau_{i} \quad(i=0,1, \ldots, k+n+1) \tag{3.5}
\end{equation*}
$$

If f is convex, then from (3.4) and (3.5),

$$
f\left(\tau_{i}\right) \leqq \alpha_{i} f\left(\xi_{i}\right)+\beta_{i-1} f\left(\xi_{i-1}\right)
$$

and so from (3.2) and (3.3), we get (2.1).
Equality occurs in (2.1) if and only if for $i=0,1, \ldots, k+n+1$,

$$
\begin{equation*}
f\left(\alpha_{i} \xi_{i}+\beta_{i-1} \xi_{i-1}\right)=\alpha_{i} f\left(\xi_{i}\right)+\beta_{i-1} f\left(\xi_{i-1}\right) \tag{3.6}
\end{equation*}
$$

For $i=0,1, \ldots, l$, we have $\beta_{i-1}=0$ and $\alpha_{i}=1$ and (3.6) is satisfied. For $i=p+n+1, \ldots$, $k+n+1$, we have seen above that $\beta_{i-1}=0, \alpha_{i}=1$ and again (3.6) is satisfied. For $i=l+1, \ldots, p+n$ we have $\alpha_{i}>0, \beta_{i-1}>0$ and so if f is convex, (3.6) is valid only if f is linear in $\left[\xi_{i-1}, \xi_{i}\right]$. Moreover if f is any function which is linear on $\left[\xi_{i-1}, \xi_{i}\right]$, then (3.6) holds.

4. Proof of Theorem 2

Let T comprise distinct elements x_{1}, \ldots, x_{l} with multiplicites μ_{1}, \ldots, μ_{l} respectively, so that $\sum_{1}^{l} \mu_{j}=k$. Then \dot{S} comprises the same distinct elements x_{1}, \ldots, x_{l} with multiplicities $\mu_{1}+1, \ldots, \mu_{l}+1$ respectively. We define $\left\{s_{i}\right\}_{-n-1}^{k+l+n+2}$ so that

$$
0=s_{-n-1}=\cdots=s_{0}<s_{1} \leqq s_{1} \leqq s_{2} \leqq \cdots \leqq s_{k+l}<s_{k+l+1}=\cdots=s_{k+l+n+2}=1
$$

and $S=\left\{s_{1}, \ldots, s_{k+l}\right\}$. As before we let $N_{n, i}(x)=N\left(x \mid t_{i-n}, \ldots, t_{i+1}\right)(i=0,1, \ldots, n+k)$, and we set

$$
M_{n+1, i}(x)=N\left(x \mid s_{i-n-1}, \ldots, s_{i+1}\right) \quad(i=0,1, \ldots, n+k+l+1)
$$

Lemma 1. For any $i(0 \leqq i \leqq n+k)$, let $\lambda=\lambda(i)$ denote the number of distinct elements of T in $\left(t_{i-n}, t_{i+1}\right)$. Then for some μ (depending on i), we have

$$
\begin{equation*}
N_{n, i}(x)=\sum_{j=0}^{\lambda+1} a_{i j} M_{n+1, j+\mu}(x) \tag{4.1}
\end{equation*}
$$

where $a_{i 0}>0, a_{i, \lambda+1}>0$ and $a_{i j} \geqq 0$ for $1 \leqq j \leqq \lambda$.
Proof. For $k=1$ the coefficients ($a_{i j}$) can be determined explicitly. However for $k>1$ this does not appear feasible and so for all $k \geqq 1$ we shall prove the coefficients are nonnegative by using the concept of total positivity.

Suppose t_{i-n} has multiplicity v in $\left\{t_{i-n}, \ldots, t_{i+1}\right\}$, i.e., $t_{i-n}=\cdots=t_{i-n+v-1}<t_{i-n+v}$. Choose μ so that $t_{i-n}=s_{\mu-n-1}=\cdots=s_{\mu-n-1+v}<s_{\mu-n+v}$. Then clearly (4.1) holds for

A PROPERTY OF BERNSTEIN-SCHOENBERG SPLINE OPERATORS

some constants $a_{i j}(j=0,1, \ldots, \lambda+1)$. Now

$$
N_{n, i}^{(n-v+1)}\left(t_{i-n}^{+}\right)>0, \quad M_{n+1, \mu}^{(n-v+1)}\left(t_{i-n}^{+}\right)>0, \quad N_{n+1, j+\mu}^{(n-v+1)}\left(t_{i-n}^{+}\right)=0 \quad(j=1, \ldots, \lambda+1) .
$$

So from (4.1), $a_{i 0}>0$. Similar reasoning near t_{i+1} gives $a_{i, \lambda+1}>0$.
It remains to show that $a_{i j} \geqq 0$ for $1 \leqq j \leqq \lambda$. Let $v_{0}, \ldots, v_{\lambda+1}$ denote the distinct elements of $\left\{t_{i-n}, \ldots, t_{i+1}\right\}$. For $j=0,1, \ldots, \lambda$ choose any point σ_{j} in (v_{j}, v_{j+1}) and consider the system of $\lambda+2$ equations

$$
\begin{equation*}
\sum_{j=0}^{\lambda+1} B_{j} M_{n+1, j+\mu}^{(n+1)}\left(\sigma_{k}\right)=0 \quad(k=0,1, \ldots, \lambda), \quad B_{\lambda+1}=a_{i, \lambda+1} \tag{4.2}
\end{equation*}
$$

Differentiating (4.1) $(n+1)$ times shows that the system (4.2) has a unique solution $B_{j}=a_{i j}(j=0,1, \ldots, \lambda+1)$. So the matrix for the system (4.1) is non-singular and solving by Cramer's rule gives

$$
\begin{equation*}
a_{i j}=a_{i, \lambda+1}(-1)^{\lambda+j+1} C_{j} C_{\lambda+1}^{-1} \quad(j=0,1, \ldots, \lambda+1), \tag{4.3}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{j}=\operatorname{Det}\left(M_{n+1, q+\mu}^{(n+1)}\left(\sigma_{p}\right)\right)_{p=0, i, q=0}^{\lambda \neq j} \tag{4.4}
\end{equation*}
$$

Now we recall that a matrix is called totally positive if all its minors are non-negative. We shall call a matrix $M=\left(m_{j k}\right)_{j=0, k=0}^{r}$ checkerboard if the matrix

$$
\left((-1)^{j+k} m_{j k}\right)_{j, k=0}^{r}
$$

is totally positive.
For $m \leqq n$, we set

$$
M_{m, i}(x)=N\left(\left.x\right|_{s_{i-m}}, \ldots, s_{i+1}\right) \quad(i=m-n-1, \ldots, n+k+l+1)
$$

where $M_{m, i}(x) \equiv 0$ when $s_{i-m}=s_{i+1}$. Then

$$
\frac{1}{n+1} M_{n+1, j+\mu}^{\prime}(x)=b_{j} M_{n, j+\mu-1}(x)-b_{j+1} M_{n, j+\mu}(x)
$$

where

$$
b_{j}=\left\{\begin{array}{cc}
\frac{1}{s_{j+\mu}-s_{j+\mu-n-1}}, & s_{j+\mu-n-1}<s_{j+\mu} \\
0, & s_{j+\mu-n-1}=s_{j+\mu}
\end{array}\right.
$$

Thus

$$
\begin{equation*}
M_{n+1, j+\mu}^{\prime}(x)=\sum_{k=0}^{\lambda+2} a_{j k}^{[1]} M_{n, k+\mu-1}(x) \tag{4.5}
\end{equation*}
$$

where

$$
a_{j k}^{[1]}=(n+1) b_{j} \delta_{j k}-(n+1) b_{j+1} \delta_{j+1, k} .
$$

It is easily seen that the matrix $\left(a_{j k}^{[1]}\right)_{j=0, k=0}^{\lambda+1, \lambda+2}$ checkerboard. Similarly, we have

$$
\begin{equation*}
M_{n, j+\mu-1}^{\prime}(x)=\sum_{k=0}^{\lambda+3} a_{j k}^{[2]} M_{n-1, k+\mu-2}(x) \tag{4.6}
\end{equation*}
$$

where the matrix $a_{j k}^{[2] ~} \lambda+2, \lambda, k=0$ is checkerboard. Differentiating (4.5) and applying (4.6) gives

$$
M_{n+1, j+\mu}^{\prime \prime}(x)=\sum_{k=0}^{\lambda+2} \sum_{l=0}^{\lambda+3} a_{j k}^{[1]} a_{j k}^{[2]} M_{n-1, l+\mu-2}(x) .
$$

Continuing in this way and noting that the product of checkerboard matrices is checkerboard, we obtain

$$
\begin{equation*}
M_{n+1, j+\mu}^{(n+1)}(x)=\sum_{k=0}^{\lambda+n+2} M_{j k} m_{0, k+\mu-n-1}(x) \tag{4.7}
\end{equation*}
$$

where the matrix $M=\left(M_{j k}\right)_{j=0, k=0}^{\lambda+1, \lambda+n+2}$ is checkerboard. Now note that

$$
M_{0, j}(x)= \begin{cases}1 & s_{j}<x<s_{j+1} \\ 0 & \text { elsewhere }\end{cases}
$$

Thus these are numbers $0<j_{0}<j_{1}<\cdots<j_{\lambda}<\lambda+n+2$ such that for $k=0,1, \ldots, \lambda$

$$
M_{0, j+\mu-n-1}\left(\sigma_{k}\right)= \begin{cases}1, & j=j_{k} \\ 0, & \text { otherwise }\end{cases}
$$

Then from (4.7) we get

$$
\begin{equation*}
M_{n+1, j+\mu}^{(n+1)}\left(\sigma_{k}\right)=m_{j, j_{k}} . \tag{4.8}
\end{equation*}
$$

Recalling (4.4) we see from (4.8) that since M is checkerboard

$$
\begin{equation*}
(-1)^{s+j} C_{j} \geqq 0 \quad(j=0,1, \ldots, \lambda+1) \tag{4.9}
\end{equation*}
$$

where $s=j_{0}+\cdots+j_{\lambda}+\frac{1}{2}(\lambda+1)(\lambda+2)$.
Then (4.9) and (4.3) give $a_{i j} \geqq 0(j=0,1, \ldots, \lambda+1)$.
We now apply Lemma 1 to express V_{n}^{T} in the form

$$
\begin{equation*}
V_{n}^{T}(f ; x)=\sum_{i=0}^{n+k+l+1}\left\{\sum_{j=0}^{n+k} D_{i j} f\left(\xi_{j}\right)\right\} M_{n+1, i}(x) \tag{4.10}
\end{equation*}
$$

where $D_{i j} \geqq 0$ for all i, j.

Letting $\tau_{i}=(1 / n+1)\left(s_{i-n}+\cdots+s_{i}\right)$, we have

$$
\begin{equation*}
V_{n+1}^{s}(f ; x)=\sum_{i=0}^{n+k+l+1} f\left(\tau_{i}\right) M_{n+1, i}(x) \tag{4.11}
\end{equation*}
$$

Putting $f(x)=1$ and comparing (4.10) and (4.11) gives

$$
\begin{equation*}
\sum_{j=0}^{n+k} D_{i j}=1 \quad(i=0,1, \ldots, n+k+l+1) . \tag{4.12}
\end{equation*}
$$

Similarly, putting $f(x)=x$ gives

$$
\begin{equation*}
\sum_{j=0}^{n+k} D_{i j} \xi_{j}=\tau_{i} \quad(i=0,1, \ldots, n+k+l+1) \tag{4.13}
\end{equation*}
$$

If f is convex, then from (4.12) and (4.13),

$$
f\left(\tau_{i}\right) \leqq \sum_{j=0}^{n+k} D_{i j} f\left(\xi_{j}\right) \quad(i=0,1, \ldots, n+k+l+1)
$$

and so from (4.10) and (4.11) we get (2.3).
Equality occurs in (2.3) if and only if for $i=0,1, \ldots, n+k+l+1$,

$$
\begin{equation*}
f\left(\sum_{j=0}^{n+k} D_{i j} \xi_{j}\right)=\sum_{j=0}^{n+k} D_{i j} f\left(\xi_{j}\right) . \tag{4.14}
\end{equation*}
$$

To see when this occurs, we must examine the constants $D_{i j}$ more closely. Fix $i(0 \leqq i \leqq n+k+l+1)$ and suppose s_{i-n-1} and s_{i+1} have multiplicities $\alpha=\alpha(i)$ and $\beta=\beta(i)$ respectively in $\left\{s_{i-n-1}, \ldots, s_{i+1}\right\}$. We choose $\gamma=\gamma(i)$ and $\delta=\delta(i)$ as follows. If $\beta(i) \geqq 2$, $t_{\gamma-\beta+2}<t_{\gamma-\beta+3}=\cdots=t_{\gamma+1}=s_{i+1}$. If $\beta(i)=1$, then $t_{\gamma}<t_{\gamma+1}=s_{i+1}$. If $\alpha(i) \geqq 2$, then $s_{i-n+1}=$ $t_{\delta-n}=\cdots=t_{\delta-n+\alpha-2}<t_{\delta-n+\alpha-1}$. If $\alpha(i)=1$, then $s_{i-n-1}=t_{\delta-n}<t_{\delta-n+1}$. Clearly $\gamma \leqq \delta$ and as in Lemma 1, we can see that $D_{i \gamma}>0, D_{i \delta}>0$ and $D_{i j}=0$ for $j<\gamma$ and $j>\delta$.

If f is convex, then (4.14) holds only if f is linear on $\left[\xi_{\gamma}, \gamma_{\delta}\right]$. Moreover if f is any function which is linear on $\left[\xi_{y}, \xi_{\delta}\right]$, then (4.14) holds. Thus if f is convex, equality holds in (2.2) only if f is piecewise linear and the possible knots are those points ξ_{j} which do not lie in any interval of the form $\left(\xi_{\gamma(i)}, \xi_{\delta(i)}\right)$ for $i=0,1, \ldots, n+k+l+1$. This can happen if and only if for some $i, \xi_{j}=\xi_{\delta(i)}=\xi_{y(i+1)}$. Checking all possible cases we see that this happens if and only if the set $\left\{t_{j-n+1}, \ldots, t_{j}\right\}$ contains at most two distinct elements. Similarly, if f is any piecewise linear function with knots at such points ξ_{j}, then equality holds in (2.2).

Acknowledgement. The second-named author wishes to thank the Edinburgh Mathematical Society for a grant from its centenary fund to finance a trip to the University of Dundee during which this research was conducted.

REFERENCES

1. G. Chang and P. J. Davis, The convexity of Bernstein polynomials over triangles, J. Approx. Theory 40 (1984), 11-28.
2. P. J. Davis, Interpolation and Approximation (Dover, New York, 1975).
3. D. Freedman and E. Passow, Degenerate Bernstein polynomials, J. Approx. Theory 39 (1983), 89-92.
4. T. N. T. Goodman and S. L. Lee, Spline approximation operators of Bernstein-Schoenberg type in one and two variables, J. Approx. Theory 33 (1982), 248-263.
5. G. G. Lorentz, Bernstein polynomials (University of Toronto Press, Toronto, 1953).
6. I. J. Schoenberg, On spline functions, Inequalities: Proceedings of a Symposium (O. Shisha, Ed., Academic Press, New York, 1967), 255-294.

Department of Mathematical Sciences
University of Dundee
Dundee DD1 4HN
Scotland, U.K.

